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ABSTRACT 25 

The non-feeding postlarva (puerulus) of spiny lobsters actively swims from the open ocean to the 26 

coastal habitats where it settles and molts to the first-stage juvenile (JI). Because pueruli use 27 

much of their energy reserves swimming and preparing for the post-settlement molt, the survival 28 

of JIs presumably depends on resuming feeding as soon as possible. To test this hypothesis, the 29 

resistance to starvation of JIs of the Caribbean spiny lobster, Panulirus argus, was evaluated by 30 

measuring their point-of-no-return (PNR, minimum time of initial starvation preventing recovery 31 

after later feeding) and point-of-reserve-saturation (PRS, minimum time of initial feeding 32 

allowing for food-independent development through the rest of the molting cycle) in a warm and 33 

a cold season. Each experiment consisted of eight groups: a continuously fed control (FC) group, 34 

a continuously starved control (SC) group, and six groups subjected to differential periods of 35 

either initial starvation and subsequent feeding (PNR experiments) or initial feeding and 36 

subsequent starvation (PSR experiments). No JIs molted under continuous absence of food (SC). 37 

In both PNR experiments (temperature in warm season: 29.79 ± 0.07°C, mean ± 95% CI; in cold 38 

season: 25.63 ± 0.12°C) mortality increased sharply after 9 d of initial starvation and intermolt 39 

periods increased with period of initial starvation, but were longer in the cold season. The PNR50 40 

was longer in the warm season (12.1 ± 1.2 d, mean ± 95% CI) than in the cold season (9.5 ± 2.1 41 

d). In PRS experiments (temperature in warm season: 29.54 ± 0.07 °C; in cold season:  26.20 ± 42 

0.12 °C), JIs that molted did so near the end of the feeding period; all JIs initially fed for up to 6 d 43 

succumbed, and no JIs molted after 13 d of starvation despite having fed previously. The PRS50 44 

did not differ between the cold (13.1 ± 0.7 d) and warm seasons (12.1 ± 1.1 d). JIs of P. argus 45 

exhibit a remarkable resistance to starvation considering that the previous non-feeding, energy-46 

demanding puerulus phase lasts for ~3 weeks. However, JIs appear to have a relatively higher 47 

degree of dependence on food to complete development to JII during the cold season than during 48 
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the warm season. Therefore, JIs of P. argus would appear to be more resistant to starvation 64 

during the warm season. 65 

 66 

INTRODUCTION 67 

The Caribbean spiny lobster, Panulirus argus (Latreille, 1804) is widely distributed in the 68 

wider Caribbean region, where it constitutes one of the most important fishing resources 69 

(Holthuis, 1991; Phillips et al., 2013). In the warm Caribbean waters, P. argus breeds throughout 70 

most of the year, with a major peak during the spring and a secondary peak in the fall (Briones et 71 

al., 1997). The larval phase consists of 10 flattened planktonic stages, the phyllosomata 72 

(Goldstein et al., 2008). Larval development takes place in oceanic waters and lasts 5-9 months, 73 

conferring an enormous dispersion potential. The final larval stage undergoes a drastic 74 

metamorphosis into the postlarval phase, which consists of a single nektonic stage, the puerulus, 75 

which is more similar in shape to an adult lobster but is completely transparent (Phillips et al., 76 

2006). Unlike phyllosomata, which are planktotrophic, pueruli do not feed, i.e., they represent a 77 

secondary lecithotrophic phase that depends on its own energy reserves (Kittaka, 1994; 78 

Lemmens, 1994; McWilliam & Phillips, 1997; Cox, Jeffs & Davies, 2008). Pueruli actively swim 79 

towards the shore and settle in shallow coastal vegetated habitats, such as seagrass and 80 

macroalgal beds (Butler & Herrnkind, 2000; Briones-Fourzán & Lozano-Álvarez, 2001). A few 81 

days after settling, pueruli molt into the first juvenile stage, also known as post-puerulus (e.g. 82 

Limbourn et al., 2008), which resumes feeding. 83 

Under laboratory conditions, the total duration of the non-feeding puerulus phase of P. 84 

argus has been 16 to 26 d at 25° C and 11 to 18 d at 27° C (Goldstein et al., 2008). During this 85 

period most of the puerulus energy is allocated to swimming and preparing for the post-86 

settlement molt into the first juvenile stage (JI), which involves further morphological changes 87 
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(Lewis, Moore & Babis, 1952; Goldstein et al., 2008; Ventura et al., 2015). Swimming for 98 

distances of up to tens of kilometers to the settlement site can severely deplete the energy stores 99 

of the puerulus, potentially compromising its ability to molt into the JI (Jeffs, Willmott & Wells, 100 

1999; Jeffs, Chiswell & Booth, 2001).  Moreover, resumption of feeding by the JI may depend on 101 

local food availability and predation risk (Lozano-Álvarez, 1996; Weiss, Lozano-Álvarez & 102 

Briones-Fourzán, 2008). If the JI cannot restore sufficient energy reserves quickly enough, it 103 

could starve to death (Fitzgibbon, Jeffs & Battaglene, 2014). Therefore, it is important to 104 

determine the resistance to starvation (sensu Sulkin, 1978) of JIs of P. argus. This information, in 105 

addition to increasing knowledge regarding the biology of the early benthic stages of this species, 106 

is important for its potential in aquaculture and for the generation of predictive models of local 107 

lobster production based on levels of puerulus settlement (Phillips et al., 2000). 108 

In the present study, resistance to starvation of JIs of P. argus was experimentally 109 

determined via two physiological indices, the point-of-no-return (PNR) and the point-of-reserve-110 

saturation (PRS). The PNR is the duration of initial food deprivation that will cause irreversible 111 

damage, i.e., that will not allow recovery even after later re-feeding (Blaxter & Hempel, 1963; 112 

Anger & Dawirs, 1981); the PRS is the minimum time of initial feeding after which a later food-113 

independent development to the next stage is possible (Anger, 1987, 1995). To our knowledge, 114 

the PRS has not been determined for JIs of any spiny lobster species, and the only one for which 115 

the PNR of JIs has been determined is P. cygnus (Limbourn et al., 2008). In the present study, the 116 

PNR was determined by subjecting JIs of P. argus to a range of initial starvation periods shortly 117 

after molting, followed by continuous feeding. The PRS was determined by feeding JIs initially 118 

for diverse periods before food was permanently withheld. Each index was estimated during a 119 

warm season (summer-autumn) and a cold season (winter-spring) because the metabolic and 120 

growth rates of crustaceans in general (e.g. Anger, 2001), and of P. argus in particular (Perera et 121 
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al., 2007), increase with temperature, potentially affecting the PNR and PRS (Anger et al., 1981; 123 

Paschke et al., 2004; Bas, Spivak & Anger, 2008; Gebauer, Pashke & Anger, 2010). 124 

 125 

MATERIALS AND METHODS 126 

Given the long larval duration and extremely high rates of mortality of phyllosomata 127 

under laboratory conditions (Goldstein et al., 2008), our study was conducted using wild 128 

postlarvae as in Limbourn et al. (2008). Pueruli of P. argus were obtained from a set of 12 129 

artificial seaweed GuSi collectors (Gutiérrez-Carbonell, Simonín-Díaz & Briones-Fourzán, 1992) 130 

permanently deployed in the reef lagoons of Puerto Morelos (20°52′07″ N, 86°52′04″ W) and 131 

Bahía de la Ascensión (19°49′50″ N, 87°27′09″ W), Mexico. These collectors are only checked 132 

once a month because they are used for long-term monitoring of monthly pueruli settlement. 133 

Although monthly settlement in collectors can vary by an order of magnitude within a year, the 134 

average catch is 16 individuals per collector per month in Puerto Morelos, and 4 individuals per 135 

collector per month in Bahía de la Ascensión (Briones-Fourzán, Candela & Lozano-Álvarez, 136 

2008). Therefore, to increase the number of pueruli, a large mat (1 m × 8 m) of the same artificial 137 

seaweed was moored off a dock at Puerto Morelos and checked for pueruli every morning 138 

throughout the dark phase of the moon, when settlement levels are typically higher (Briones-139 

Fourzán, 1994). Within 1 h of collection, the pueruli were transported in aerated seawater to the 140 

laboratory where the experiments were conducted. The necessary permits for pueruli collection 141 

were obtained from Comisión Nacional de Acuacultura y Pesca (DGOPA.06695.190612.1737). 142 

The pueruli were individually placed in small covered cylindrical plastic baskets (0.5 l) to 143 

allow free water exchange. Each basket was lined with black nylon mesh to prevent escape of the 144 

puerulus and to reduce the light level. The baskets were partially submerged and supported by 145 

ethylene vinyl acetate (“foamy”) floats to provide buoyancy, and were distributed among three 146 
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tanks (2 m in diameter) with a water level of 0.7 m (approximately 2,800 l each), with 6–7 147 

baskets allotted to each treatment in each tank. The tanks received seawater from an open-flow 148 

system. The inflow water was pumped from the Puerto Morelos reef lagoon and passed through a 149 

mechanical filter and an ozone chamber (ozone injected at a rate of 0.98 mg/l) to an elevated tank 150 

(5,000 l; residence time, 0.3 h), and then to an open reservoir tank (6,300 l; residence time, 3.5 h). 151 

Then, the water was pumped through a sand filter (Hayward high rate sand filter, S-244T) to 152 

remove suspended particles before its distribution to the experimental tanks. The outflowing 153 

water was passed again through an ozone chamber. Water temperature in the tanks was recorded 154 

twice a day with an YSI Environmental 556 multi-probe system. 155 

Because each experiment required 160 pueruli (see below) but the number of pueruli that 156 

could be collected during any given season (warm or cold) was limited, it was not possible to 157 

conduct more than one experiment per season. Therefore, the PNR experiments were conducted 158 

in June–October 2012 (warm season) and January–April 2013 (cold season), and the PRS 159 

experiments were conducted in January–April 2014 (cold season) and July–November 2014 160 

(warm season). For each experiment, 160 pueruli were divided into eight groups of 20 individuals 161 

each. All individuals were checked twice daily, in the morning and evening. When a puerulus 162 

molted into a JI, the exuvia was removed. One group of recently molted JIs was continuously fed 163 

(fed control, FC) until all individuals molted into second-stage juveniles (JIIs). Another group 164 

remained unfed until all the individuals succumbed (starved control, SC). In the PNR 165 

experiments, the six remaining groups of recently molted JIs were subjected to different 166 

treatments (periods of starvation in multiples of 3 d) and then fed continuously. Thus, one group 167 

was starved for 3 d and then fed (treatment S3), another group was starved for 6 d and then fed 168 

(treatment S6), etc. (up to 18 d of initial starvation) (Fig. 1). In the PRS experiment, the six 169 

remaining groups of recently molted JIs were also subjected to different treatments, consisting of 170 
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feeding periods (also in multiples of 3 d) and then starved. Thus, one group was fed for 3 d and 174 

then starved (treatment F3), another group was fed for 6 d and then starved (treatment F6), etc. 175 

(up to 18 d of initial feeding) (Fig. 1). Food, when provided, consisted of a piece of mussel meat 176 

(Perna canaliculus) changed daily. Mussels are a good food source for early juveniles of 177 

Panulirus in laboratory conditions, at least during the first four weeks after the molt to JI (e.g., P. 178 

cygnus: Glencross et al., 2001; P. ornatus: Smith, Williams & Irvin, 2005; P. interruptus: Díaz-179 

Iglesias et al., 2011).Three-day periods were used to optimize the use of experimental individuals 180 

(which are difficult to obtain in large numbers) given that, in the laboratory, the average intermolt 181 

period of well-fed JIs of P. argus varied between 17 and 31 d depending on water temperature 182 

(Lellis & Russell, 1990), whereas the maximal starvation time for JIs of P. cygnus from which 183 

recovery was observed was 22 d (Limbourn et al., 2008). Therefore, JIs of P. argus were expected 184 

to endure relatively long starvation periods.  185 

For each individual, the first experimental day was one day after molting to JI (Limbourn 186 

et al., 2008). The influence of the initial starvation periods (in the PNR experiments) or the initial 187 

feeding periods (in the PRS experiments) was measured as percent mortality and the average 188 

duration of the JI stage of individuals that molted to JII (intermolt period). For the PNR and PRS 189 

experiments, duration of stage JI in days (logarithmically transformed to increase homogeneity of 190 

variance) was separately subjected to a factorial ANOVA with season and treatment as fixed 191 

factors. Starvation tolerance was quantified as the median point-of-no-return (PNR50) and point-192 

of-reserve-saturation (PRS50). PNR50 is the time when 50% of initially starved JIs lost the 193 

capability to recover, even after subsequent feeding, and died without molting to JII; PRS50 is the 194 

time when 50% of initially fed JIs attained the capability to develop through the rest of the 195 

molting cycle using internally stored energy reserves (Anger & Dawirs, 1981). PNR50 and PRS50 196 

were estimated by fitting sigmoidal dose-response curves of cumulative mortality to the time of 197 
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initial starvation or feeding, respectively (Paschke et al., 2004; Gutow et al., 2007; Bas, Spivak & 198 

Anger, 2008). Each index was compared between seasons (warm versus cold).  199 

 200 

RESULTS 201 

Throughout the text, results are reported as mean ± 95% CI unless otherwise stated. 202 

Statistical results were considered as significant at p <0.05. 203 

 204 

Point-of-no-return (PNR) 205 

 In the PNR experiments, water temperature differed significantly between the warm 206 

(29.79 ± 0.07 °C) and cold seasons (25.63 ± 0.12 °C) (t176 = 28.65, p < 0.001). The duration of 207 

stage JI in continuously fed individuals (i.e., the FC) was longer in the cold season (24.5 ± 3.6 d, 208 

n = 17) than in the warm season (18.2 ± 1.3 d, n = 20) (t35 = 3.44, p < 0.001). In general, the 209 

duration of stage JI was significantly affected by season (F1,148 = 68.04, p < 0.001) and treatment 210 

(F5,148 = 22.32, p < 0.001) but not by the interaction term (F5,148 = 0.37, p = 0.87); i.e., it 211 

increased with the duration of the initial period of starvation in both seasons but was longer for 212 

each period in the cold season (Fig. 2). Overall, mortality of JIs increased with number of initial 213 

days of starvation, but tended to be higher in a few treatments of the cold season experiment (FC, 214 

S3, S6, S12) than in the same treatments of the warm season experiment. The PNR50 was 12.1 ± 215 

1.2 d in the warm season and 9.5 ± 2.1 d in the cold season (Fig. 3), a significant difference (F1, 12 216 

= 7.924, p = 0.015). 217 

 218 

Point-of-reserve-saturation (PRS50) 219 

 In the PRS experiments, water temperature differed significantly between the cold season 220 

(26.20 ± 0.12 °C) and the warm season (29.54 ± 0.07 °C) (t285 = 24.23, p < 0.001). The duration 221 
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of stage JI in individuals from the FC was significantly longer in the cold season (25.7 ± 2.3 d, n 222 

= 20) than in the warm season (16.3 ± 1.3 d, n = 20) (t38 = 7.05, p < 0.001). Overall, the duration 223 

of stage JI was significantly affected by season (F1,119 = 37.9, p < 0.001) and treatment (F4,119 = 224 

8.71, p < 0.001), but the interaction term was also significant (F4,119 = 3.76, p < 0.001), indicating 225 

that the intermolt period in the different treatments did not follow the same pattern in both 226 

seasons (Fig. 4). In particular, the intermolt period was significantly longer in treatments F15 and 227 

F18 and in the FC of the cold season than in the same treatments of the warm season (Fig. 4). 228 

 Mortality of JIs decreased with increasing period of initial feeding, but was higher in 229 

almost all treatments of the cold season than in those of the warm season. In both seasons, all 230 

individuals in the SC and in treatments F3 and F6 succumbed. In both experiments, with the 231 

exception of the fed control group, most JIs molted near the end of the initial feeding period, with 232 

a maximum of 13 d between the end of the initial feeding period and molting. The PRS50 was 233 

13.1 ± 0.7 d in the cold season and 12.1 ± 1.1 d in the warm season (Fig. 5). These values did not 234 

differ significantly (F1, 12 = 3.603, p = 0.082). 235 

 236 

DISCUSSION 237 

Temperature has an important effect on the physiology and ecology of ectotherms such as 238 

spiny lobsters. For example, in Florida, USA, Witham (1973) reported that small juveniles of 239 

Panulirus argus were intolerant of sustained temperatures below 15.6°C or above 30.0°C, and 240 

that lobsters held below 20°C exhibited relatively little growth. In laboratory experiments held in 241 

Cuba, oxygen consumption and metabolism of early benthic and older juveniles of P. argus 242 

increased with temperature within the range of 19 to 30°C (Brito et al., 1991; Perera et al., 2007). 243 

Lellis & Russell (1990) examined growth and survival of postpueruli and early juveniles of P. 244 

argus at different temperatures and found that these stages grew faster at 30°C due to shorter 245 
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intermolt periods and greater size increments than at 24, 27, or 33°C. In our study, mean water 246 

temperature during the PNR and PRS experiments was 25.9 and 26.2°C in the cold season, 247 

respectively, and 29.8 and 29.5°C in the warm season, respectively. In both types of experiment 248 

the duration of stage JI of continuously fed individuals (FC) was significantly longer in the cold 249 

season than in the warm season. 250 

Limbourn et al. (2008) estimated the PNR50 of JIs of P. cygnus, a subtropical species, at 251 

22 d, which is about twice the PNR50
 estimated for the tropical P. argus in the present study. 252 

Regardless, the resistance to starvation of JIs of P. argus is remarkable, considering the energetic 253 

demand imposed on the non-feeding pueruli during their transit from oceanic waters to the coast 254 

(e.g. Fitzgibbon, Jeffs & Battaglene, 2014). As previously found by Limbourn et al. (2008) for P. 255 

cygnus, no JIs of P. argus were able to molt in complete absence of food (SC). Dependence on 256 

exogenous food of JIs to complete development has also been found in other decapods, even in 257 

some species with facultative lecithotrophic postlarvae (Calado et al., 2010). An exception is the 258 

red cherry shrimp, Neocaridina davidi, in which JIs were able to molt even in complete absence 259 

of food, probably because this species has a much abbreviated post-hatching development 260 

(Pantaleão et al., 2015). In our two PNR experiments, the duration of stage JI increased with 261 

increasing period of initial starvation. A delay in molting caused by lack of food has been 262 

documented in early life stages of other marine and freshwater crustacean species (e.g., Anger & 263 

Dawirs, 1981; Mikami, Greenwood & Gillespie, 1995; Abrunhosa & Kittaka, 1997; Stumpf et al., 264 

2010; Calvo et al., 2012) except N. davidi, in which the duration of stages JI and JIII was not 265 

affected by the duration of initial starvation periods (Pantaleão et al., 2015).  266 

In the PRS experiments, the few individuals that molted to JII in treatments F9 and F12 267 

did so near the end of the feeding period, and no individuals molted after 13 d of starvation 268 

despite having been previously fed, resulting in an apparent increase in duration of stage JI with 269 
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duration of initial feeding period. This result contrasts with the results of the PNR experiments, in 272 

which seven individuals from treatments S15 and S18 of the warm season experiment and eight 273 

from treatments S15 and S18 of the cold season experiment were able to molt. The higher 274 

tolerance to starvation of individuals from the PNR experiments may be due to a suspension of 275 

the molting cycle, i.e., an arrest of development in the intermolt stage (stage C in Drach’s molt 276 

classification system) of individuals subjected to initial starvation, with a subsequent shift to 277 

premolt stage (stage D) with further feeding (Anger, 1987). However, in PRS experiments, if 278 

individuals reach the premolt stage during the period of initial feeding and then are subjected to 279 

continuous starvation, an unsuccessful attempt to molt will lead to death because an arrest of 280 

development in premolt is not possible (Anger, 2001).  281 

The PRS occurs during the transition between late intermolt (stage C4) and early premolt 282 

(stage D0), which is also known as the “D0 threshold”, a critical period for crustaceans in terms of 283 

nutritional requirements (Anger, 1987, 2001).  The D0 threshold has been confirmed in early life 284 

stages of decapod crustaceans from different families, e.g., Crangonidae (Paschke et al., 2004), 285 

Diogenidae (Harms, 1992), Majidae (Figueiredo et al., 2008; Guerao et al., 2012), and Portunidae 286 

(Harms et al., 1990). In our study, results of both PRS experiments, with high mortality rates in 287 

individuals subjected to treatments F3, F6 and F9, and shorter intermolt periods and higher 288 

mortality rates than in PNR experiments, as well as the similarity in PRS50 values between 289 

seasons (unlike in PNR50 values), suggest that feeding in P. argus JIs is more important near the 290 

PRS (or D0 threshold) than immediately after molting to the first-stage juvenile.  291 

Although PRS50 values did not differ with season, the ratio of the PRS to the total 292 

duration of stage JI in individuals from the FC was higher during the warm season (74%) than in 293 

the cold season (51%). Therefore, despite the significantly longer duration of stage JI in the cold 294 

season, the PRS was reached earlier than in the warm season. A similar pattern was observed in 295 
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the zoea I of the shrimp Crangon crangon, in which the ratio of the PRS to the stage duration was 296 

32% in the summer and 23% in the winter (Paschke et al., 2004). However, the PRS represents 297 

about one-third of the total intermolt time in the early phases of many crustaceans, including C. 298 

crangon, the zoeae I and II of the spider crab Hyas araneus (Anger & Dawirs, 1981), the zoeae I 299 

of the intertidal crab Neohelice granulata (Bas, Spivak & Anger, 2008), the phyllosoma I of 300 

Panulirus cygnus (Liddy, Phillips & Maguire, 2003), and stage JIII of the crayfish Cherax 301 

quadricarinatus (Stumpf et al., 2010). 302 

 The ratio of the PNR to the total duration of the JI stage of individuals from the FC was 303 

66% in the warm season and 39% in the cold season. Therefore, JIs of P. argus would appear to 304 

be more resistant to starvation during the warm season. This result, although consistent with the 305 

optimum temperature of ~30°C for development of this stage (Lellis & Russell, 1990), may seem 306 

counterintuitive given that metabolic and growth rates increase with temperature (Anger, 2001). 307 

However, a longer PNR50 during the warm season may reflect a reduction in the metabolic 308 

responses of JIs as a compensatory physiological mechanism, as has been documented in other 309 

crustaceans (e.g., Litopenaeus setiferus: Sánchez et al., 2002). Alternatively, it may reflect an 310 

enhanced ability of JIs to sequester and store reserves at higher temperatures, as suggested by 311 

Smith, Kenway & Hall (2010) for phyllosomata of tropical spiny lobsters (P. ornatus and P. 312 

homarus), which exhibited a greater tolerance to starvation (longer PNR50) than phyllosomata of 313 

temperate spiny lobsters. 314 

Despite the commercial importance of P. argus, the present study is the first to address 315 

resistance to starvation in the early benthic juveniles of this species after they have undergone a 316 

protracted lecithotrophic stage that may lead to their return to coastal waters from distances of up 317 

to tens of kilometers offshore. However, as P. argus juveniles tolerate a wider temperature range 318 

across their geographic distribution than those recorded in the present study, further studies 319 
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subjecting JIs to different experimental temperatures are needed. As well, measures of reserve 351 

substances utilization and storage by both fed and starved JIs should be considered in future 352 

studies (e.g. Simon et al. 2015). 353 
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