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ABSTRACT

Species distribution models (SDMs) have become an essential tool in ecology, bio-
geography, evolution and, more recently, in conservation biology. How to generalize
species distributions in large undersampled areas, especially with few samples, is a
fundamental issue of SDMs. In order to explore this issue, we used the best available
presence records for the Hooded Crane (Grus monacha, n = 33), White-naped Crane
(Grus vipio, n = 40), and Black-necked Crane (Grus nigricollis, n = 75) in China as three
case studies, employing four powerful and commonly used machine learning algorithms
to map the breeding distributions of the three species: TreeNet (Stochastic Gradient
Boosting, Boosted Regression Tree Model), Random Forest, CART (Classification and
Regression Tree) and Maxent (Maximum Entropy Models). In addition, we developed
an ensemble forecast by averaging predicted probability of the above four models
results. Commonly used model performance metrics (Area under ROC (AUC) and
true skill statistic (TSS)) were employed to evaluate model accuracy. The latest satellite
tracking data and compiled literature data were used as two independent testing datasets
to confront model predictions. We found Random Forest demonstrated the best
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performance for the most assessment method, provided a better model fit to the testing
data, and achieved better species range maps for each crane species in undersampled
areas. Random Forest has been generally available for more than 20 years and has
been known to perform extremely well in ecological predictions. However, while
increasingly on the rise, its potential is still widely underused in conservation, (spatial)
ecological applications and for inference. Our results show that it informs ecological
and biogeographical theories as well as being suitable for conservation applications,
specifically when the study area is undersampled. This method helps to save model-
selection time and effort, and allows robust and rapid assessments and decisions for
efficient conservation.
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INTRODUCTION

Species distribution models (SDMs) are empirical ecological models that relate species
observations to environmental predictors (Guisan & Zimmermann, 2000; Drew, Wiersma
& Huettmann, 2011). SDMs have become an increasingly important and now essential tool
in ecology, biogeography, evolution and, more recently, in conservation biology (Guisan et
al., 2013), management (Cushman & Huettmann, 2010), impact assessments (Humphries
& Huettmann, 2014) and climate change research (Lei et al., 2011; Mi, Huettmann & Guo,
2016). To generalize and infer from a model, or model transferability is defined as geograph-
ical or temporal cross-applicability of models (Thomas ¢ Bovee, 1993; Kleyer, 2002; Randin
et al., 2006). It is one important feature in SDMs, a base-requirement in several ecological
and conservation biological applications (Heikkinen, Marmion ¢» Luoto, 2012). In this
study, we used generality (transferability) as the concept of generalizing distribution from
sampled areas to unsampled areas (extrapolation beyond the data) in one study area.

Detailed distribution data for rare species in large areas are rarely available in SDMs (Pear-
son et al., 2007; Booms, Huettmann ¢ Schempf, 2010). However, they are among the most
needed for their conservation to be effective. Collecting and assembling distribution data
for species, especially for rare or endangered species in remote wilderness areas is often a
very difficult task, requiring a large amount of human, time and funding sources (Gwena
et al., 2010; Ohse et al., 2009).

Recent studies have suggested that machine-learning (ML) methodology, may perform
better than the traditional regression-based algorithms (Elith et al., 2006). TreeNet (boost-
ing; Friedman, 2002), Random Forest (bagging; Breiman, 2001), CART (Breiman et al.,
1984) and Maxent (Phillips, Dudik ¢ Schapire, 2004) are considered to be among the most
powerful machine learning algorithms and for common usages (Elith et al., 2006; Wisz et
al., 2008; Williams et al., 2009; Lei et al., 2011) and for obtaining powerful ensemble models
(Aratijo & New, 2007; Hardy et al., 2011). Although Heikkinen, Marmion ¢ Luoto (2012)
compared the four SDMs techniques’ transferability in their study, they did not test with
rare species and few samples in undersampled areas. It is important to understand that
the software platform of the former three algorithms (Boosted Regression Trees, Random
Forest and CART) applied by Heikkinen, Marmion ¢ Luoto (2012) from the R software
(“BIOMOD” framewok) comes without a GUI and lacks sophisticated optimization, sam-
ple balancing and fine-tuning, but as they are commonly used though by numerous SDM
modelers. Instead, we here run these models in the Salford Predictive Modeler (SPM
version 7) by Salford Systems Ltd. (https://www.salford-systems.com/). These algorithms
in SPM are further optimized and improved by one of the algorithm’s original co-authors
(especially for TreeNet and Random Forest). It runs with a convenient GUI, and produces a
number of descriptive results and graphics which are virtually not available in the R version.
While this is a commercial software, it is usually available on a 30 days trial version (which
suffices for most model runs we know. Also, some of the features of the randomForest R
package, most notably the ability to produce partial dependence plots (Herrick, 2013), are
not directly implemented yet in SPM7 (but they can essentially be obtained by running
TreeNet in a Random Forest model).
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Model generality (transferability) testing could offer particularly powerful for model
evaluation (Randin et al., 2006). Independent observations from a training data set has
been recommended as a more proper evaluations of models (Fielding ¢~ Bell, 1997; Guisan
& Zimmermann, 2000). Therefore, the use of an independent geographically (Fielding ¢
Haworth, 1995) or temporally (Boyce et al., 2002; Aratijo et al., 2005) testing data set is
encouraged to assess the generality of different SDMs techniques. Data from museum
specimen, published literature (Graham et al., 2004) as well as tracking are good source to
assess model generality (transferability) performance. In addition, how the distribution
map links with reality data, especially in undersampled areas where modelers want to make
predictions should definitely be employed as a metric to assess model performance and
generalization. Arguably, if model predictions perform very well there, great progress is
provided and usually done cost-effective too. However, predictions on existing knowledge
and data offer less progress. The model prediction and conservation frontier obviously
sits in the unknown and to provide progress there (Breiman, 2001; Drew, Wiersma &
Huettmann, 2011).

In this study, we investigated models for the best-available data for three species in East
Asia as test cases: Hooded Cranes (Grus monacha, n = 33), White-naped Cranes (Grus vipio,
n=40) and Black-necked Cranes (Grus nigricollis, n =75). Four machine-learning model
algorithms (TreeNet, Random Forest, CART and Maxent) were applied to map breeding
distributions for these three crane species which otherwise lack empirically derived
distribution information. In addition, two kinds of independent testing data sets (latest
satellite tracking data, and compiled literature data (Threatened Birds of Asia: Collar, Crosby
¢ Crosby, 2001) were obtained to test the transferability of the four model algorithms. The
purpose of this investigation is to explore whether there is a SDM technique among the
four algorithms that could generate reliable and accurate distributions with high generality
for rare species using few samples but in large undersampled areas. Results from this
research could be useful for the detection of rare species and enhance fieldwork sampling
in large undersampled areas which would save money and effort, as well as advance the
conservation management of those species.

MATERIALS AND METHODS

Species data

In our 13 combined years of field work, we have collected 33 Hooded Crane nests (2002—
2014), 40 White-naped Crane nests (2009-2014) (Supplemental Information 2), and 75
Black-necked Crane nests (2014) (see Fig. 1), during breeding seasons. We used these field
samples (nests) to represent species presence points referenced in time and space.

Environmental variables

We used 21 environmental layers at a 30-s spatial resolution in a GIS format and that
were known to correlate with bird distribution and as proxies of habitats predictors. They
included bio-climatic factors (bio_1-7, bio_12-15), topographical factors (altitude, slope,
and aspect), water factors (distance to river, distance to lake, and distance to coastline),
inference factors (distance to road, distance to rail road, and distance to settlements), and
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Figure 1 Study areas for three species cranes.

land cover factors (for detailed information, see Table 1). Most of these predictors were
obtained from open access sources. Bio-climate factors were obtained from the WorldClim
database (http://www.worldclim.org), while aspect and slope layer were derived from
the altitude layer in ArcGIS, which was also initially obtained from the WorldClim
database. Road, railroad, river, lake and coastline and settlement maps were obtained
from the Natural Earth database (http://www.naturalearthdata.com). The land cover map
was obtained from the ESA database (http://www.esa-landcover-cci.org). We also made
models with all 19 bio-climate variables and 10 other environmental variables, and then
reduced predictors by AIC, BIC, varclust, PCA and FA analysis. When we compared the
distribution maps overlaying with independent data set generated by Random Forest
model, we found the model based on 21 predictors have the best performance for Hooded
Cranes, and the best level for White-naped Crane and Black-necked Cranes (see Table S1).
Therefore, we decided to constructed models with 21 predictors for the all three cranes
and four machine-learning techniques. All spatial layers of these environmental variables
were resampled in ArcGIS to a resolution of 30-s to correspond to that of the bioclimatic
variables and for a meaningful high-resolution management scale.

Model development

We created TreeNet, Random Forest, CART, Maxent models and Ensemble models
(averaged value of the former four model results) for Hooded Cranes, White-naped Cranes
and Black-naped Cranes. These four model algorithms are considered to be among the best
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Table 1 Environmental GIS layers used to predict breeding distributions of three cranes.

Environmental Description Source Website

layers

Bio_1 Annual mean temperature (°C) WorldClim http://www.worldclim.org/

Bio_2 Monthly mean (max temp-min temp) (°C) WorldClim http://www.worldclim.org/

Bio_3 Isothermality (BIO2/BIO7) (*100 °C) WorldClim http://www.worldclim.org/

Bio_4 Temperature seasonality WorldClim http://www.worldclim.org/
(standard deviation *¥100 °C)

Bio_5 Max temperature of warmest month (°C) WorldClim http://www.worldclim.org/

Bio_6 Min temperature of coldest month (°C) WorldClim http://www.worldclim.org/

Bio_7 Annual temperature range (BIO5-BIO6) (°C) WorldClim http://www.worldclim.org/

Bio_12 Annual precipitation (mm) WorldClim http://www.worldclim.org/

Bio_13 Precipitation of wettest month (mm) WorldClim http://www.worldclim.org/

Bio_14 Precipitation of driest month (mm) WorldClim http://www.worldclim.org/

Bio_15 Precipitation seasonality (mm) WorldClim http://www.worldclim.org/

Altitude Altitude (m) WorldClim http://www.worldclim.org/

Aspect Aspect (°) Derived from Altitude http://www.worldclim.org/

Slope Slope Derived from Altitude http://www.worldclim.org/

Landcover Land cover ESA http://www.esa-landcover-cci.org/

Disroad Distance to roads (m) Road layer from Natural Earth http://www.naturalearthdata.com/

Disrard Distance to railways (m) Railroad layer from Natural Earth http://www.naturalearthdata.com/

Disriver Distance to rivers (m) River layer from Natural Earth http://www.naturalearthdata.com/

Dislake Distance to lakes (m) Lake layer from Natural Earth http://www.naturalearthdata.com/

Discoastline Distance to coastline (m) Coastline layer from Natural Earth http://www.naturalearthdata.com/

Dissettle Distance to settlements (m) Settle layer from Natural Earth http://www.naturalearthdata.com/

performing machine learning methods (more information about these four models can
be seen in the references by Breiman et al., 1984; Breiman, 2001; Friedman, 2002; Phillips,
Dudik ¢ Schapire, 2004; Hegel et al., 2010). The first three machine learning models are
binary (presence-pseudo absence) models and were handled in Salford Predictive Modeler
7.0 (SPM). For more details on TreeNet, Random Forest and CART in SPM and their
performances, we refer readers to the user guide document online (https://www.salford-

systems.com/products/spm/userguide). Several implementations of these algorithms exist.

Approximately 10,000 ‘pseudo-absence’ locations were selected by random sampling across

the study area for each species using the freely available Geospatial Modeling Environment
(GME; Hawth’s Tools; Beyer, 2013; see Booms, Huettmann ¢ Schempf, 2010 and Ohse et
al., 2009 for examples). We extracted the habitat information from the environmental

layers for presence and pseudo-absence points for each crane, and then constructed

models in SPM with these data. In addition, we used balanced class weights, and 1,000

trees were built for all models to find an optimum within, others used default settings.

For the predictions, we created a ‘lattice’ (equally spaced points across the study area;

approximately 5 x 5 km spacing for the study area). For the lattice, we extracted information

from the same environmental layers (Table 1) as described above for each point and then

used the model to predict (‘score’) bird presence for each of the regular lattice points. For
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visualization, we imported the dataset of spatially referenced predictions (‘score file’) into
GIS as a raster file and interpolated for visual purposes between the regular points using
inverse distance weighting (IDW) to obtain a smoothed predictive map of all pixels for
the breeding distributions of the three cranes (as performed in Ohse et al., 2009; Booms,
Huettmann & Schempf, 2010). The fourth algorithm we employed, Maxent, is commonly
referred to as a presence-only model; we used Maxent 3.3.3 k (it can be downloaded for
free from http://www.cs.princeton.edu/~schapire/maxent/) to construct our models. To
run Maxent, we followed the 3.3.3e tutorial for ArcGIS 10 (Young, Carter ¢ Evangelista,
2011) and used default settings.

Testing data and model assessment
We applied two types of testing data in this study: one consisted of satellite tracking data, and
the other was represented by data from the literature. Satellite tracking data were obtained
from four individual Hooded Cranes and eight White-naped Cranes that were tracked at
stopover sites (for more details regarding the information for tracked cranes, please see
Fig. S1). The satellite tracking devices could provide 24 data points per day (Supplemental
Information 4). Here, we chose points that had a speed of less than 5 km/h during the period
from 1st May to 31th June for Hooded Cranes and 15th April to 15th June for White-naped
Cranes as the locations of the breeding grounds for these two cranes. The total numbers
of tracking data points were 4,963 and 7,712 (Hooded Cranes and White-naped Crane,
respectively. We didn’t track Black-necked Cranes, so there was no tracking testing data
for this species.). The literature data for this study were obtained by geo-referencing the
location points of detections from 1980-2000 (ArcGIS 10.1) from Threatened Birds of
Asia: the BirdLife International Red Data Book (Collar, Crosby ¢» Crosby, 2001). From
this hardcopy data source, we were able to obtain and digitize 27 breeding records
for Hooded Cranes, 43 breeding records for White-naped Cranes, and 53 breeding records
for Black-necked Cranes (see Figs. 2A-2C and Supplemental Information 3). Here we
digitized the only available crane data for these three species in East-Asia into a database.
In addition, we generated 3,000 random points for Hooded Cranes and White-naped
Cranes, and 5,000 random points for Black-necked Cranes as testing pseudo-absence points
in their respective study areas; then, the literature locations (additional presence points
for testing) and random points locations (testing absence points) that contrasted with the
associated predictive value of RIO extracted from the relative prediction map, which were
used to calculate receiver operating characteristic (ROC) curves and the true skill statistic
(TSS) (Hijmans & Graham, 2006). The area under the ROC curve (AUC) is commonly used
to evaluate models in species distributional modeling (Manel, Williams & Ormerod, 2001;
McPherson, Jetz ¢~ Rogers, 2004). TSS was also used to evaluate model performance; we used
TSS because it has been increasingly applied as a simple but robust and intuitive measure
of the performance of species distribution models (Allouche, Tsoar ¢ Kadmon, 2006).
To assess models transferability, we extracted the predictive value of the relative index
of occurrence (RIO) for testing data sets from the prediction maps using GME. We then
constructed resulting violin plots in R for these extracted RIOs to visualize their one-
dimensional distribution. This method allowed us to examine the degree of generalizability
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Table 2 AUC and TSS values for four machine learning models and their Ensemble model with three
crane species based on literature testing data.

Accuracy metric (samples) Species distribution model

TreeNet Random Forest CART Maxent Ensemble

Hooded Crane (Grus monacha, n = 33 sites)

AUC 0.504 0.625 0.500 0.558 0.558
TSS 0.000 0.250 0.000 0.137 0.117
White-naped Crane (Grus vipio, n =40 sites)

AUC 0.605 0.754 0.564 0.712 0.754
TSS 0.210 0.509 0.128 0.424 0.508
Black-necked Crane (Grus nigricollis, n =75 sites)

AUC 0.528 0.830 0.672 0.805 0.843
TSS 0.055 0.660 0.345 0.611 0.686

based on the local area with samples to predict into undersampled areas that are otherwise
unsampled in the model development (=areas without training data). In addition, AUC
is also commonly used to assess model transferability in our study referring Randin et al.
(2006).

RESULTS

Model performance

The results for AUC and TSS, two metrics commonly used to evaluate model accuracy, are
listed in Table 2. For the four SDMs technique, our results showed that the AUC values for
Random Forest were always highest (>0.625), ranking this model in first place, followed by
Maxent (>0.558), and then either CART or TreeNet (>0.500). TSS showed us consistent
results, as was the case for AUC, and Random Forest performed the best (>0.250) followed
by Maxent (>0.137) for all three crane species, CART took the third place for Black-necked
Cranes, and TreeNet performed better than CART for White-naped Cranes. And the results
showed there was a trend that the value of these three metrics increased with an increase of
nest site samples (33-75, Hooded Crane to Black-necked Crane, see Table 2). Comparing
the results of Random Forest with Ensemble models, we found their performance were
close. Random Forest obtained better models for Hooded Cranes and White-naped Cranes
cases, the Ensemble model performed better for Black-necked Cranes.

Model generalization

Violin plots for RIOs with overlaid satellite tracking data (Fig. 3) showed that Random
Forest for Hooded Cranes and White-naped Cranes performed better than the other three
models. In the Hooded Crane models (Fig. 3A), the RIO for most satellite tracking data
indicated that TreeNet, and CART predicted with a value around 0; Ensemble model
demonstrated a slightly higher value than the other three models but was still much lower
than Random Forest. Figure 3B indicates the same situation than found in Fig. 3A: Random
Forest still performed better than the other three models (median values in Random Forests
were close to 1.00). TreeNet had a median RIO value of approximately 0.71, followed by
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for Hooded Cranes and White-naped Cranes based on satellite tracking data. (A) Violin plots of
Hooded Cranes, (B) violin plots of White-naped Cranes.

Maxent (median was 0.37) and then Ensemble and CART. While some tracking points had a
low RIO value in TreeNet, the majority of RIO values for CART remained in the 0.20 range.
Violin plots of the RIOs values for the three cranes extracted for the literature data
from the prediction maps (Fig. 4) demonstrated consistent trends (Fig. 3), indicating that
Random Forest performed best across all models of the three species. In Fig. 4A, the RIO
values for Random Forest ranged from 0 to 0.48, and most RIO values were below 0.1; the
RIO values for the other three SDMs method were 0, the Ensemble model performed a little
bit better. As showed in Fig. 4B, most RIO values for Random Forest were below 0.7, and the
median value was approximately 0.20, followed by Maxent and then CART. The violin plots
for Black-necked Cranes (Fig. 4C) indicated that TreeNet performed the worst, although

there were some pixels that had high RIO values, followed by the Ensemble model and
then Maxent. The best performer was still Random Forest, and its RIOs were distributed
evenly to a certain extent with a median value of 0.44. The results of AUC, as mentioned
in the “Model performance” section (Table 2), showed consistent results with violin plots,
and Random Forest always achieved the highest value and had the best generalization.

Spatial assessment using a testing data overlay prediction map

An assessment of niche prediction beyond the local area where samples were located repre-
sents a real test of the generalizability of the model predictions in undersampled areas. This
approach was used to evaluate whether testing data (satellite tracking data and literature
data) locations matched predictions of the potential distribution area, as a spatial assessment
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of model performance. It is a spatial and visual method to show the transferability of SDMs
from sampled to unsampled areas. From the results (Figs. 5, 6, 7 and Supplemental
Information 1), we found that Random Forest demonstrated the strongest performance
to handle generality (transferability), and a high fraction of testing data locations were
predicted in the distribution areas of the three cranes (Figs. 5B, 5G, 6B, 6G, 7B, 7G). The
order of the generality of the remaining four models was: Ensemble model followed by
Maxent, CART and then TreeNet. Note, however, that the capacities of these models to
predict well in undersampled areas were weaker than Random Forest, it holds particularly
for areas that were further away from the sample areas (Figs. 5-7). In addition, we found
that the generality increased with sample size (33-75, Hooded Crane to Black-necked
Crane, see Figs. 5-7). This means, as expected and known, that a higher sample size makes
models more robust and better to generalize from.
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Figure 5 Prediction maps for Hooded Cranes and zoomed-in maps showing the four models (TreeNet,
Random Forest, CART and Maxent) and Ensemble model in detail. (A-E) Prediction map for Hooded
Cranes, (F-J) zoomed-in map for Hooded Cranes.
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Figure 6 Prediction maps for White-naped Cranes and zoomed-in maps showing the four models
(TreeNet, Random Forest, CART and Maxent) and Ensemble model in detail. (A-E) Prediction map for
White-naped Cranes, (F-J) zoomed-in map for White-naped Cranes.
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Figure7 Prediction maps for Black-necked Cranes and zoomed-in maps showing the four models
(TreeNet, Random Forest, CART and Maxent) and Ensemble model in detail. (A-E) Prediction map for
Black-necked Cranes, (F-J) zoomed-in map for Black-necked Cranes.
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DISCUSSION
Model generality (transferability)

Estimating species distributions in undersampled areas is a fundamental problem in
ecology, biogeography, biodiversity conservation and natural resource management (Drew,
Wiersma ¢» Huettmann, 2011). That is specifically true for rare and difficult to be detected
species and which are usually high on the conservation priority. The use of SDMs and with
machine learning has become the method for deriving such estimates (Guisan ¢ Thuiller,
2005; Drew, Wiersma ¢~ Huettmann, 2011; Guisan et al., 2013) and could contribute to
detect new and to confirm populations of rare species. However, the application of a few
samples to project a distribution area widely beyond the sample range is a greater challenge
and has rarely been attempted in the literature until recently. Only now have
conservationists realized its substantial value for pro-active decision making in conservation
management (see work by Ohse et al., 2009; Drew, Wiersma ¢ Huettmann, 2011; Kandel et
al., 2015 etc.). Our results based on AUC, violin plots for RIOs and spatial assessment of
testing data (satellite tracking data and literature data) all suggest there are difference in the
generalization performance of different modeling techniques (TreeNet, Random Forest,
CART and Maxent).

Moreover, among the acknowledged four rather powerful and commonly used machne-
learning techniques, Random Forest (bagging) in SPM usually had the best performance in
each case. Our results are in agreement with those of Prasad, Iverson ¢ Liaw (2006), Cutler
et al. (2007) and Syphard ¢ Franklin (2009) indicating a superiority of Random Forest
in such applications. However, initially it appears to run counter to the conclusions off
recent paper (Heikkinen, Marmion ¢ Luoto, 2012) with the poor transferability of Random
Forest. But we propose this is due to the fact that many Random Forest implementations
exist (see the 100 classifier paper Ferndndez-Delgado et al., 2014).

Here we applied Random Forest in SPM which has been optimized under one of the algo-
rithm’s original co-authors, while Heikkinen, Marmion ¢ Luoto (2012) run a basic Random
Forest with BIOMOD framework in the R sofeware and which remains widely un-tuned
and largely behind the potential. The differences are known to be rather big (see Herrick,
2013 for a comparison).

Furthermore, Maxent, a widely used SDM-method consequently greatly enjoyed
by many modelers (Phillips, Anderson ¢ Schapire, 20065 Peterson, Monica ¢ Muir, 2007;
Phillips ¢ Dudik, 2008; Li et al., 2015, and so on), didn’t perform so good in regards to
transferability in this study. This contrasts to those of Elith et al. (2006) and Heikkinen,
Marmion ¢ Luoto (2012), where Maxent and GBM (generalized boosting methods)
perform well. We infer this may be caused by sample size used as training data and
due to the actual algorithms used. When the sample size increased (33-75), the AUC
and TSS value of all models rose (Table 2). This indicates that higher sample sizes make
models more robust and performing better. Sample sizes of 33 presence points still favor
by Random Forest.

In Random Forest, random samples from rows and predictors are used to build hundreds
of trees. Each individual tree is constructed from a bootstrap sample and split at each node by
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the best predictor from a very small, randomly chosen subset of the predictor variable pool
(Herrick, 2013). These trees comprising the forest are each grown to maximal depth, and
predictions are made by averaged trees through ‘voting’ (Breiman, 2001). This algorithm
avoids overfitting by controlling the number of predictors randomly used at each split,
using means of out-of-bag (OOB) samples to calculate an unbiased error rate. And also,
Random Forest in SPM utilizes additional specific fine-tuning for best performance.

RIOs of random points

In order to explore whether Random Forest created higher RIOs for prediction maps in
each grid, which would result into higher RIOs of testing data, we generated 3,000 random
points for Hooded Cranes and White-naped Cranes, 5,000 random points for Black-necked
Cranes in their related projected study areas. We made violin plots for RIOs of random
points (Fig. 8), and we found that more RIO values of random points for Maxent, Random
Forest and Ensemble models were close to the lower value, and then followed by TreeNet.
The distribution shapes of Random Forest, Maxent and Ensemble model are more similar to
the real distribution of species in the real world. The RIOs of White-naped Crane extracted
from the CART model distributed in the range of the low value; this means there were no
points located in the high RIO areas of cranes, which is unrealistic. Consequently, we argued
that Random Forest did not create higher RIOs for prediction maps in each grid in our study.

Models with small sample sizes

Conservation biologists are often interested in rare species and seek to improve their
conservation. These species typically have limited number of available occurrence records,
which poses challenges for the creation of accurate species distribution models when
compared with models developed with greater numbers of occurrences (Stockwell ¢
Peterson, 2002; McPherson, Jetz ¢ Rogers, 2004; Hernandez et al., 2006). In this study, we
used three crane species as case studies, and their occurrence records (nests) totaled 33, 40,
and 75, respectively (considering the small numbers of samples and given that a low fraction
of the area was sampled in the large projected area). In our models, we found that model
fit (AUC and TSS, see Table 2) of Random Forest that had the highest index, while Maxent
usually ranked second. In addition, we found that models with few presence samples can
also generate accurate species predictive distributions (Figs. 3-7) with the Random Forest
method. Of course, models constructed with few samples underlie the threat of being biased
more because few samples usually had not enough information including all distribution
gradients conditions of a species, especially for places far away from the location of training
presence points. However, the potential distribution area predicted by SDMs could become
the place where scholars could look for the birds (additional fieldwork sampling). Also,
these places could be used as diffusion or reintroduction areas! It is valuable and new
information either way.

Evaluation methods

In this study, we applied two widely-used assessment methods (AUC and TSS) in SDMs
(Table 2). For an evaluation of these three values we used the approach recommended by
Fielding e Bell (1997) and Allouche, Tsoar ¢~ Kadmon (2006), we found our model usually
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Figure 8 Violin plots of Relative Index of Occurrence (RIO) values for four SDMs and Ensemble
model for three cranes based on calibration data from Threatened Birds of Asia. (A) Violin plots for
Hooded Cranes, (B) violin plots for White-naped Cranes, (C) violin plots for Black-necked Cranes.

didn’t obtain perfect performance, and some of them were ‘fair’ in their performance.
However, for macro-ecology this is more than reasonable and ranks rather high. It’s good
conservation progress! We identified Random Forest as always the highest performing.
These results are consistent with the results of violin plots of the Relative Index of Occur-
rence (RIO) using tracking as well as literature data (Figs. 3 and 4), and well as matching
the spatial assessment results (Figs. 5-7). We recommend when modelers assess model
performance they should not only depend alone on some metric (such as AUC and TSS),
but also should base their assessments on the combined use of visualization and expert
knowledge. That means modelers should also assess how the species distribution map
actually looks and how it links with real data (see Huettmann ¢ Gottschalk, 2011). Spatial
assessment metrics from alternative data should matter the most. Expert experience and
ecological common knowledge of the species of interest could sometimes also be highly
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effective (Drew ¢~ Perera, 2011), albeit nonstandard, evaluation methods (see Kandel et
al., 2015 for an example). Additionally, one alternative method for rapid assessment we
find is to use a reliable SDM, and thus Random Forest would be a good choice in the
future given our consistent results (Figs. 3—7) in this study, which involved three species,
a vast landscape to conserve, and only limited data. Our work certainly helps to inform
conservation decisions for cranes in Northeast Asia.

Limitations and future work

Our study is not without limitations: (1) so far, only three species of cranes are used as a test
case in our study because nest data for rare species in remote areas are usually sparse, and;
(2) all our species study areas are rather vast and confined to East-Asia. For future work,
we would apply Random Forest in more species and in more geographical conditions with
differently distributed features for a first rapid assessment and baseline to be mandatory
for better conservation, e.g., by governments, [TUCN and any impact and court decision.
We would then apply our prediction results in specifically targeted fieldwork sampling
campaigns and assess the model accuracy with field survey results (ground-truthing) and
with new satellite tracking and drone data, for instance. This is to be fed directly into the

conservation management process.
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