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ABSTRACT
Wind energy generation holds the potential to adversely affect wildlife populations.
Species-wide effects are difficult to study and few, if any, studies examine effects of
wind energy generation on any species across its entire range. One species that may be
affected bywind energy generation is the endangered Indiana bat (Myotis sodalis), which
is found in the eastern and midwestern United States. In addition to mortality from
wind energy generation, the species also faces range-wide threats from the emerging
infectious fungal disease, white-nose syndrome (WNS). White-nose syndrome, caused
by Pseudogymnoascus destructans, disturbs hibernating bats leading to high levels of
mortality. We used a spatially explicit full-annual-cycle model to investigate how wind
turbine mortality and WNS may singly and then together affect population dynamics
of this species. In the simulation, wind turbine mortality impacted the metapopulation
dynamics of the species by causing extirpation of some of the smaller winter colonies.
In general, effects of wind turbines were localized and focused on specific spatial
subpopulations. Conversely,WNS had a depressive effect on the species across its range.
Wind turbine mortality interacted with WNS and together these stressors had a larger
impact than would be expected from either alone, principally because these stressors
together act to reduce species abundance across the spectrum of population sizes. Our
findings illustrate the importance of not only prioritizing the protection of large winter
colonies as is currently done, but also of protecting metapopulation dynamics and
migratory connectivity.

Subjects Conservation Biology, Ecology, Environmental Sciences, Zoology
Keywords Endangered species assessment, Full-annual-cycle, Migratory connectivity, Wind
turbine mortality, White-nose syndrome, Population assessment, Indiana bat,Myotis sodalis

INTRODUCTION
Wind energy generation holds potential as an alternative energy source to fossil fuels
but also poses new threats to wildlife (Kuvlesky et al., 2007). In addition to the loss of
habitat associated with wind turbine placement, collisions with wind turbines may cause
mortality during migration (Kunz et al., 2007; National Research Council: Committee on
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Figure 1 Map of input data.Map of input data, species occurrence map, and Indiana Bat species range.
‘‘USFWS summer observations’’ are from the US Fish and Wildlife Service. All US Fish and Wildlife Ser-
vice data are from the endangered species program and exact locations are confidential. ‘‘BISON summer
observations’’ are from the Biodiversity Information Serving Our Nation database (BISON; http://bison.
usgs.ornl.gov). ‘‘Clark et al. observations’’ are capture data from Clark, Bowles & Clark (1987) ‘‘Hibernac-
ula’’ data refers the winter hibernacula data from the US Fish and Wildlife Service. ‘‘Wind turbine data
(2014)’’ comes from Diffendorfer et al. (2014). The white-to-blue color gradient depicts low to high suit-
ability from the occurrence model. The grid boundary is the outline of the grid cells used for the occur-
rence model.

the Status of Pollinators in North America, 2007; Arnett et al., 2008). One species possibly
facing threats from wind energy is the Indiana bat (Myotis sodalis), an endangered species
found in the midwestern and eastern United States (Fig. 1). The Indiana bat migrates
seasonally between maternity colonies and hibernacula (caves and mines where the species
overwinters), exposing the species to differential seasonal risk to wind energy (Pruitt &
TeWinkel, 2007; Piorkowski et al., 2012).

Full-annual-cycle (FAC) models include mortality and reproduction for all seasons
of a species life cycle and differ from traditional models that lump all seasons together
(Hostetler, Sillett & Marra, 2015). Taylor & Norris (2010) developed an avian FAC model
that has been applied to Mexican free-tailed bats (Wiederholt et al., 2013) and a theoretical
model of Myotis spp. (Erickson et al., 2014). Traditionally, most migration models focus
on summer and winter habitat use (e.g., breeding and non-breeding sites for migratory
birds or maternity and hibernating sites for migratory cave bats) rather than migratory
pathways (Taylor & Norris, 2010). Modeling migratory pathways, however, is critical to

Erickson et al. (2016), PeerJ, DOI 10.7717/peerj.2830 2/19

https://peerj.com
http://bison.usgs.ornl.gov
http://bison.usgs.ornl.gov
http://dx.doi.org/10.7717/peerj.2830


understanding the effects of mortality from wind energy generation on migrating wildlife.
Here we apply the theoretical model developed by Erickson et al. (2014) to the entire range
of the Indiana bat so that we may assess how current wind energy development may affect
the species.

The Indiana bat was one of the first species listed under the Endangered Species Act of
1973. This act was passed with the goal of protecting the natural heritage of the United
States of America and allows for plants and animals to be listed as either endangered or
threatened (Office of the Federal Register, 1973). Although the original listing did not specify
a reason, the consensus among bat experts was that human disturbance of hibernating
bats caused population declines, prompting the listing (Pruitt & TeWinkel, 2007; Office of
the Federal Register, 1967). Besides wind turbines (Langwig et al., 2012; Arnett & Baerwald,
2013), the species also faces threats from white-nose syndrome (Thogmartin et al., 2013)
and hibernaculum vandalism (Crimmins et al., 2014), as well as broad threats from climate
change, habitat loss, and land use change (Pruitt & TeWinkel, 2007; Loeb & Winters,
2012; Weber & Sparks, 2013). Populations of the species appeared to be recovering prior
to the arrival of white-nose syndrome (WNS) (Thogmartin et al., 2012a), but declined
as the disease spread (Turner, Reeder & Coleman, 2011). Recent research suggests these
declines may not be as severe as initially feared, but concerns remain for species existence
(Thogmartin et al., 2013; Powers et al., 2015).

White-nose syndrome affects cave bats such as the Indiana bat during hibernation
and may cause up to 100% mortality, resulting in extirpations of local populations
(Turner, Reeder & Coleman, 2011; Frick et al., 2015). Pseudogymnoascus destructans, the
fungal causative agent of WNS, appears to opportunistically infect bats during hibernation
(i.e., infects bats when their immune systems are less active during hibernation induced
torpor) (Langwig et al., 2015). After infection, WNS initiates a physiological cascade of
disturbances that often leads to the death of bats (Willis et al., 2011; Cryan et al., 2013;
Warnecke et al., 2013; Verant et al., 2014). Prior to the arrival of WNS, no demographic
population models (e.g., matrix population models in contrast to statistical population
models) existed for any bat species (Hallam & Federico, 2009), and post-WNS arrival,
modeling efforts have largely ignored spatial connections between populations (e.g.,
Thogmartin et al., 2012a; Frick et al., 2010). Conversely, the spatial model developed by
Erickson et al. (2014) did not consider WNS and also did not model the observed spatial
arrangement of populations.

Both wind energy development and WNS are spatially explicit threats to the Indiana
bat. Wind turbines primarily affect Indiana bats along their migration routes (6 of 7
documented kills have been during the fall or spring; http://www.fws.gov/midwest/wind/
wildlifeimpacts/inbafatalities.html#Table1), while WNS affects the survival of individuals
overwintering in caves and mines. The effects of these two stressors have not been jointly
studied for the Indiana bat, or for any bat species on a range-wide scale (American Wind
Wildlife Institute, 2014). Herein, we examine the population-level effects of wind energy on
the Indiana bat across its entire range. We also study the interaction between wind energy
and WNS to understand whether the magnitude of mortality from wind may be sufficient
to preclude recovery or increase risk of extirpation.
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METHODS
We used a FAC model to explore potential impacts of wind energy development on the
Indiana bat. Our model included data from multiple sources, including habitat and wind
turbine data (Fig. 1). We described our model using the Overview, Design Concepts, and
Details protocol (Grimm et al., 2006; Grimm et al., 2010) as part of our transparent and
comprehensive model ‘‘evaludation’’ (TRACE) documentation (Schmolke et al., 2010; Au-
gusiak, Van den Brink & Grimm, 2014; Grimm et al., 2014) (Supplemental Information 3).
We also include our code as Supplemental Information 4 and our data have been published
to a USGS webpage (Erickson, 2016). Within the remainder of this section, we provide an
overview of our modeling approach and description of the data used within this approach.

The core of our populationmodel is a series of difference equations (previously described
in Erickson et al. (2014) and listed in our TRACE documentation). The model keeps track
of groups of female Indiana bats using a pathway between a hibernaculum and a maternity
colony. Erickson et al. (2014) formulated the model to include density at both maternity
sites and hibernacula following Taylor & Norris (2010). We modified the model to only
include density at the maternity colonies, which affected a baseline survival rate. We made
this modification because hibernacula are unlikely to be limiting the Indian bat population
sizes. Specifically, the total Indiana bat population appears to be at least one order of
magnitude lower than pre-European settlement sizes and the number of hibernacula has
remaining relatively stable or increasing through time as bats colonize old mines (Pruitt &
TeWinkel, 2007).

We based our life history parameters upon previous models (Thogmartin et al., 2012b;
Erickson, Thogmartin & Szymanski, 2014) and selected parameter values so that the annual
population growth rate was 1.02 without the density effect. This value is concordant with
pre-WNS growing Indiana bat populations (Thogmartin et al., 2013; Thogmartin et al.,
2012a; Thogmartin et al., 2012b).

Our model landscape covered much of the eastern United States (Fig. 1). The landscape
was divided into approximately 33,000 6500-ha grid cells because this resolution is
considered to be equivalent to the home range area of an Indiana bat maternity colony
by the USFWS (J Szymanski, pers. obs.). Furthermore, all hibernacula in close proximity
(<10 km) are considered one unit for management by the USFWS (Pruitt & TeWinkel,
2007). The center of each grid cell containing hibernacula was connected to the center
of all other grid cells to create migratory pathways. We assumed a maximum migration
distance of 500 km, because most documented Indiana bat migration routes appear to be
a shorter distance than this (Gardner & Cook, 2002;Winhold & Kurta, 2006). We excluded
all ‘‘empty’’ hibernacula (i.e., those historically occupied, but now empty) from our model.
We only used the highest 20% of summermaternity grid cells based upon the probability of
Indiana bat occurrence, which is described in the next paragraph (Fig. 1). This left us with
approximately 50,000 possible pathways between hibernacula and high quality maternity
grid cells. Bats were placed on the model landscape at a random subset of hibernacula
during model initialization. In any given run, approximately 5,000 of the 50,000 pathways
were occupied.
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Habitat occurrence of maternity sites for each grid cell was modeled with a logistic
regression. We built upon previous work to identify covariates to consider (Loeb &
Winters, 2012; Weber & Sparks, 2013; Farmer, Cade & Stauffer, 2002; Miller et al., 2002;
Yates & Muzika, 2006). We initially compared several models that included different
combinations of mean monthly temperature, different mean monthly precipitations, land
cover, mean elevation, and maximum slope. We used the Watanabe Akaike information
criterion (WAIC) for our model selection (Watanabe, 2010) because this method is fully
Bayesian and considers parameter distributions unlike other model selection approaches
(Gelman et al., 2013).We used Stan (version 2.4, http://www.mc-stan.org), as implemented
throughRStan, to fit ourmodels and calculate theWAIC values (Hoffman & Gelman, 2014).
Our final model included crop cover, deciduous forest cover, and May precipitation. The
complete parameter values for this model are described in our TRACE documentation
(Supplemental Information 3).

We used the WNS-spread Map from 12 March 2015 (https://www.whitenosesyndrome.
org/resources/map) to model spread of the disease through time. We modeled WNS
(the disease), rather than Pseudogymnoascus destructans (the fungus) because this is what
the North American WNS response group tracks. We assumed that any hibernaculum
without WNS would have WNS by 2016 because WNS has spread across the entire range
of the Indiana bat. We adapted the white-nose syndrome model used in Thogmartin et
al. (2012b) to be a continuous time function rather than a piecewise discrete function.
We used a logistic function to describe bat survival from WNS through time (Bolker,
2008). The model depended upon the baseline winter survival rate and the arrival year of
white-nose syndrome, and also included a slope term and intercept term. The intercept
term is offset by the arrival year term to account for WNS arriving during different
years and we included three different intercept terms to account different WNS survival
scenarios. Parameter were based upon our parameterization as described in the TRACE
Documentation (Supplemental Information 3).

We modeled the effect of wind turbines on the Indiana bat by decreasing survival based
upon the number of turbines found along a migratory pathway or in a maternity site or
hibernaculum grid cell. The number of turbines present decreased the baseline survival.
Due to uncertainty about the number of bats killed by turbines (Arnett & Baerwald, 2013),
we used three mortality scenarios: A low mortality scenario with 1 of 1,000 bats flying
by a turbine killed, a medium mortality scenario with one out of 100 bats flying by a
turbine killed, and a high mortality scenario with one out of 10 bats flying by a turbine
killed. These three scenarios were chosen to bound the spectrum of possible responses and
accommodate uncertainty in Indiana bat mortality at turbines, as well as include a ‘‘safety
factor’’ consideration (Suter II, 2006). This uncertainty in mortality exists because, to date,
only 7 Indiana bats have been reported killed at wind energy facilities to the USFWS (Fig. 2;
http://www.fws.gov/midwest/wind/wildlifeimpacts/inbafatalities.html). The medium and
high scenarios are unlikely to be an average (or ‘‘expected’’) mortality rate for all migratory
pathways, but represent worst case collisions risks for bats flying through turbines. The
actual collision risk for any specific wind turbine and an Indiana bat likely depends upon
many local environmental conditions that change temporally (e.g., wind direction during
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Legend
Counties with Indiana Bat Fatalities at Wind Facilities
Indiana Bat Range

Figure 2 Map of known Indiana bat fatalities. Counties with known Indiana bat fatalities at wild facili-
ties. The fatalities mapped are those known to the US Fish and Wildlife Service as of April 2015. The figure
is from ‘‘Indiana Bat Fatalities at Wind Energy Facilities’’ by Lori Pruitt and Jennifer Okajima, US Fish and
Wildlife Service, Indiana Field Office (http://www.fws.gov/midwest/wind/wildlifeimpacts/inbafatalities.
html). The figure was created by US Government employees during their official duties and is therefore in
the public domain.

the few minutes that an Indiana bat is flying through a turbine farm). Using a stochastic
collision risk would possibly improve model realism, but only if we had a meaningful
distribution from which to draw.

Turbine location data were fromDiffendorfer et al. (2014).Winter and summermortality
from wind turbines only considered the mortality from the cell containing the colony
because of the species small home range during non-migratory seasons (Pruitt & TeWinkel,
2007). No hibernacula cells had turbines present within them. Each migratory pathway was
buffered on each side by 1-km, 2-km, 10-km, and 20-km. This buffer distance accounted for
uncertainty in the Indiana bat migration route. We focused on the 2-km buffer pathway
(4-km wide) because USFWS experts consider this to be the most reasonable scenario
(J Szymanski, pers. obs., 2013).

The model was programmed in R (R Core Team, 2014) using the data.table package
(Dowle et al., 2014). We parallelized our code for the stochastic runs using the doSNOW
package (Revolution Analytics & Weston, 2014). Our code is included as Supplemental
Information 4.
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Figure 3 Total population of female Indiana bats predicted by the model. The figure is faceted on the
x-axis by WNS mortality scenarios. The figure is faceted on the y-axis by wind turbine exposure scenarios.
‘‘Migratory only ’’ refers to bats only being killed along the migration pathways whereas ‘‘Both’’ allows the
bats to be killed at both the summer and winter habitats as well as along the migratory pathway. We only
show the results from including turbines found within a 2-km buffer of the migratory pathway.

RESULTS
WNS had the largest impact on the modeled population dynamics of the Indiana bat
(Fig. 3). The highestWNSmortality scenario caused a≈95% decline, which caused extreme
imperilment for the species. ThemediumWNSmortality scenario decreased the population
size by ≈80% whereas the WNS mortality scenarios reduced the total population size by
≈50%. Uncertainty existed about where Indiana bats live and migrate on the landscape,
which affected their mortality from wind turbines within the model and led to model
uncertainty (i.e., a probabilistic output seen in the No WNS scenarios). However, the
inclusion of WNS overwhelmed this spatial uncertainty and almost completely reduced
the model’s uncertainty (i.e., the range of the resulting probability distribution declined to
near zero).

Including WNS as part of the simulations appeared, at first glance, to overshadow the
effects of wind turbine mortality. Wind turbine mortality affected the system in a nuanced
and subtle manner. In the scenarios without WNS, the lowest wind turbine mortality rate
caused a decline of less than 1% in total population size, the medium mortality rate caused
a 3% decline, and the high mortality rate caused a 6% decline. These differences were
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reduced within the low WNS mortality scenarios and disappeared within the medium and
high WNS mortality scenarios. This difference between WNS scenarios occurred because
WNS killed bats that would have otherwise been killed by wind turbine strikes. We also
found that turbine-caused mortality at colonies was negligible compared to mortality
along the migratory pathways. Presumably, this is because there was little overlap between
modeled summer maternity colonies and wind turbines and no overlap between known
hibernaculum cells and wind turbines.

Despite killing fewer individuals than WNS, wind turbines affected the metapopulation
dynamics of the Indiana bat more than WNS for all scenarios other than the high-WNS
mortality scenario (Fig. 3). Without WNS, the low- and medium-wind mortality scenarios
decreased the number of migration pathways by 6% whereas the high WNS mortality
scenario caused almost all of the pathways to go extinct (<99%).

The loss of migratory pathways corresponded to the loss of maternity colonies (Fig. 4)
and winter colonies (Fig. S1). Wind turbines caused the loss of maternity colonies primarily
in two clusters: one in northern Illinois and Indiana (the western cluster) and the second
in the Appalachians of West Virginia and Pennsylvania (the eastern cluster). The western
cluster corresponded to an area with moderate abundances of Indiana bat maternity
colonies and high abundances of wind turbines. The eastern cluster corresponded to an
area with high abundances of Indiana bat colonies and moderate abundances of wind
turbines. As WNS mortality rates increased, the loss of maternity colonies shifted south
and west. This corresponded to a shift from areas with wind turbines to an area where the
majority of the winter colonies for the species have been found. It is also worth noting that
some of the low wind turbine mortality scenarios have fewer and more dispersed deaths
than other scenarios. The spatial density plots reflected the uncertainty, spatial variability,
and number of mortalities in simulations (Wickham , 2009). Plots from scenarios with
fewer mortalities and greater spatial variability would have larger shaded regions than plots
from scenarios with more mortalities and less spatial variability because the first scenarios
have more uncertainty in the confidence regions.

The extirpation of winter colonies followed a different pattern than the loss of maternity
colonies (Fig. S1). Wind turbine mortalities led to the loss of three clusters of winter
colonies. One cluster was in the Appalachian regions of Pennsylvania and West Virginia
and was similar to the eastern cluster of maternity colonies lost, and was located near a high
density of wind turbines. A second cluster occurred mostly in western Kentucky, whereas
a third cluster occurred mostly in southern Missouri. These two clusters were not located
near any wind energy generation facilities. As modeled WNS mortality rates increased, the
locations of winter colonies lost tended to become more evenly distributed across the range
of winter colonies.

Although we only compared 4 different wind turbine mortality levels, interpolation to
different levels of mortality may be possible (Fig. S2). Our lowest level of wind turbine
mortality had very little effect on the final total population size. A decline in population
size occurred as mortality from wind increased between the low and medium wind turbine
mortality scenarios. A smaller decline occurred between themedium and high wind turbine
mortality scenarios. This smaller decline suggests a leveling off of mortality (e.g., a point of
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Figure 4 Map of maternity colonies lost under different exposure scenarios. The figure is faceted on
the x-axis by different WNS mortality scenarios. The figure is faceted on the y-axis by different wind tur-
bine mortality rates. We only show the results from including turbines found within a 2-km buffer of the
migratory pathway. We also did not plot the scenarios that only included take occurring along migratory
pathways. The shading is the relative density of colonies lost. The density is subplot specific and only qual-
itative comparisons should be made across subplots. Furthermore, the area and shading of the density
varies across plots because of the the shading algorithm used by ggplot2. This plotting program shrinks the
density as the number of points increases and the variability among points decreases.

diminishing return), such that further increases in the mortality rate from wind turbines,
as they are currently configured across the United States, would have little additional effect
because wind turbines removed all groups affected by energy generation. Thus, the bats
are depopulated from the turbine areas when mortality is high.

DISCUSSION
The current juxtaposition of wind energy facilities within the range of the Indiana bat may
lead to ameaningful impact on the population dynamics of the species, depending upon the
magnitude of risk from collision faced by bats inmigration. Althoughwind energymay have
some effect on the simulated total population size (Fig. 3), the effects of wind turbines on the
metapopulation dynamics and, specifically, on migrational connectivity of the Indiana bat
are likely more important owing to the reduction in number of migratory pathways within
ourmodel (Fig. S1). At the simulated rates of mortality from turbines, wind energy facilities
hold the potential to extirpate smaller over-wintering populations (Barclay & Harder, 2003;
Jones, Purvis & Gittleman, 2003). Survival of these smaller sub-populations is likely critical
for the species to survive WNS because smaller winter colonies appear less at risk from
WNS (Thogmartin et al., 2012b;Wilder et al., 2011). This finding also highlights important
differences in compensatory and additive mortality. At the population-level, wind turbine
development and white-nose syndrome appear to be compensatory sources of mortality
(i.e., if wind turbines did not kill Indiana bats, white-nose syndrome would kill them
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anyways). However, when examining the two stressors together at the meta-population
level, the two stressors quite likely are additive. Wind turbine mortality would be more
likely to extirpate small hibernacula whereas white-nose syndrome would be more likely
to extirpate large hibernacula. Our finding also raises concerns about wind turbines and
WNS producing a synergistic effect on the population dynamics of the species, where each
stressor has a much greater impact when considered jointly than would be expected from
that stressor acting alone.

Current USFWS management of the Indiana bat focuses on protecting large winter
colonies because most of the individual bats use a few caves (Pruitt & TeWinkel, 2007;
Thogmartin & McKann, 2014). Additionally, current models used by the USFWS for
issuing incidental take permits ignore the spatial structure of the population (Thogmartin
et al., 2012b; Erickson, Thogmartin & Szymanski, 2014). The USFWS may benefit from
explicitly considering metapopulation dynamics as WNS kills a growing portion of
the population and wind energy production increases. Specifically, placing additional
emphasis on protecting small winter colonies may be prudent (Thogmartin & McKann,
2014). Additionally, a more complete model for WNS might help guide conservation
efforts because different risk factors appear to affect survival (Boyles & Willis, 2009; Flory
et al., 2012; Wilder et al., 2011). Empirically quantifying and understanding these effects
will be critical to understanding the dynamics of the species and the disease affecting it
(Thogmartin et al., 2013).

Similar to WNS, a paucity of data exists for modeling how wind turbines affect Indiana
bat survival. This deficit of data created some of the greatest uncertainty in our model
because our wind turbinemortality scenarios varied by orders of magnitude. As of 2015, the
USFWS has only received reports of seven Indiana bats being killed at wind turbine facilities
(Fig. 2; http://www.fws.gov/midwest/wind/wildlifeimpacts/inbafatalities.html#Table1).
Estimating the number of Indiana bats killed by wind turbines is difficult due to a lack of
standardized protocols for sampling wind turbines for all species (Huso, 2011;Huso, 2013),
hampering meta-analysis across study sites (Loss, Will & Marra, 2013; Beston, Diffendorfer
& Loss, 2015). Additionally, the Indiana bat is difficult to find because it is a small species
that decomposes quickly after death and is difficult to correctly identify (Arnett et al.,
2011). Further, the no standardized reporting framework exists for wind energy mortality
within the United States. A better understanding of the conditions under which turbines
kill Indiana bats would not only allow a better understanding of the species population
dynamics, but also allow for possible protective measures to be taken (Arnett et al., 2011).

The lack of data on wind turbine collision risk limits population-level assessments
for all species, not just the Indiana bat (Loss, Will & Marra, 2013; Beston, Diffendorfer &
Loss, 2015). To date, few studies (e.g., Carrete et al., 2009; Schaub, 2012) have examined
range-wide effects of wind turbines on a specific species; ours is the first to look at
multiple stressors at the population-level. Our findings illustrate how mortality from wind
turbines interacts with other stressors. Modeled wind turbines strongly affected (and often
extirpated) small sub-populations whereas modeled WNS caused a fairly uniform decline
across the entire range. This result also demonstrates the need for greater understanding of
compensatory mortality when examining incidental take (McGowan et al., 2011). Although
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our findings only examine one anthropogenic stressor affecting the stability of one species,
similar trends are emerging world wide where anthropogenic stressors are affecting the
stability, biodiversity, and productivity of Earth’s ecosystems (Dirzo et al., 2014; Harley,
2011; Hautier et al., 2015).

To capture the salient life history aspects of the Indiana bat, our FAC required significant
effort at parameterization. This effort may be possible for other endangered species such as
the whooping crane (Grus americana) (Nations, Howlin & Young, 2013), but is not easily
scalable to the hundreds of species killed at wind turbines. For species where it is not possible
to construct high-effort, high-inputmodels, probably the first andmost important question
to ask would be, ‘‘what is the overlap between the species range and wind turbines?’’ As an
example of such an assessment, Santos et al. (2013) applied spatial distribution modeling to
examine four species of bats and what factors affected the probability of mortality occurring
at a given wind energy production facility. Similarly, work by Roscioni et al. (2013)modeled
the regional effects of wind farms on bats, and Roscioni et al. (2014) modeled the effects of
wind farms on bat migration and population connectivity. As part of the spatial overlap
question, it is also important to not only consider the ‘‘where,’’ but also the ‘‘when.’’
Obviously, a species with no overlap is not directly at risk, but might be if wind energy
generation adversely affects an important competitor or prey species.

The other modeling efforts we described are similar in that they broadly seek to
understand the impacts of wind energy development on wildlife. These efforts differed,
however, in either their scale or modeling approaches. For example Nations, Howlin &
Young (2013) constructed an individual-based model for an extremely rare species that
would have more of a localized risk of wind turbine mortality. Santos et al. (2013) used
species distribution models to examine spatial distribution and risk using distribution
modeling rather than population modeling. Efforts by Roscioni et al. (2013); Roscioni et
al. (2014) were similar to our in that they examined spatial migration and networks.
Specifically, Roscioni et al. (2014) examined the spatial connectivity of a bat species in Italy
and the possible effects of wind turbine development on the species. However, our approach
differs from Roscioni et al. (2014) because we focused on the population dynamics of the
species.

Another important consideration is the spatial structure of the population: ‘‘Are there
distinct subpopulations or is the species well connected across its range?’’ The Indiana
bat forms distinct subpopulations because of its life history, but other species such as
long-distance migratory tree bats or some avian species may not. This spatial connectivity
is also important if one decides to consider the possibility of re-colonization of extirpated
populations. The third important consideration that emerges from our results would be,
‘‘What are the other stressors affecting the population and how do they interact with wind
energy production?’’

Due to the large number of parameters in and uncertainty within our model, additional
research data and model improvement could be incorporated to refine our approach.
More summer field observations of the Indiana bat would be especially beneficial. A
North American Bat Monitoring Program is being developed, but does not currently
have extensive data on the Indiana bat (Loeb et al., 2015). This data would allow more
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certainty in modeling of summer habitat, which would also allow for better understanding
of migratory routes. Additionally, Pauli et al. (2015) recently modeled how different
landscape management scenarios affect the Indiana bat and models such as theirs could
be linked to population models if computational limits and data limitations could be
overcome. Using an agent-based model approach, treating migratory groups as the
agent, or an individual based-modeling approach, would also allow our model to capture
more salient behaviors (Grimm & Railsback, 2005). Another important consideration
is colonization and re-colonization metapopulation dynamics. Indiana bats have been
observed colonizing abandoned mines (Pruitt & TeWinkel, 2007), which we did not
explicitly consider. Lastly, our model did not consider demographic stochasticity or
demographic heterogeneity (Melbourne & Hastings, 2008). We did not include these
components because of computational limits. Modeling these would have required using
natural numbers, but we used continuous numbers because it simplified the model and
decreased computation time. Additionally, demographic stochasticity would require
the use of either computationally intense methods such as binomial distributions or
programming-intense methods such as branching process models (Caswell, 2001; Erickson
et al., 2015).

CONCLUSION
Under some of the modeled levels of influence, wind energy production may deleteriously
affect the population dynamics of the Indiana bat. We found wind energy production’s
effects were principally at the metapopulation-level and primarily affected smaller winter
colonies. Combined withWNS, which principally affects larger colonies, management may
need to consider metapopulation dynamics and focus on protecting smaller Indiana bat
winter colonies to reduce risk of species extinction. Our findings also illustrate the broader
importance of considering FACs and migratory networks rather than simply focusing on
local habitat or homogeneously distributed range-wide populations.

ACKNOWLEDGEMENTS
We thank Volker Grimm for comments and help with the TRACE Documentation. We
thank Lindsey Hofferman from the PA Game Commission for sharing the WNS spread
data with us. We thank Josh Takacs at the Geosciences and Environmental Change Science
Center for help with High Performance Computing, otherwise, our simulations might still
be running.We thank Lori Pruitt, RobinNiver, and ErikOlson from theUSFWS for reading
through the manuscript and providing feedback. We thank Jack Waide, Mark Gaikowski,
Robin White, and two anonymous reviewers for their feedback on this manuscript. Any
use of trade, product, or firm names are for descriptive purposes only and do not imply
endorsement by the US Government. The views expressed in this article are the author’s
own and do not necessarily represent the views of the US Fish and Wildlife Service. This
work was assisted through participation in the Habitat for Migratory Species Working
Group at the National Institute for Mathematical and Biological Synthesis, sponsored

Erickson et al. (2016), PeerJ, DOI 10.7717/peerj.2830 12/19

https://peerj.com
http://dx.doi.org/10.7717/peerj.2830


by the National Science Foundation through NSF Award #DBI-1300426, with additional
support from The University of Tennessee, Knoxville. This project was part of the US
Geological Survey’s Wind Energy Impacts Assessment Methodology (WEIAM) project.

ADDITIONAL INFORMATION AND DECLARATIONS

Funding
This work was assisted through participation in the Habitat for Migratory Species Working
Group at theNational Institute forMathematical and Biological Synthesis, sponsored by the
National Science Foundation through NSF Award #DBI-1300426, with additional support
from The University of Tennessee, Knoxville. This project was part of the US Geological
Survey’s Wind Energy Impacts Assessment Methodology (WEIAM) project. The funders
had no role in study design, data collection and analysis, decision to publish, or preparation
of the manuscript.

Grant Disclosures
The following grant information was disclosed by the authors:
National Institute for Mathematical and Biological Synthesis.
National Science Foundation: NSF Award #DBI-1300426.
The University of Tennessee, Knoxville.

Competing Interests
The authors declare there are no competing interests.

Author Contributions
• Richard A. Erickson andWayne E. Thogmartin conceived and designed the experiments,
performed the experiments, analyzed the data, wrote the paper, prepared figures and/or
tables, reviewed drafts of the paper.

• Jay E. Diffendorfer and Robin E. Russell conceived and designed the experiments,
contributed reagents/materials/analysis tools, wrote the paper, reviewed drafts of the
paper.

• Jennifer A. Szymanski conceived and designed the experiments, performed the
experiments, contributed reagents/materials/analysis tools, wrote the paper, reviewed
drafts of the paper, provided data for synthesis.

Data Availability
The following information was supplied regarding data availability:

USGS: http://dx.doi.org/10.5066/F75M63TN.

Supplemental Information
Supplemental information for this article can be found online at http://dx.doi.org/10.7717/
peerj.2830#supplemental-information.

Erickson et al. (2016), PeerJ, DOI 10.7717/peerj.2830 13/19

https://peerj.com
http://dx.doi.org/10.5066/F75M63TN
http://dx.doi.org/10.7717/peerj.2830#supplemental-information
http://dx.doi.org/10.7717/peerj.2830#supplemental-information
http://dx.doi.org/10.7717/peerj.2830


REFERENCES
AmericanWindWildlife Institute. 2014.Wind turbine interactions with wildlife and

their habitats: a summary of research results and priority questions. Technical report.
American Wind Wildlife Institute, Washington, D.C.

Arnett E, Baerwald E. 2013. Bat evolution, ecology, and conservation, chapter impacts of
wind energy development on bats: implications for conservation. New York: Springer.

Arnett EB, BrownW, EricksonWP, Fiedler JK, Hamilton BL, Henry TH, Jain A,
Johnson GD, Kerns J, Koford RR, Nicholson CP, O’Connell TJ, Piorkowski MD,
Tankersley JR RD. 2008. Patterns of bat fatalities at wind energy facilities in North
America. The Journal of Wildlife Management 72:61–78 DOI 10.2193/2007-221.

Arnett EB, HusoMM, Schirmacher MR, Hayes JP. 2011. Altering turbine speed reduces
bat mortality at wind-energy facilities. Frontiers in Ecology and the Environment
9:209–214 DOI 10.1890/100103.

Augusiak J, Van den Brink PJ, GrimmV. 2014.Merging validation and evaluation of
ecological models to ‘evaludation’: a review of terminology and a practical approach.
Ecological Modelling 280:117–128 DOI 10.1016/j.ecolmodel.2013.11.009.

Barclay R, Harder L. 2003. Bat ecology, chapter life histories of bats: life in the slow lane.
Chicago: University of Chicago Press.

Beston JA, Diffendorfer JE, Loss S. 2015. Insufficient sampling to identify species
affected by turbine collisions. The Journal of Wildlife Management 79:513–517
DOI 10.1002/jwmg.852.

Bolker BM. 2008. Ecological models and data in R. Prinecton: Princeton University Press.
Boyles JG,Willis CK. 2009. Could localized warm areas inside cold caves reduce

mortality of hibernating bats affected by white-nose syndrome? Frontiers in Ecology
and The Environment 8:92–98 DOI 10.1890/080187.

Carrete M, Sánchez-Zapata JA, Benítez JR, LobónM, Donázar JA. 2009. Large scale
risk-assessment of wind-farms on population viability of a globally endangered long-
lived raptor. Biological Conservation 142:2954–2961
DOI 10.1016/j.biocon.2009.07.027.

Caswell H. 2001.Matrix populations models. Sunderland: Sinauer Associates.
Clark BK, Bowles JB, Clark BS. 1987. Summer status of the endangered Indiana bat in

Iowa. American Midland Naturalist 118:32–39 DOI 10.2307/2425625.
Crimmins SM,McKann PC, Szymanski JA, ThogmartinWE. 2014. Effects of cave gating

on population trends at individual hibernacula of the Indiana bat (Myotis sodalis).
Acta Chiropterologica 16:129–137 DOI 10.3161/150811014X683345.

Cryan PM,Meteyer CU, Blehert DS, Lorch JM, Reeder DM, Turner GG,Webb J, Behr
M, Verant M, Russell RE, Castle KT. 2013. Electrolyte depletion in white-nose
syndrome bats. Journal of Wildlife Diseases 49:398–402 DOI 10.7589/2012-04-121.

Diffendorfer J, Compton R, Kramer L, Ancona Z, Norton D. 2014. Onshore industrial
wind turbine locations for the United States through July, 2013: data series 817.
Technical report. United States Geological Survey, Reston.

Erickson et al. (2016), PeerJ, DOI 10.7717/peerj.2830 14/19

https://peerj.com
http://dx.doi.org/10.2193/2007-221
http://dx.doi.org/10.1890/100103
http://dx.doi.org/10.1016/j.ecolmodel.2013.11.009
http://dx.doi.org/10.1002/jwmg.852
http://dx.doi.org/10.1890/080187
http://dx.doi.org/10.1016/j.biocon.2009.07.027
http://dx.doi.org/10.2307/2425625
http://dx.doi.org/10.3161/150811014X683345
http://dx.doi.org/10.7589/2012-04-121
http://dx.doi.org/10.7717/peerj.2830


Dirzo R, Young HS, Galetti M, Ceballos G, Isaac NJB, Collen B. 2014. Defaunation in
the Anthropocene. Science 345:401–406 DOI 10.1126/science.1251817.

Dowle M, Short T, Lianoglou S, A.S. with contributions from R Saporta, Antonyan E.
2014. data.table: extension of data.frame. Available at https:// cran.r-project.org/web/
packages/data.table/ index.html .

Erickson RA. 2016. Indiana Bat project data. US Geological Survey data release. Reston:
US Geological Survey. DOI 10.5066/F75M63TN.

Erickson RA, Eager EA, Stanton JC, Beston JA, Diffendorfer JE, ThogmartinWE. 2015.
Assessing local population vulnerability with branching process models: an applica-
tion to wind energy development. Ecosphere 6:1–14 DOI 10.1890/ES15-00103.1.

Erickson RA, Russell RE, Diffendorfer JE, Szymanksi JA, ThogmartinWE. 2014. A
stage-structured, spatially explicit migration model for colonial species with a focus
onMyotis bats. Letters in Biomathematics 1:1–16
DOI 10.1080/23737867.2014.11414465.

Erickson RA, ThogmartinWE, Szymanski JA. 2014. BatTool: an R package with GUI for
assessing the effect of white-nose syndrome and other take events onMyotis spp. of
bats. Source Code for Biology and Medicine 9:9 DOI 10.1186/1751-0473-9-9.

Farmer AH, Cade BS, Stauffer DF. 2002. Evaluation of a habitat suitability index
model. In: Kurta A, Kennedy J, eds. The Indiana bat: biology and management of an
endangered species. Austin: Bat Conservation International, 172–179.

Flory AR, Kumar S, Stohlgren TJ, Cryan PM. 2012. Environmental conditions associated
with bat white-nose syndrome mortality in the north-eastern United States. Journal
of Applied Ecology 49:680–689 DOI 10.1111/j.1365-2664.2012.02129.x.

FrickWF, Pollock JF, Hicks AC, Langwig KE, Reynolds DS, Turner GG, Butchkoski
CM, Kunz TH. 2010. An emerging disease causes regional population collapse of a
common North American bat species. Science 329:679–682
DOI 10.1126/science.1188594.

FrickWF, Puechmaille SJ, Hoyt JR, Nickel BA, Langwig KE, Foster JT, Barlow KE,
Bartonička T, Feller D, Haarsma A-J, Herzog C, Horacek I, Van der Kooij J,
Mulkens B, Petrov B, Reynolds R, Rodrigues L, Stihler CW, Turner GG, Kilpatrick
AM. 2015. Disease alters macroecological patterns of North American bats. Global
Ecology and Biogeography 24:741–749 DOI 10.1111/geb.12290.

Gardner J, Cook E. 2002. Seasonal and geographic distribution and quantification of
potential summer habitat. In: Kurta A, Kennedy J, eds. The Indiana bat: biology and
management of an endangered species. Austin: Bat Conservation International, 9–20.

Gelman A, Carlin JB, Stern HS, Dunson BD, Vehtari A, Rubin DB. 2013. Bayesian data
analysis. Boca Raton: CRC press.

GrimmV, Augusiak J, Focks A, Frank BM, Gabsi F, Johnston AS, Liu C, Martin BT,
Meli M, Radchuk V, Thorbek R, Railsback SF. 2014. Towards better modelling
and decision support: documenting model development, testing, and analysis using
TRACE. Ecological Modelling 280:129–139 DOI 10.1016/j.ecolmodel.2014.01.018.

GrimmV, Berger U, Bastiansen F, Eliassen S, Ginot V, Giske J, Goss-Custard J, Grand
T, Heinz SK, Huse G, Huth A, Jepsen JU, Jorgensen C, Mooij WM,Muller B,

Erickson et al. (2016), PeerJ, DOI 10.7717/peerj.2830 15/19

https://peerj.com
http://dx.doi.org/10.1126/science.1251817
https://cran.r-project.org/web/packages/data.table/index.html
https://cran.r-project.org/web/packages/data.table/index.html
http://dx.doi.org/10.5066/F75M63TN
http://dx.doi.org/10.1890/ES15-00103.1
http://dx.doi.org/10.1080/23737867.2014.11414465
http://dx.doi.org/10.1186/1751-0473-9-9
http://dx.doi.org/10.1111/j.1365-2664.2012.02129.x
http://dx.doi.org/10.1126/science.1188594
http://dx.doi.org/10.1111/geb.12290
http://dx.doi.org/10.1016/j.ecolmodel.2014.01.018
http://dx.doi.org/10.7717/peerj.2830


Pe’er G, Piou C, Railsback SF, Robbins AM, Robbins MM, Rossmanith E, Ruger
N, Stand E, Souiss S, Stillman RA, Vabo R, Visser U, Deangelis DL. 2006. A
standard protocol for describing individual-based and agent-based models. Ecological
Modelling 198:115–126 DOI 10.1016/j.ecolmodel.2006.04.023.

GrimmV, Berger U, DeAngelis DL, Polhill JG, Giske J, Railsback SF. 2010. The
ODD protocol: a review and first update. Ecological Modelling 221:2760–2768
DOI 10.1016/j.ecolmodel.2010.08.019.

GrimmV, Railsback SF. 2005. Individual-based Modeling and Ecology. Princeton:
Princeton.

Hallam TG, Federico P. 2009. Ecological and behavioral methods for the study of bats,
chapter application of dynamic population models to bats. Baltimore: Johns Hopkins
University Press, 177–194.

Harley CD. 2011. Climate change, keystone predation, and biodiversity loss. Science
334:1124–1127 DOI 10.1126/science.1210199.

Hautier Y, Tilman D, Isbell F, Seabloom EW, Borer ET, Reich PB. 2015. Anthro-
pogenic environmental changes affect ecosystem stability via biodiversity. Science
348:336–340 DOI 10.1126/science.aaa1788.

HoffmanMD, Gelman A. 2014. The No-U-Turn sampler: adaptively setting path lengths
in Hamiltonian Monte Carlo. Journal of Machine Learning Research 15:1351–1381.

Hostetler JA, Sillett TS, Marra PP. 2015. Full-annual-cycle population models for
migratory birds. The Auk 132:433–449 DOI 10.1642/AUK-14-211.1.

HusoM. 2013. Estimating direct fatality impacts at wind farms: how far we’ve come,
where we have yet to go. In: PNWWRM IX. Proceedings of the wind-wildlife research
meeting IX, Broomfield, CO, Nov. 28–30, 2012. Washington, D.C.: American Wind
Wildlife Institute, 175.

HusoMM. 2011. An estimator of wildlife fatality from observed carcasses. Environmetrics
22:318–329 DOI 10.1002/env.1052.

Jones KE, Purvis A, Gittleman JL. 2003. Biological correlates of extinction risk in bats.
The American Naturalist 161:601–614 DOI 10.1086/368289.

Kunz TH, Arnett EB, EricksonWP, Hoar AR, Johnson GD, Larkin RP, StricklandMD,
Thresher RW, Tuttle MD. 2007. Ecological impacts of wind energy development
on bats: questions, research needs, and hypotheses. Frontiers in Ecology and the
Environment 5:315–324 DOI 10.1890/1540-9295(2007)5[315:EIOWED]2.0.CO;2.

KuvleskyWP, Brennan LA, MorrisonML, Boydston KK, Ballard BM, Bryant FC. 2007.
Wind energy development and wildlife conservation: challenges and opportunities.
Journal of Wildlife Management 71:2487–2498 DOI 10.2193/2007-248.

Langwig KE, FrickWF, Bried JT, Hicks AC, Kunz TH, MarmKilpatrick A. 2012.
Sociality density-dependence and microclimates determine the persistence of
populations suffering from a novel fungal disease, white-nose syndrome. Ecology
Letters 15:1050–1057 DOI 10.1111/j.1461-0248.2012.01829.x.

Langwig KE, FrickWF, Reynolds R, Parise KL, Drees KP, Hoyt JR, Cheng TL, Kunz
TH, Foster JT, Kilpatrick AM. 2015.Host and pathogen ecology drive the seasonal

Erickson et al. (2016), PeerJ, DOI 10.7717/peerj.2830 16/19

https://peerj.com
http://dx.doi.org/10.1016/j.ecolmodel.2006.04.023
http://dx.doi.org/10.1016/j.ecolmodel.2010.08.019
http://dx.doi.org/10.1126/science.1210199
http://dx.doi.org/10.1126/science.aaa1788
http://dx.doi.org/10.1642/AUK-14-211.1
http://dx.doi.org/10.1002/env.1052
http://dx.doi.org/10.1086/368289
http://dx.doi.org/10.1890/1540-9295(2007)5[315:EIOWED]2.0.CO;2
http://dx.doi.org/10.2193/2007-248
http://dx.doi.org/10.1111/j.1461-0248.2012.01829.x
http://dx.doi.org/10.7717/peerj.2830


dynamics of a fungal disease, white-nose syndrome. Proceedings of The Royal Society
of London B: Biological Sciences 282:20142335.

Loeb S, Rodhouse TJ, Ellison LE, Lausen CL, Reichard JD, Irvine KM, Ingersoll TE,
Coleman JTH, ThogmartinWE, Sauer JR, Francis CM, Bayless ML, Stanley TR,
Johnson DH. 2015. A plan for the North American Bat Monitoring Program
(NABat). General Technical Report SRS-208. Technical report. US Department of
Agriculture Forest Service, Southern Research Station, Asheville, NC.

Loeb SC,Winters EA. 2012. Indiana bat summer maternity distribution: effects of
current and future climates. Ecology and Evolution 3:103–114 DOI 10.1002/ece3.440.

Loss SR,Will T, Marra PP. 2013. Estimates of bird collision mortality at wind fa-
cilities in the contiguous United States. Biological Conservation 168:201–209
DOI 10.1016/j.biocon.2013.10.007.

McGowan CP, RyanMR, RungeMC,Millspaugh JJ, Cochrane JF. 2011. The role of
demographic compensation theory in incidental take assessments for endangered
species. Biological Conservation 144:730–737 DOI 10.1016/j.biocon.2010.10.020.

Melbourne BA, Hastings A. 2008. Extinction risk depends strongly on factors contribut-
ing to stochasticity. Nature 454:100–103 DOI 10.1038/nature06922.

Miller N, Drobney R, Clawson R, Callahan E. 2002. Summer habitat in northern
Missouri. In: Kurta A, Kennedy J, eds. The Indiana bat: biology and management of
an endangered species. Austin: Bat Conservation International, 165–171.

National Research Council: Committee on the Status of Pollinators in North America.
2007. Status of pollinators in North America. Washington, D.C.: National Academies
Press.

Nations C, Howlin S, Young DP. 2013. Part 2: collaborative landscape conservation
approach: modeling potential impacts to migratory whooping cranes from wind
power development. In: PNWWRM IX. Proceedings of the wind-wildlife research
meeting IX., Broomfield, CO, Nov. 28–30, 2012. Washington, D.C.: American Wind
Wildlife Institute, 175.

Office of the Federal Register. 1967. Notices. Federal Register: The Daily Journal of the
United States 32(48):4001 Available at http://www.nmfs.noaa.gov/pr/pdfs/ fr/ fr32-
4001.pdf .

Office of the Federal Register. 1973. Endangered Species Act of 1973. Federal Register:
The Daily Journal of the United States 93(205):884–903 Available at https://www.gpo.
gov/ fdsys/pkg/STATUTE-87/pdf/STATUTE-87-Pg884.pdf .

Pauli B, Zollner P, Haulton G, Shao G, Shao G. 2015. The simulated effects of timber
harvest on suitable habitat for Indiana and northern long-eared bats. Ecosphere
6:Article 58 DOI 10.1890/ES14-00336.1.

Piorkowski MD, Farnsworth AJ, Fry M, Rohrbaugh RW, Fitzpatrick JW, Rosenberg
KV. 2012. Research priorities for wind energy and migratory wildlife. The Journal of
Wildlife Management 76:451–456 DOI 10.1002/jwmg.327.

Powers KE, Reynolds RJ, Orndorff W, FordWM, Hobson CS. 2015. Post-white-nose
syndrome trends in Virginias cave bats, 2008–2013. Journal of Ecology and The
Natural Environment 7:113–123 DOI 10.5897/JENE2015.0507.

Erickson et al. (2016), PeerJ, DOI 10.7717/peerj.2830 17/19

https://peerj.com
http://dx.doi.org/10.1002/ece3.440
http://dx.doi.org/10.1016/j.biocon.2013.10.007
http://dx.doi.org/10.1016/j.biocon.2010.10.020
http://dx.doi.org/10.1038/nature06922
http://www.nmfs.noaa.gov/pr/pdfs/fr/fr32-4001.pdf
http://www.nmfs.noaa.gov/pr/pdfs/fr/fr32-4001.pdf
https://www.gpo.gov/fdsys/pkg/STATUTE-87/pdf/STATUTE-87-Pg884.pdf
https://www.gpo.gov/fdsys/pkg/STATUTE-87/pdf/STATUTE-87-Pg884.pdf
http://dx.doi.org/10.1890/ES14-00336.1
http://dx.doi.org/10.1002/jwmg.327
http://dx.doi.org/10.5897/JENE2015.0507
http://dx.doi.org/10.7717/peerj.2830


Pruitt L, TeWinkel L. 2007. Indiana bat (Myotis sodalis) draft recovery plan: first
revision. Technical report. US Fish and Wildlife Service, Fort Sntelling, MN.

R Core Team. 2014. R: a language and environment for statistical computing. Vienna: R
Foundation for Statistical Computing. Available at https://www.r-project.org/ .

Revolution Analytics, Weston S. 2014. doSNOW: foreach parallel adaptor for the snow
package. Available at http://CRAN.R-project.org/package=doSNOW .

Roscioni F, Rebelo H, Russo D, CarranzaML, Di febbraroM, Loy A. 2014. A modelling
approach to infer the effects of wind farms on landscape connectivity for bats.
Landscape Ecology 29:891–903 DOI 10.1007/s10980-014-0030-2.

Roscioni F, Russo D, Di febbraroM, Frate L, CarranzaM, Loy A. 2013. Regional-
scale modelling of the cumulative impact of wind farms on bats. Biodiversity and
Conservation 22:1821–1835 DOI 10.1007/s10531-013-0515-3.

Santos H, Rodrigues L, Jones G, Rebelo H. 2013. Using species distribution modelling
to predict bat fatality risk at wind farms. Biological Conservation 157:178–186
DOI 10.1016/j.biocon.2012.06.017.

SchaubM. 2012. Spatial distribution of wind turbines is crucial for the survival of red
kite populations. Biological Conservation 155:111–118
DOI 10.1016/j.biocon.2012.06.021.

Schmolke A, Thorbek P, DeAngelis DL, GrimmV. 2010. Ecological models supporting
environmental decision making: a strategy for the future. Trends in Ecology &
Evolution 25:479–486 DOI 10.1016/j.tree.2010.05.001.

Suter II GW. 2006. Ecological risk assessment. Boca Raton: CRC press.
Taylor CM, Norris DR. 2010. Population dynamics in migratory networks. Theoretical

Ecology 3:65–73 DOI 10.1007/s12080-009-0054-4.
ThogmartinWE, King RA, McKann PC, Szymanski JA, Pruitt L. 2012a. Population-

level impact of white-nose syndrome on the endangered Indiana bat. Journal of
Mammalogy 93:1086–1098 DOI 10.1644/11-MAMM-A-355.1.

ThogmartinWE, King RA, Szymanski JA, Pruitt L. 2012b. Space–time models for a
panzootic in bats, with a focus on the endangered Indiana bat. Journal of Wildlife
Diseases 48:876–887 DOI 10.7589/2011-06-176.

ThogmartinWE, McKann PC. 2014. Large-scale climate variation modifies the winter
grouping behavior of endangered Indiana bats. Journal of Mammalogy 95:117–127
DOI 10.1644/13-MAMM-A-098.

ThogmartinWE, Sanders-Reed CA, Szymanski JA, McKann PC, Pruitt L, King RA,
RungeMC, Russell RE. 2013.White-nose syndrome is likely to extirpate the endan-
gered Indiana bat over a large part of its range. Biological Conservation 160:162–172
DOI 10.1016/j.biocon.2013.01.010.

Turner GG, Reeder D, Coleman JT. 2011. A five-year assessment of mortality and
geographic spread of white-nose syndrome in North American bats, with a look at
the future. Update of white-nose syndrome in bats. Bat Research News 52:13–27.

Verant ML, Carol MU, Speakman JR, Cryan PM, Lorch JM, Blehert DS. 2014.White-
nose syndrome initiates a cascade of physiologic disturbances in the hibernating bat
host. BMC Physiology 14:10 DOI 10.1186/s12899-014-0010-4.

Erickson et al. (2016), PeerJ, DOI 10.7717/peerj.2830 18/19

https://peerj.com
https://www.r-project.org/
http://CRAN.R-project.org/package=doSNOW
http://dx.doi.org/10.1007/s10980-014-0030-2
http://dx.doi.org/10.1007/s10531-013-0515-3
http://dx.doi.org/10.1016/j.biocon.2012.06.017
http://dx.doi.org/10.1016/j.biocon.2012.06.021
http://dx.doi.org/10.1016/j.tree.2010.05.001
http://dx.doi.org/10.1007/s12080-009-0054-4
http://dx.doi.org/10.1644/11-MAMM-A-355.1
http://dx.doi.org/10.7589/2011-06-176
http://dx.doi.org/10.1644/13-MAMM-A-098
http://dx.doi.org/10.1016/j.biocon.2013.01.010
http://dx.doi.org/10.1186/s12899-014-0010-4
http://dx.doi.org/10.7717/peerj.2830


Warnecke L, Turner JM, Bollinger TK, Misra V, Cryan PM, Blehert DS,Wibbelt
G,Willis CK. 2013. Pathophysiology of white-nose syndrome in bats: a mech-
anistic model linking wing damage to mortality. Biology Letters 9:20130177
DOI 10.1098/rsbl.2013.0177.

Watanabe S. 2010. Asymptotic equivalence of Bayes cross validation and widely ap-
plicable information criterion in singular learning theory. The Journal of Machine
Learning Research 11:3571–3594.

Weber T, Sparks D. 2013. Summer habitat identification of an endangered batMyotis
sodalis, across its eastern range of the USA. Journal of Conservation Planning 9:53–68.

WickhamH. 2009. ggplot2: elegant graphics for data analysis. New York: Springer.
Wiederholt R, López-Hoffman L, Cline J, Medellìn RA, Cryan P, Russell A, McCracken

G, Diffendorfer J, Semmens D. 2013.Moving across the border: modeling migratory
bat populations. Ecosphere 4:Article 114 DOI 10.1890/ES13–00023.1.

Wilder AP, FrickWF, Langwig KE, Kunz TH. 2011. Risk factors associated with
mortality from white-nose syndrome among hibernating bat colonies. Biology Letters
7:950–953 DOI 10.1098/rsbl.2011.0355.

Willis C, Menzies A, Boyles J, Wojciechowski M. 2011. Evaporative water loss is a
plausible explanation for mortality of bats from white-nose syndrome. Integrative
and Comparative Biology 51:364–373 DOI 10.1093/icb/icr076.

Winhold L, Kurta A. 2006. Aspects of migration by the endangered Indiana bat,Myotis
sodalis. Bat Research News 47:1–6.

Yates M, Muzika R. 2006. Effect of forest structure and fragmentation on site occu-
pancy of bat species in Missouri Ozark forests. Journal of Wildlife Management
70:1238–1248 DOI 10.2193/0022-541X(2006)70[1238:EOFSAF]2.0.CO;2.

Erickson et al. (2016), PeerJ, DOI 10.7717/peerj.2830 19/19

https://peerj.com
http://dx.doi.org/10.1098/rsbl.2013.0177
http://dx.doi.org/10.1890/ES13--00023.1
http://dx.doi.org/10.1098/rsbl.2011.0355
http://dx.doi.org/10.1093/icb/icr076
http://dx.doi.org/10.2193/0022-541X(2006)70[1238:EOFSAF]2.0.CO;2
http://dx.doi.org/10.7717/peerj.2830

