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A number of different models have been proposed as descriptions of the species-

abundance distribution (SAD). Most evaluations of these models use only one or two

models, focus only a single ecosystem or taxonomic group, or fail to use appropriate

statistical methods. We use likelihood and AIC to compare the fit of four of the most widely

used models to data on over 16,000 communities from a diverse array of taxonomic

groups and ecosystems. Across all datasets combined the log-series, Poisson lognormal,

and negative binomial all yield similar overall fits to the data. Therefore, when correcting

for differences in the number of parameters the log-series generally provides the best fit to

data. Within individual datasets some other distributions performed nearly as well as the

log-series even after correcting for the number of parameters. The Zipf distribution is

generally a poor characterization of the SAD.
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11 Abstract

12 A number of different models have been proposed as descriptions of the species-

13 abundance distribution (SAD). Most evaluations of these models use only one or two 

14 models, focus only a single ecosystem or taxonomic group, or fail to use appropriate 

15 statistical methods. We use likelihood and AIC to compare the fit of four of the most widely 

16 used models to data on over 16,000 communities from a diverse array of taxonomic groups 

17 and ecosystems. Across all datasets combined the log-series, Poisson lognormal, and 

18 negative binomial all yield similar overall fits to the data. Therefore, when correcting for 

19 differences in the number of parameters the log-series generally provides the best fit to 

20 data. Within individual datasets some other distributions performed nearly as well as the 

21 log-series even after correcting for the number of parameters. The Zipf distribution is 

22 generally a poor characterization of the SAD.

23 Introduction

24 The species abundance distribution (SAD) describes the full distribution of commonness 

25 and rarity in ecological systems. It is one of the most fundamental and ubiquitous patterns 

26 in ecology, and exhibits a consistent general form with many rare species and few 

27 abundant species occurring within a community. The SAD is one of the most widely studied 

28 patterns in ecology, leading to a proliferation of models that attempt to characterize the 

29 shape of the distribution and identify potential mechanisms for the pattern (see McGill et 

30 al. 2007 for a recent review of SADs). These models range from arbitrary distributions that 

31 are chosen based on providing a good fit to the data (Fisher et al. 1943), to distributions 
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32 chosen based on the most likely states of generic random systems (Frank 2011, Harte 

33 2011, Locey and White 2013), to models based more directly on ecological processes 

34 (Tokeshi 1993, Hubbell 2001, Volkov et al. 2003, Alroy 2015).

35 Which model or models provide the best fit to the data, and the resulting implications for 

36 the processes structuring ecological systems, is an active area of research (e.g., McGill 2003, 

37 Volkov et al. 2003, Ulrich et al. 2010, White et al. 2012, Connolly et al. 2014). However, 

38 most comparisons of the different models: 1) use only a small subset of available models 

39 (typically two; e.g., McGill 2003, Volkov et al. 2003, White et al. 2012, Connolly et al. 2014); 

40 2) focus on a single ecosystem or taxonomic group (e.g., McGill 2003, Volkov et al. 2003); or 

41 3) fail to use the most appropriate statistical methods (e.g., Ulrich et al. 2010, see Matthews 

42 and Whittaker 2014 for discussion of best statistical methods for fitting SADs). This makes 

43 it difficult to draw general conclusions about which, if any, models provide the best 

44 empirical fit to species abundance distributions.

45 Here, we evaluate the performance of four of the most widely used models for the species 

46 abundance distribution using likelihood-based model selection on data from 16,209 

47 communities and nine major taxonomic groups. This includes data from terrestrial, aquatic, 

48 and marine ecosystems representing roughly 50 million individual organisms in total.

PeerJ reviewing PDF | (2016:07:12365:1:0:NEW 15 Nov 2016)

Manuscript to be reviewed



49 Methods

50 Data

51 We compiled data from citizen science projects, government surveys, and literature mining 

52 to produce a dataset with 16,209 communities, from nine taxonomic groups, representing 

53 nearly 50 million individual terrestrial, aquatic, and marine organisms. Data for trees, 

54 birds, butterflies and mammals was compiled by White et al. (2012) from six data sources: 

55 the US Forest Service Forest Inventory and Analysis (FIA; USDA Forest Service 2010), the 

56 North American Butterfly Association's North American Butterfly Count (NABC; North 

57 American Butterfly Assoc. 2009), the Mammal Community Database (MCDB; Thibault et al. 

58 2011), Alwyn Gentry's Forest Transect Data Set (Gentry; Phillips and Miller 2002), the 

59 Audubon Society Christmas Bird Count (CBC; National Audubon Society 2002), and the US 

60 Geological Survey's North American Breeding Bird Survey (BBS; Pardieck et al. 2014) (see 

61 Table 1 for details). The publicly available datasets (FIA, MCDB, Gentry, and BBS) were 

62 acquired using the EcoData Retriever (http://ecodataretriever.org; Morris and White 

63 2013). Details of the treatment of these datasets can be found in Appendix A of White et al. 

64 (2012), but in general data were analyzed at the level of the site defined in the dataset and 

65 a single year of data was selected for each site. We modified the data slightly by removing 

66 sites 102 and 179 from the Gentry data due to issues with decimal abundances appearing 

67 in raw data due to either data entry or data structure errors. Data on Actinopterygii, 

68 Reptilia, Coleoptera, Arachnida, and Amphibia, were mined from literature by Baldridge 

69 and are publicly available (Baldridge 2013) (see Table 1 for details). These data were 

70 collected at the level of the site defined in the publication if raw data were available at that 

PeerJ reviewing PDF | (2016:07:12365:1:0:NEW 15 Nov 2016)

Manuscript to be reviewed



71 scale, and at the scale of the entire study otherwise. Time scales of collection for this data 

72 depended on the study but was typically one or a few years. All data sources used in the 

73 analysis a samples (or censuses) of a taxonomic assemblage, where all individuals of any 

74 species seen are recorded. Abundances in the compiled datasets were counts of individuals.

75 Table 1: Details of datasets used to evaluate the form of the species abundance distribution. 

76 Datasets marked as Private were obtained through data requests to the providers.

Dataset Dataset code Availability

Total 

sites Citation

Breeding Bird 

Survey

BBS Public 2769 Pardieck et al. (2014)

Christmas 

Bird Count

CBC Private 1999 National Audubon Society (2002)

Gentry's 

Forest 

Transects

Gentry Public 220 Phillips and Miller (2002)

Forest 

Inventory 

Analysis

FIA Public 10355 USDA Forest Service (2010)

Mammal 

Community 

Datatbase

MCDB Public 103 Thibault et al. (2011)
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NA Butterfly 

Count

NABA Private 400 North American Butterfly Assoc. 

(2009)

Actinopterygii Actinopterygii Public 161 Baldridge (2013)

Reptilia Reptilia Public 129 Baldridge (2013)

Amphibia Amphibia Public 43 Baldridge (2013)

Coleoptera Coleoptera Public 5 Baldridge (2013)

Arachnida Arachnida Public 25 Baldridge (2013)

77

78 Models

79 We selected models for analysis based on four criteria. First, since the majority of species 

80 abundance distributions (SADs) are constructed using counts of individuals (for discussion 

81 of alternative approaches see McGill et al. 2007 and @morlon2009) we selected models 

82 with discrete distributions (i.e., those that only have non-zero probabilities for positive 

83 integer values of abundance). Second, in order to use best practices for comparing species 

84 abundance distributions we selected models with analytically defined probability mass 

85 functions that allow the calculation of likelihoods (see details in Analysis). Third, McGill et 

86 al. (2007) classified species abundance distribution models into five different families: 

87 purely statistical, branching process, population dynamics, niche partitioning, and spatial 

88 distribution of individuals. We evaluated models from each of these families, with some 

89 models having been derived from more than one family of processes. Finally, we selected 

90 models that have been widely used in the ecological literature. Based on these criteria we 
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91 evaluated the log-series, the Poisson lognormal, the negative binomial, and the Zipf 

92 distributions. All distributions were defined to be capable of having non-zero probability at 

93 integer values from 1 to infinity.

94 The log-series is one of the first distributions used to describe the SAD, being derived as a 

95 purely statistical distribution by Fisher (1943). It has since been derived as the result of 

96 ecological processes, the metacommunity SAD for ecological neutral theory (Hubbell 2001, 

97 Volkov et al. 2003), and several different maximum entropy models (Pueyo et al. 2007, 

98 Harte et al. 2008).

99 The lognormal is one of the most commonly used distributions for describing the SAD 

100 (McGill 2003) and has been derived as a null form of the distribution resulting from the 

101 central limit theorem (May 1975), population dynamics (Engen and Lande 1996), and 

102 niche partitioning (Sugihara 1980). We use the Poisson lognormal because it is a discrete 

103 form of the distribution appropriate for fitting discrete abundance data (Bulmer 1974).

104 The negative binomial (which can be derived as a Gamma-distributed mixture of Poisson 

105 distributions) provides a good characterization of the SAD predictions for several different 

106 ecological neutral models for the purposes of model selection (Connolly et al. 2014). We 

107 use it to represent neutral models as a class.

108 The Zipf (or power law) distribution was derived based on both branching processes and 

109 as the outcome of the McGill and Collin's (2003) spatial model. It was one of the best fitting 

110 distributions in a recent meta-analysis of SADs (Ulrich et al. 2010). We use the discrete 

111 form of the distribution which is appropriate for fitting discrete abundance data (White et 

112 al. 2008).
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113 Figure 1 shows three example sites with the empirical distribution and associated models 

114 fit to the data Zipf distributions tend to predict the most rare species followed by the log-

115 series, the negative binomial, and Poisson lognormal.

116

117 Example species-abundance distributions including the empirical distributions (grey bars) 

118 and the best fitting log-series (black line), negative binomial (green line), Poisson lognormal 

119 (red line), and Zipf (purple line). Distributions are for (a) Breeding Bird Survey - Route 36 in 

120 New York, (b) Forest Inventory and Analysis - Unit 4, County 57, Plot 12 in Alabama, and (c) 

121 Gentry - Araracuara High Campina site in Colombia. Log-likelihoods of the models are 

122 included in parenthesis in the legend

123 Analysis

124 Following current best practices for fitting distributions to data and evaluating their fit, we 

125 used maximum likelihood estimation to fit models to the data (Clark et al. 1999, Newman 

126 2005, White et al. 2008) and likelihood-based model selection to compare the fits of the 

127 different models (Burnham and Anderson 2002, Edwards et al. 2007). This approach has 

128 recently been affirmed as best practice for species abundance distributions (Connolly et al. 

129 2014, Matthews and Whittaker 2014). This requires that likelihoods for the models can be 
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130 solved for and therefore we excluded models that lack probability mass functions and 

131 associated likelihoods. While methods have been proposed for comparing models without 

132 probability mass functions in this context (Alroy 2015), these methods have not been 

133 evaluated to determine how well they perform compared to the widely accepted 

134 likelihood-based approaches.

135 For model comparison we used corrected Akaike Information Criterion (AICc) weights to 

136 compare the fits of models while correcting for differences in the number of parameters 

137 and appropriately handling the small sample sizes (i.e., numbers of species) in some 

138 communities (Burnham and Anderson 2002). The Poisson lognormal and the negative 

139 binomial each have two fitted parameters, while the log-series distribution and the Zipf 

140 distributions have one fitted parameter each. The model with the greatest AICc weight in 

141 each community was considered to be the best fitting model for that community. We also 

142 assessed the full distribution of AICc weights to evaluate the similarity of the fits of the 

143 different models.

144 In addition to evaluating AICc of each model, we also examined the log-likelihood values of 

145 the models directly. We did this to assess the fit of the model while ignoring corrections for 

146 the number of parameters and the influence of similarities to other models in the set of 

147 candidate models. This also allows us to make more direct comparisons to previous 

148 analyses that have not corrected for the number of parameters (i.e., Ulrich et al. 2010, Alroy 

149 2015)

150 Model fitting, log-likelihood, and AICc calculations were performed using Python (Van 

151 Rossum and Drake 2011) and R (R Core Team 2015). Python packages used for analysis 
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152 include numpy (Oliphant 2007, Van Der Walt et al. 2011), matplotlib (Hunter and others 

153 2007), sqlalchemy (Bayer 2014), pandas (McKinney and others 2010), macroecotools (Xiao 

154 et al. 2016), retriever (Morris and White 2013), R packages used for analysis include 

155 ggplot2 (Wickham 2009), magrittr(Bache and Wickham 2014), tidyr (Wickham 2016), 

156 dplyr (Wickham and Francois 2016). All of the code and all of the publicly available data 

157 necessary to replicate these analyses is available at https://github.com/weecology/sad-

158 comparison and archived on Zenodo (Baldridge et al. 2016). The CBC datasets and NABA 

159 datasets are not publicly available and therefore are not included.

160 Results

161 Across all datasets, the negative binomial and Poisson lognormal distributions had very 

162 similar average log-likelihoods (within 0.01 of one another; Figure 2). The log-likelihoods 

163 for each of these distributions averaged 0.8 units higher than for the log-series distribution 

164 and 5 units higher than for the Zipf distribution (corresponding to likelihoods that were 

165 twice as high and 140 times as high, respectively).
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166

167 Violin plots of the deviation from the mean log-likelihood for each site for all datasets 

168 combined. Positive values indicate that the model fits better than the average fit across the 

169 four models.

170 Although the negative binomial and Poisson lognormal distributions matched the data 

171 most closely, the likelihood provides a biased estimate of these distributions' ability to 

172 generalize to unobserved species. AICc approximately removes this bias by penalizing 

173 models with more degrees of freedom (e.g. the negative binomial and Poisson lognormal 
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174 distributions, which have two free parameters instead of one like the log-series and Zipf 

175 distributions). After applying this penalty, the log-series distribution would be expected to 

176 make the best predictions for 69.2% of the sites. The Poisson lognormal and negative 

177 binomial distributions were each preferred in about 12% of the sites, and the Zipf 

178 distribution was preferred least often (6.0% of sites; Figure 3).

179

180 Number of cases in which each model provided the best fit to the data based on AICc for all 

181 datasets combined.

182 Across all datasets and taxonomic groups, the log-series distribution had the highest AICc 

183 weights more often than any other model. The negative binomial performed well for BBS, 

184 but was almost never the best fitting model for plants (FIA and Gentry), butterflies (NABA), 
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185 Acintopterygii, or Coleoptera. The Poisson lognormal performed well for the bird datasets 

186 (BBS and CBC) and the Gentry tree data, but was almost never best in the FIA and 

187 Coleoptera datasets (Figure 4). The Zipf distribution only performed consistently well for 

188 Arachnida. Because datasets differ in both taxonomic groups and sampling methods care 

189 should be taken in interpreting these differences.

190

191 Number of cases in which each model provided the best fit to the data based on AICc for each 

192 dataset separately.

193 The full distribution of AICc weights shows separation among models (Figure 5). Although 

194 the log-series distribution had the best AICc score much more often than the other models, 

195 its lead was never decisive: across all 16,209 sites, it never had more than about 75% of the 

196 AICc weight (Figure 5). Most of the remaining weight was assigned to the negative binomial 

197 and Poisson lognormal distributions (each of which usually had at least 12-15% of the 
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198 weight but was occasionally favored very strongly). The Zipf distribution showed a strong 

199 mode near zero, and usually had less than 7% of the weight.

200

201 Violin plots of the AICc weights for each model. Weights indicate the probability that the 

202 model is the best model for the data
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203 Discussion

204 Our extensive comparison of different models for the species abundance distribution (SAD) 

205 using rigorous statistical methods demonstrates that several of the most popular existing 

206 models provide equivalently good absolute fits to empirical data. Log-series, negative 

207 binomial, and Poisson lognormal all had model relative likelihoods between 0.25 and 0.5 

208 suggesting that the three distributions provide roughly equivalent fits in most cases, but 

209 with the two-parameter model performing slightly better on average. Because the log-

210 series has only a single parameter but fits the data almost as well as the two-parameter 

211 models, the log-series performed better in AICc-based model selection, which penalizes 

212 model complexity. These results differ from two other recent analyses of large numbers of 

213 species abundance distributions (Ulrich et al. 2010, Connolly et al. 2014) and are generally 

214 consistent with a third recent analysis (Alroy 2015).

215 Ulrich et al. (2010) analyzed ~500 SADs and found support for three major forms of the 

216 SAD that changed depending on whether the community had been fully censused or not. 

217 They found that "fully censused" communities were best fit by the lognormal, and 

218 "incompletely sampled" communities, best fit by the Zipf and log-series (Ulrich et al. 2010). 

219 In contrast we find effectively no support for the Zipf across ecosystems and taxonomic 

220 groups, including a number of datasets that are incompletely sampled. Our AICc value 

221 results also do not support the conclusion that the lognormal outperforms the log-series in 

222 fully censused communities. The Gentry and FIA forest inventories both involve large 

223 stationary organisms and were collected with the goal of including all trees above a certain 

224 stem diameter. Therefore, above the minimum stem diameter, they are as close to fully 
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225 censused communities as is typically possible. In these communities the log-series provides 

226 the best fit to the data most frequently. The discrepancy between our results and those 

227 found in (Ulrich et al. 2010) may be due to: 1) their use of binning and fitting curves to rank 

228 abundance plots, which deviates from the likelihood-based best practices (Matthews and 

229 Whittaker 2014) used in this paper; 2) the statistical methods they use to identify 

230 communities as "fully censused", which tend to exclude communities with large numbers of 

231 singletons that would be better fit by distributions like the log-series; 3) the use of the 

232 continuous lognormal instead of the Poisson lognormal; 4) the fact that our censused 

233 communities are also a different taxonomic group from our sampled communities, making 

234 it difficult to distinguish between taxonomic and sampling differences.

235 Connolly et al. (2014) use likelihood-based methods to compare the negative binomial 

236 distribution (which they call the Poisson gamma) to the Poisson lognormal for a large 

237 number of marine communities. They found that the Poisson lognormal provides a 

238 substantially better fit than the negative binomial to empirical data and that the negative-

239 binomial provides a better fit to communities simulated using neutral models. They 

240 conclude that these analyses of the SAD demonstrate that marine communities are 

241 structured by non-neutral processes. Our analysis differs from that in Connolly et al. (2014) 

242 in that they aggregate communities at larger spatial scales than those sampled and find the 

243 strongest results at large spatial scales. This may explain the difference between the two 

244 analyses or there may be differences between the terrestrial systems analyzed here and the 

245 marine systems analyzed by Connolly et al. (2014). The explanation for these differences is 

246 being explored elsewhere (Connolly et al. unpublished data).
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247 Alroy (2015) compared the fits of the lognormal, log-series, Zipf, geometric series, broken 

248 stick, and a new model dubbed the "double geometric", to over 1000 terrestrial community 

249 datasets assembled from the literature. To incorporate the geometric series, broken stick, 

250 and the double geometric, this research used non-standard methods for evaluating the fits 

251 of the models to the data, however the results were generally consistent with those 

252 presented here. The central Kullback-Leibler divergence statistics results showed that: 1) 

253 the Zipf, geometric series, and broken stick all perform consistently worse than the other 

254 distributions; 2) the double geometric, log-series, and lognormal all provide the best 

255 overall fit for at least one taxonomic group; and 3) the lognormal and double geometric fit 

256 the data equivalently well and slightly better than the log-series when not controlling for 

257 differences in the number of parameters (Alroy's tables S1, S2, and S3). Penalizing the two-

258 parameter models (lognormal and double geometric) for their complexity, as we do here 

259 with AICc, would likewise improve the relative performance of the log-series distribution.

260 In combination, the results of these three papers suggest that in general the Zipf is a poor 

261 characterization of species-abundance distributions and that both the log-series and 

262 lognormal distributions provide reasonable fits in many cases. Differences in the 

263 performance of the log-series, lognormal, double geometric, and negative binomial, appear 

264 to be more minor. How these differences relate to differences in intensity of sampling, 

265 spatial scale, taxonomy, and ecosystem type (marine vs. terrestrial) remain open questions. 

266 Our analyses suggest that controlling for the number of parameters makes the log-series a 

267 slightly better fitting model, at least in the terrestrial systems we studied. Neither of the 

268 other papers that include the log-series (Ulrich et al. 2010, Alroy 2015) make this 
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269 correction and both show that it is still a reasonably competitive model even against those 

270 with more parameters.

271 The relatively similar fit of several commonly used distributions emphasizes the challenge 

272 of inferring the processes operating in ecological systems from the form of the abundance 

273 distribution. It is already well established that models based on different processes can 

274 yield equivalent models of the SAD, i.e., they predict distributions of exactly the same form 

275 (Cohen 1968, Boswell and Patil 1971, Pielou 1975, McGill et al. 2007). To the extent that 

276 SADs are determined by random statistical processes, one might expect the observed 

277 distributions to be compatible with a wide variety of different process-based and process-

278 free models (Frank 2009, 2011, Locey and White 2013). Regardless of the underlying 

279 reason that the models performed similarly, our results indicate that the SAD usually does 

280 not contain sufficient information to distinguish among the possible statistical processes---

281 let alone biological processes---with any degree of certainty (Volkov et al. 2005), though it 

282 is possible that this result differs in marine systems (see Connolly et al. 2014). A more 

283 promising way to draw inferences about ecological processes is to evaluate each model's 

284 ability to simultaneously explain multiple macroecological patterns, rather than relying on 

285 a single pattern like the SAD (McGill 2003, McGill et al. 2006, Newman et al. 2014, Xiao et al. 

286 2015). It has also been suggested that examining second-order effects, such as the scale-

287 dependence of macroecological patterns (Blonder et al. 2014) or how the parameters of the 

288 distribution change across gradients (Mac Nally et al. 2014), can provide better inference 

289 about process from these kinds of pattern.
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