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Changes in understory species occurrence
of a secondary broadleaved forest after
mass mortality of oak trees under deer
foraging pressure

Hiroki It6!

'"Hokkaido Research Center, Forestry and Forest Products Research Institute, Toyohira,
Sapporo 305-8687, Japan. Email address:abies.firma@gmail.com

ABSTRACT

The epidemic of mass mortality of oak trees by Japanese oak wilt has affected sec-
ondary deciduous broadleaved forests that have been used as coppices in Japan. The
dieback of oak trees formed gaps in the crown that would be expected to enhance
the regeneration of shade-intolerant pioneer species. However, foraging by sika deer
Cervus nippon has also affected forest vegetation, and the compound effects of both
on forest regeneration should be considered when they simultaneously occur. A field
study was conducted in Kyé6to City, Japan, to investigate how these compound effects
affected the vegetation of the understory layer of these forests. The presence/absence
of seedlings and saplings was observed for 200 quadrats sized 5 m x 5 m for each
species in 1992, before the mass mortality and deer encroachment, and in 2014 after
these effects. A hierarchical Bayesian model was constructed to explain the occur-
rence, survival, and colonization of each species with their responses to the gaps that
were created, expanded, or affected by the mass mortality of Quercus serrata trees.
The species that occurred most frequently in 1992, Eurya japonica, Quercus glauca,
and Cleyera japonica, also had the highest survival probabilities. Deer-unpalatable
species such as Symplocos prunifolia and Triadica sebifera had higher colonization
rates in the gaps, while the deer-palatable species Aucuba japonica had the smallest
survival probability. The gaps thus promoted the colonization of deer-unpalatable
plant species such as Symplocos prunifolia and Triadica sebifera. In the future, such
deer-unpalatable species may dominate gaps that were created, expanded, or affected
by the mass mortality of oak trees.

Keywords: deer-unpalatable plant species, gap, Japanese oak wilt, sika deer, under-
story vegetation

INTRODUCTION

Many coppices have been abandoned for socio-economic reasons, such as the replace-
ment of woody fuels with fossil fuels in Europe (Rackham, 2008; Miillerova et al., 2015;
Svatek and Matula, 2015). This abandonment parallels that of Japan (Suzuki, 2013),
and a considerable number of deciduous oak forests grown from such coppices have
suffered from the mass mortality of oak trees (Kuroda et al., 2012; Nakajima and Ishida,

2014)—Fhis-mass-mertality-has-been caused by Japanese oak wilt (Kuroda et al., 2012).
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The direct cause of the mortality is a pathogenic species of fungus Raffaelea quercivora
Kubono et Shin. Ito, which is carried by the ambrosia beetle Platypus quercivorus
Murayama (Kubono and Ito, 2002; Kinuura and Kobayashi, 2006). In addition, it has
been pointed out that the coppice abandonment is an indirect cause of the epidemic
because the ambrosia beetles reproduce more successfully in large oak stems, which are
more abundant as abandoned oak stems grow up (Kobayashi and Ueda, 2005). There is
an-another possible reason why the abandonment indirectly affected the epidemic: in
the period when coppices were managed, oak stems that died from the wilt were quickly
felled and utilized for fuel or charcoal, and as a result, it prevented outbreaks of the
disease (Ida and Takahashi, 2010).

The mass mortality altered the structures of damaged oak forests. The two major
deciduous oak species in Japan, Quercus crispula Blume and Quercus serrata Murray,
are vulnerable to the pathogenic fungus. Nakajima and Ishida (2014) showed that 80
4 19% (mean =+ standard deviation) stems of Quercus crispula died, while 34 4+ 19 %
stems of Quercus serrata died. Naka (1982) studied an old-growth evergreen forest in
the Kasugayama Forest Reserve in Nara City, which is located about 40 km south of the
study site, and showed that the major gap generator was typhoons, and that the interval;
was 6.57 years with a tree fall rate for overstory trees of 0.84 trees/ha/year, and that the
canopy opening rate was 55.6 m?/ha/year. Though these rates are not directly applicable
to deciduous secondary oak forests, the gaps created by the mortality would not be
negligible for oak-dominated forests. If Quercus serrata covers 30% of the canopy and
30% of them die, 900 m? / ha of the canopy will become gaps. How such damaged
oak forests are regenerated depends on circumstance sub-canopy trees might grow to
canopy trees in some cases (Ito et al., 2009), and dense floor vegetation such as dwarf
bamboo might inhibit regeneration in other cases (Ito et al., 2011; Saito and Shibata,
2012). In the latter case, the damaged forests may lack a canopy layer for a long time.

For the last several decades,herbivory by overabundant deer populations has neg-
atively affected forest vegetation in Europe and North America (Rooney, 2001; Coté
et al., 2004; Rackham, 2008). This is paralleled in Japan: sika deer (Cervus nippon
Temminck) is one major inhibitor of forest regeneration (Takatsuki, 2009; Suzuki, 2013;
Iijima and Nagaike, 2015). However, little is known about how regeneration proceeds
after mass mortality under deer foraging pressure (Obora et al., 2013). Gap formations
should improve light conditions on the forest floor and promote the regeneration of many
tree species (Suzuki, 2013). However, excessive browsing should inhibit regeneration,
except for unpalatable and browse-tolerant species (Shimoda et al., 1994). Therefore, a
combination of both factors might promote the regeneration of species that are unpalat-
able and/or browse-tolerant to deer. This in turn may alter the species composition of
forests that regenerate from the mass mortality of oak trees over time.

It is important for the management of secondary forests to predict what tree or
shrub species will be recruited in forest stands damaged by the mass mortality of
oak trees and deer impact. In a previous study, Itd (2015) described the changes
in the canopy/sub-canopy and understory layers of a damaged forest by comparing
vegetation before and after mass mortality of oak trees and deer foraging. It was
found that regenerating species were limited to the originally abundant species, such
as Quercus glauca Thunb., Cleyera japonica Thunb., and Eurya japonica Thunb. var.
Japonica, as well as to species unpalatable to deer, such as Symplocos prunifolia Siebold
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et Zucc. and Triadica sebifera (L.) Small. However, the study only described the
changes in species occurrence and failed to estimate the specific probabilities of survival
and colonization. In this study, the previous data from the understory layers were
reanalyzed using a hierarchical Bayesian model that explicitly incorporates probabilities
of ecological processes such as occurrence, survival, and colonization. A hierarchical
model incorporating random species effects also makes it possible to estimate those
probabilities by species, “borrowing strength from the ensemble” (Kéry and Schaub,
2012). These advantages should be of use in predicting which species will dominate
such stands in the future.

MATERIALS AND METHODS

Study site

The field data were collected in the Ginkakuzi-san (or Ginkakuji-san in a different
spelling) National Forest located in Kyoto City, Japan (35.029°N, 135.801°E). The
yearly average temperature from 1981 to 2010 was 15.9°C and the average precipitation
was 1491.3 mm at the Kyd6to Local Meteorological Office. Elevation of the forest was
100-290 m above sea level, and the forest was in the warm temperate zone. The national
forest was protected for its landscape and erosion control, and most of it was situated
in the buffer zone of the UNESCO world heritagg, historic monuments of ancient
Kydto. The fieldwork was conducted with permission under an agreement between
the Ky6to-Osaka District Forest Office and the Forestry and Forest Products Research
Institute.

In the 1930s, most of the forest pras-ecovered-with a mix of pines (Pinus densiflora
Siebold et Zucc.) and broadleaved trees including oak (Quercus serrata). After the 1960s,
many pine trees had died due to the pine wilt disease. Recently, most of the national forest
has been covered with a secondary broadleaved forest consisting of many species such as
evergreen oak Quercus glauca, evergreen subcanopy species Symplocos prunifolia, and
deciduous tree species Ilex macropoda Miq., although conifers (Cryptomeria japonica
(L.f.) D.Don and Chamaecyparis obtusa (Siebold et Zucc.) Endl.) were planted in a
small part of the area (It6, 2007). In 2005, the mass mortality of oaks was first recognized
in the eastern part of Kyodto City, in which the Ginkakuzi-san National Forest is located,
and then the damage expanded (It6, 2015). In addition, damage by sika deer resulting
from browsing and bark-stripping jave been noticeable over the same period. Deer had
been seldom seen in the 1990s, ga-my-ebservation; but by this time inhabited the forest
throughout the year (It6, 2015).

In 1992, a 0.5 ha (100 x 50 m) plot was established on a south-facing slope in
the national forest at an elevation of 140-195 m. The average slope inclination was
about 30°and the surface geology was granite. All the stems in the plot were marked
and their diameters at breast height (dbh) were measured in 1993, 1996, 1999, 2002,
2005, and 2014. Mainly due to the mass mortality of oak trees Quercus serrata, the
basal area in the plot decreased from 43.3 m? /ha in 2005 to 39.5 m? /ha in 2014, while
the number of stems in the plot increased from 1554 to 1645(3108 stems/ha to 3290
stems/ha in stem density). There were 36 Quercus serrata stems in the plot in 2005,
and 21 of them died by 2014. These trees were most likely killed by Japanese oak wilt.
This affected the forest structure in the plot via the formation of new canopy gaps or
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120 _jexpanding existing gaps. In some area, the mortality indirectly affected the forest floor
130 via treatments of dead stems by the forest office (cutting down the stems, cutting the
131 fallen stems into pieces, and disinfecting them) (It6, 2015). On the other hand, none of
132 the evergreen oaks Quercus glauca died from the disease, though some were attacked
133 by the ambrosia beetles, being less vulnerable than Quercus serrata (Murata et al., 2005,
13« 2009). In the understory layer, Quercus glauca and some evergreen shrub species such
135 as Eurya japonica and Cleyera japonica were frequently observed. Overall changes in
136 the species composition of the site from 1990s to 2010s were reported in Itd (2015).

127 Data collection

13s The plot was divided into 200 quadrats sized 5 m X 5 m. In 1992, all woody plant
139 seedling or saplings (age > 1 year and dbh < 3 cm) were tallied by species. The plots
120 were resampled in 2014. In 2014, each quadrat was classified into inside or outside of
141 the gapss-whieh-were formed by the death of oak trees; or had-been gaps pteast-sinee
122 2005-and were affected in addition by fallen dead oak trees. Quadrats on the boundary
113 were visually classified; if an open area which was created, expanded, or affected by
12« the mass morality and occupied most of the quadrat, the quadrat was classified as a gap
15 quadrat. Twenty of 200 quadrats were classified as gaps created or affected by oak death
s (Fig. 1). The size of the largest gap was approximately 250 m? consisting of 10 adjacent
147 quadrats.

0+ Quadrat
. Gap
10 - . Non-gap

20~ Elevation (m)
> 190
30 - 180
170
40~ 160
150
50 - | . . ! . 140

0 25 50 75 100
X

Figure 1. Map showing the study site.

Gap denotes the gap quadrats created, expanded, or affected by the mass mortality of
oak trees. Non-gap denotes the rest of the quadrats. Units of the X and Y axes are in
meters.

148 In 1992, 55 species were observed and 58 speciesj in 2014 (Itd, 2015), gnd 75

149 Species were-observed in total-combining-datafrom both years. The praximum-number
w0 of-quadrats in 1992 m—which-a-given-speeies-oceurred-wag for Quercus glauca and

15t Eurya japonica, both of which were observed in 184 of 200 quadrats. The mean and
152 median numbers of quadrats in 1992 in which a given species occurred were 19.5 and 4,
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respectively, excluding species which were not peeurred in 1992 in-any-quadrats. On the
other hand, the maximum in 2014 was 193 for Quercus glauca. The mean and median

were 15.6 and 5, respectively, excluding species which prere-not-oceunrred in 2014 in any
quadrats.

Data analysis was conducted for 42 of the species that were observed in more than 5
quadrats over both sample years (200 quadrats X 2 observations).

Statistical Modeling
A hierarchical Bayesian model was constructed to determine how species were affected
by the recent environmental changes in the forest.

The presence/absence (presence = 1, absence = 0) of species i in quadrat j in the
year 1992 (yy;;) and 2014 (y,;;) was assumed to follow the Bernoulli distribution given
the occurrence probability yq;; and y;;, as follows,

y1ij ~ Bernoulli(y;;)
yaij ~ Bernoulli(y;;).

To be exact, the “presence/absence” was “detection/nondetection” (Dorazio et al.,
2006; Kéry and Schaub, 2012). It has been pointed out that detection probability should
be considered to correctly estimate population properties such as the occurrence rate
or survival rate, even if the observed objects are plants (Kéry, 2004; Chen et al., 2009,
2013). The present study hadregrettably; only one observation for each survey year.
However, the quadrat size was rather small (5 m x 5 m) and the whole of each quadrat
was explored, so I expected that the detection probability should be near to one and
therefore “detection/nondetection” was regarded as “presence/absence” in this study.
Chen et al. (2009) showed that the detection probability asymptotically approaches one
with larger survey efforts.

The parameter of occurrence in 1992, y;;, was formulated as follows:

logit(y1;;) = Bo + €oi + 7,

where 3, denotes an intercept or overall mean of y; on the logit scale, and &,; denotes
the random species effect on the intercept of species i. The parameter r; denotes a
spatially autocorrelated random effect of quadrat ;.

The parameter of occurrence in 2014, y»;;, was formulated as follows:

Woii = y1ij9ij + (1 —y1ij) %)

where parameter ¢;; denotes the ‘survival’ probability that species i was present in
quadrat j in 1992 and still present in 2014. The parameter ¥;; denotes the ‘colonization’
probability that species i was absent in quadrat j in 1992 but present in 2014.

The parameters of survival ¢;; and colonization ¥;; were formulated as follows:

logit(i;) = Bs + &i + (Bsg + &s0i) 8
logit(yij) = Be + &ci + (Beg + €cei) g
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where the parameters s and . are intercepts or overall means of ¢ and y on the
logit scale, respectively. The parameters &; and &:; are random species effects on the
intercepts, By and S, are coefficients of the gap predictor g; (0: non-gap quadrats, 1:
gap quadrats affected by oak mortality), and &g; and &; are random species effects on
the coefficients.

Priors of the random species effects were defined hierarchically; hyperparameters,
Oy, Os, Osg, Oc, and Ocg, scaled the distribution of &, &;, &g, &, and &g;, respectively,
as follows:

€i ~ Normal (0, 62)T(—10, 10),

where Normal(0,6%)T(—10,10) denote a normal distribution truncated petween -10
and 10; the truncation was incorporated to stabilize the logit scale parameters (Kéry and
Schaub, 2012). Priors of the parameters o, Bop, Bos, Bs> Bsg> Be, and Bee were defined as
Normal(0, 104)T(—10, 10). The prior of the spatial effect r; was defined as an intrinsic
conditional autoregressive model as follows:

2
Wikl O,

rj|r_j~Normal | } == — |
kzj Wit Wit

where r_; denote the values of r except the quadrat j, a variable w j; was defined to be 1
if quadrat j and quadrat k are adjacent, and 0 if not, and w; was defined to be }; w .
The parameter 6> denotes a variance of the random effect.

Presence/absence data for 42 species, which were observed in more than 5 quadrats
in total over two surveys, 1992 and 2014, were used for the parameter estimation.
To estimate the posterior distribution for each parameter, the Markov chain Monte
Carlo (MCMC) method was adopted; this simulation method generates Markov chains
drawing values from the target posterior distributions if the chains converge to stationary
distributions (Gelman et al., 2013). Four parallel chains were generated in this study,
and each of them had 13,000 iterations while the first 3,000 iterations were dropped as
burn-in. The MCMC sample was taken from the three chains with 10 thinning intervals,
so that the sample size was 4,000. OpenBUGS 3.2.3 (Lunn et al., 2009) was used for
the computation. The BUGS code is available in List S2. To check the convergence,
Gelman-Rubin statistics (R) were calculated (Gelman and Rubin, 1992; Brooks and
Gelman, 1998; Gelman et al., 2013). When the Markov chains successfully converge,
the value of R becomes nearly one. If the value of R is no larger than 1.1, the chains are
usually regarded as converged (Kéry and Schaub, 2012).

RESULTS

For each parameter, the values of R were no larger than 1.1 for-each-parameter, so that
the Markov chains seemed to reach convergence. However, some random species effects
on coefficients of gaps had rather wide posteriors as mentioned later. Those parameters
might lack enough information to obtain satisfactory estimates.
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Posterior mean, median, and 95% CI (Credible Interval) of the overall occurrence
probability in 1992 (probability that a species was present in a quadrat in 1992), f3,,
was estimated to be -3.25 for the posterior mean, -3.25 for the median, and -3.99 to
-2.54 for the 95% CI (Table 1). The value -3.25 on the logit scale is equivalent to 0.037
(= 1/(1+exp(3.25))) on the probability scale. Therefore, a species was expected to
occur in 3.7% of quadrats on average in 1992. In the same manner, the 95% CI was
1.8-7.3% on the probability scale.

The overall survival probability (probability that a species was present in a quadrat
in 1992 and still present in the same quadrat in 2014), B, was estimated to be -2.60 for
the posterior mean, -2.57 for the median, and -4.11 to -1.44 for the 95% CI. The mean
value was equivalent to a probability that a species occurring in 1992 surviving in the
same quadrat in 2014 was expected to be 6.9%, and the 95% CI was 1.6-19.2%.

On the other hand, the overall colonization probability (probability that a species was
absent in a quadrat in 1992 but present in the same quadrat in 2014), 8., was estimated to
be -3.81 for the posterior mean, -3.81 for the median, and -4.45 to -3.18 for the 95% CI.
The value -3.81 was equivalent to 0.022 on the probability scale; so that the probability
that a species which was absent in a quadrat in 1992 had colonized into the quadrat in
2014 was expected to be 2.2%, and the 95% CI was 1.2-4.0%.

Posterior mean of coefficients of the gap pn the survival B, and colonization .,
were -0.17 and 1.51, respectively, and B, did not include zero in the 95% CI (0.86—
2.08), while S, included zero in the 90% CI (-1.27-0.81). The mean value 1.51
of B meant that gaps impreved-the average colonization probability; 2.2% to 9.1%
(=1/(1+exp(3.81 —1.51)) on average.

Table 1. Parameter estimates (posterior mean, standard deviation (SD), and 2.5%, 5%,
50%, 95%, and 97.5% quantiles) other than random effects.

Positive values of the intercepts (B,, fBs, and ;) on the logit scale mean that the
corresponding probabilities are larger than 0.5, and vice versa. Positive values of the
coefficients of gap (B and B,) mean that the gap increases the corresponding
probabilities. Parameters 6, and below are standard deviations of the corresponding
predictors.

Mean SD 25% 5% 50% 95% 97.5%

Bo -325 037 -399 -3.88 -325 -2.65 -2.54
Bs -2.60 0.67 -4.11 -3.81 -257 -1.61 -1.44
Bs: -0.17 0.65 -1.54 -127 -0.14 0.81 1.04
B. -381 032 -445 -433 -3.81 -328 -3.18
B 151 031 086 098 153 1.99 2.08
o, 227 030 176 182 224 2381 2.95
os 289 057 197 207 284 3091 4.13
o, 151 034 019 031 140 3.07 3.48
o 189 028 143 148 186 240 2.51
o 135 032 081 0388 132 193 2.07
or 044 0.10 027 029 044 0.60 0.65

Random species effects on occurrence probability in 1992 (&,) are shown in Fig. 2.
Eurya japonica and Quercus glauca had the largest value, followed by Cleyera japonica,
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Aucuba japonica Thunb. var. japonica, llex crenata Thunb., Photinia glabra (Thunb.)
Maxim., and so on. The posterior mean for Eurya japonica and Quercus glauca was
5.71, and this meant that the occurrence probability of the species was-tmproved, from
an overall mean of 3.7% t0 92.1% (= 1/(1 +exp(3.25 —5.71))). The 95% CI of the
random species effect for Eurya japonica, 4.85-6.62, corresponded to 83.2-96.7% en
the occurrence probability for the species. In the same manner, the expected occurrence
probabilities were 59.1% for Cleyera japonica, 53.2% for Aucuba japonica, 34.8% for
llex crenata, and 31.6% for Photinia glabra. On the other hand, Carpinus tschonoskii
Maxim., Celtis sinensis, Zanthoxylum ailanthoides Siebold et Zucc., and Triadica
sebifera had the smallest values because these species were not detected in 1992 (Fig. 2).
The posterior mean for Carpinus tschonoskii was -3.21 on the logit scale and the expected
occurrence was 0.2% (= 1/(1 +exp(3.25+3.21))) on the probability scale. The 95%
CI of the species, -6.08 to -1.11, corresponded to an occurrence probability of 0.0-1.3%
on the probability scale.

Random species effects on the intercept of survival from 1992 to 2014 (&) are shown
in Fig. 3A. Quercus glauca had the largest value, and Cleyera japonica, Eurya japonica,
and Camellia japonica L. followed. The posterior mean of Quercus glauca was 5.93,
and the expected survival probability was 96.5% (= 1/(1 +exp(2.60 —5.93))) without
the gap effects. The expected probabilities were 88.3% for Cleyera japonica, 76.7% for
Eurya japonica, and 55.7% for Camellia japonica. On the other hand, the posterior of
Aucuba japonica was less than zero within 95% CI (Fig. 3A). The posterior mean of
the random effect was -3.80 and the expected value of survival probability was 0.2%.
The posterior mean of Vaccinium bracteatum Thunb. was the second smallest and the
value was -3.03; the expected survival probability was 0.4%. Species without surviving
individuals had nearly zero means and wider ClIs, such as for Zanthoxylum ailanthoides.
Random species effects on the survival coefficients of the gap predictor were rather
small as absolute values and included zero in their 90% CI for all species (Fig. 3B).

Random species effects on intercepts of colonization from 1992 to 2014 were the
largest in Quercus glauca, followed by Eurya japonica, Cleyera japonica, Symplocos
prunifolia, Photinia glabra, and so on (Fig. 4A). The posterior mean of the random
effect for Quercus glauca was 6.09 and the expected colonization probability without
the gap effects was 90.7%. In the same manner, the expected colonization probabilities
for Cleyera japonica, Symplocos prunifolia, and Photinia glabra were 28.3%, 26.7%,
and 14.1%, respectively.

Random species effects on the colonization coefficient of the gap predictor were the
largest for Callicarpa mollis Siebold et Zucc., followed by Zanthoxylum ailanthoides,
Carpinus tschonoskii, Triadica sebifera, and so on. They were the smallest in Cleyera
Japonica. The posterior mean of the random effect for Callicarpa mollis was 2.32, so that
the expected colonization probability for the species in the gap quadrats was estimated
to be 25.9% (= 1/(1+exp(3.81 — 1.51 + 1.07 — 2.32))), as the posterior mean of the
random species effect on the colonization for the species was -1.07. Some species such
as Quercus glauca had wider CI in their posteriors. This might be because there was
little information for such species due to the small number of colonizers within the gaps
(Fig. 4B).

Complete estimates of random effects are available in Table S3.
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Species

Eurya japonica=
Quercus glauca+
Cleyera japonica -
Aucuba japonica
llex crenata
Photinia glabra <
Ligustrum japonicum
Symplocos prunifolia
Vaccinium bracteatum <
Cryptomeria japonica =
Rhus trichocarpa <
Rubus buergeri+
Lindera umbellata -
llex pedunculosa
Camellia japonica
Gamblea innovans -
Cinnamomum japonicum
Osmanthus heterophyllum -
Trachycarpus fortunei
Carpinus laxiflora
Rhododendron macrosepalum <
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denote medians. Larger positive values in the posterior indicate that the species will be
more likely to be present in 1992 than the overall mean, and negative values indicate

that the species will be less likely.
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Figure 3. Random species effects on survival.
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medians. Larger positive values in the posterior indicate that a species that had been
present in a quadrat in 1992 will be more likely to be present in the same quadrat in
2014 than the overall mean, and negative values indicate that the species will be less

likely.
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Figure 4. Random species effects on colonization.
(A) &, enthe intercept and (B) &, on the coefficient of the gap, Thin lines denote 95%
credible intervals (CI), thick lines denote 90% CI, and circles denote medians. Larger
positive values in the posterior indicate that species that had been absent in a quadrat in
1992 will be more likely to be present in the same quadrat in 2014 than the overall
mean, and negative values indicate that the species will be less likely.
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xs DISCUSSION

2e7  The mean probability of overall occurrence in 1992 for-a-single species was aepee@
288 to be only 3.7% for each quadrat. This reflects the fact that many species occurred

289 only in a small fraction of the quadrats. The most frequent species in 1992 were
200 all evergreen tree or shrub species such as Eurya japonica, Quercus glauca, Cleyera
201 japonica, Aucuba japonica, llex crenata, and Photinia glabra; the expected occurrence
20 probabilities of these species were all larger than 30%. Species with large values of
203 random species effects concerning occurrence corresponded to these species as a matter
20« Of course (Fig. 2). On the other hand, the leastpccurring species were deciduous trees
295 or shrubs such as Carpinus tschonokii, Zanthoxylum ailanthoides, Celtis sinensis Pers.,
206 and Triadica sebifera; these species were not detected in the quadrats in 1992. The
207 canopy of the forest was almost closed in 1992, so that shade-tolerant evergreen tree or
208 shrub species dominated the understory layer and deciduous early-successional species
200 infrequently occurred.

300 Overall survival and colonization probability efaspecies was expected to be 6.9%
st and 2.2%, respectively, on average. This may seem small, but some species have large
sz random effect values allowing them to survive or colonize at high probabilities. The
a3 average colonization probability was estimated to be-+mproved in the gap quadrats. This
s04 was in accord with the preceding study showing that gap creation increased floor species
a5 richness even under deer pressure (Suzuki, 2013).

306 The species that had the highest survival probability in the non-gap quadrats was
307 Quercus glauca (Fig. 3A); the mean probability of survival was expected to be 96.5%.
ss  Quercus glauca produces many sprouts (Cai, 2000), and the sprouts may survive when
a9 the main stems die. This trait might contribute the high survival probability. Cleyera
st0 japonica, Eurya japonica, and Camellia japonica followed Quercus glauca in their
a1t survival probabilities. These species, including Quercus glauca, were all evergreen
sz broadleaved species that could survive under a closed canopy, as shown by their oc-
s13 currence. In contrast, Aucuba japonica, a species of evergreen shrub, had the smallest
a4 survival probability at 0.2%. This species was found in 107 of 200 quadrats in 1992, but
a5 never found in 2014. Aucuba japonica is known to be a preferred food for sika deer and
sie 1s vulnerable to deer browsing (Hashimoto and Fujiki, 2014). The encroachment of deer
a7 likely explains its small survival probability. The posterior mean of the random effect
sis was the second smallest in Vaccinium bracteatum. There is relatively little information
s19 on the palatability of Vaccinium bracteatum for sika deer, and some reports refer to it
s20 as a food plant, while others refer to it as unpalatable (Nakajima, 1929; Kabaya, 1988;
a2t Takatsuki, 1989; Hashimoto and Fujiki, 2014). The present results suggest that the
a2 species is vulnerable to deer impacts. The random species effects on the survival coeffi-
s23  cients of the gap predictor were not so clear (Fig 3B. This may due fo the small sample
324 size of the gap quadrats-te-seme-extent, and due to the small number of light-demanding
325 species occurring in 1992-te-seme-extent.

326 The colonization probability in the non-gap quadrat was highest in Quercus glauca,
327 and evergreen shrub or sub-canopy trees followed (Fig. 4A). Among them, Quercus
a8 glauca had an especially high colonization probability; the expected value was 90.7%.
320 This might be because numerous seeds of this species are dispersed in the forest due
a0 to the abundance of mother trees (Itd, 2007; 1t6, 2015), and it could persist at the
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seedling stage (Itd, 2009). On the other hand, the four species whose colonization
probabilities were largest in the gaps are all shade-intolerant (Shimoda et al., 1994;
Shibata and Nakashizuka, 1995). In addition to the four species, Symplocos prunifolia
is also considered to be a shade-intolerant species though it is an evergreen (Fujii, 1994).
However, Symplocos prunifolia and Triadica sebifera are unpalatable plants for sika deer
(Shimoda et al., 1994; Hashimoto and Fujiki, 2014). Triadica sebifera is an alien species
in Japan. The species is unpalatable for sika deer (Shimoda et al., 1994; Hashimoto
and Fujiki, 2014), and as of 2002, it was increasing on Mt. Kasugayama (Maesako
et al., 2007). Shimoda et al. (1994) studied the deer effects on pioneer species on Mt.
Kasugayama, which-was-inhabited-by-many-dees; the authors found that pioneer species
including Zanthoxylum ailanthoides and Callicarpa mollis emerged in gaps but rarely
survived or matured due to deer foraging pressure.

In the study site, few large stems (height > 50 cm) of Zanthoxylum ailanthoides,
Callicarpa mollis, and Carpinus tschonoskii were found, though a greater number of
those of Quercus glauca, Cleyera japonica, and Eurya japonica were found in the
quadrats that were not affected by the mass oak mortality (Itd, 2015). The latter species
are evergreen trees or shrubs, and they had been dominant at least since 1992. In
addition to these species, large plants of Symplocos prunifolia and Triadica sebifera
were found in the gap quadrats created, expanded, or affected by the mass mortality (Itd,
2015), and the high colonization rate of these species in the gaps might contribute to
their regeneration. Suzuki (2013) pointed out that succession after the abandonment of
coppices in which there was gap creation under deer herbivory pressure would grake-the
vegetation-be-dominated by shade-tolerant and herbivory-tolerant species. In the present
study, the two shade-intolerant and deer-unpalatable species frequently colonized into
the gap quadrats and grew up. The difference be due to the abundance of the two
species or overall differences in the Vegetatior%—aj,

Obora et al. (2013) studied the effect of deer herbivory on forest regeneration after
the mass mortality of oak trees and deseribed that only some ffern species that-were
deer-unpalatable increased under deer herbivory, while many species including trees
increased within enclosure@)bora et al. (2013), however, also mentioned that the
tree species were suppressed by shrub and grass species even in the enclosures. This
suggests the difficulty of forests regenerating from damage caused by the mass mortality
of oak trees. A similar issue was also reported in (It0 et al., 2011), in which-they-studied
a forest that-had-been damaged-by mass mortality and whose floor was dominated by
dwarf bamboo. In the present study, gsuch shrub or grass species that-dominated-the-shrab
layer-or-Hloor-were-notfound, but a deer-unpalatable fern, Hypolepis punctata (Thunb.)
Mett. ex Kuhn, eould-potentially-dominate-the-floer-beeause-it partially colonized the

gap quadrats (Ito, 2015). Such deer-unpalatable ferns and/or herbaceous species may

suppress regeneration of tree species, in-which-ease-they colonize jnto-the-gaps-and
dominate-the-floor:

CONCLUSION

Gaps that were created, expanded, or affected by the mass mortality of oak trees might
be-benefieial-for-the colonization of pioneer species. Shade-intolerant species such as
Callicarpa mollis, Zanthoxylum ailanthoides, Carpinus tschonoskii, Triadica sebifera,
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and Symplocos prunifolia were estimated to more frequently colonize the gaps. Among
them, deer-unpalatable Symplocos prunifolia and Triadica sebifera may be more likely
to survive or mature under foraging pressure of deer, while deer-palatable species such
as Callicarpa mollis and Zanthoxylum ailanthoides may be unlikely to grow under such
pressure. This may change the species composition in regenerating stands.

In the future, deer-unpalatable species such as Symplocos prunifolia and Triadica
sebifera may dominate the understory within the gaps that are created, expanded, or
affected by the mass mortality of oak trees rather than the current dominant species such
as Eurya japonica and Quercus glauca, while these current dominant species may retain
their dominance within unaffected areas owing to their abundance and shade-tolerance
under the current magnitude of deer pressure.
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