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We examined RNA-Seq data on 211 biological samples from 24 different Arabidopsis
experiments carried out by different labs. We grouped the samples according to tissue
types, and in each of the groups, we identified genes that are stably expressed across
biological samples, treatment conditions, and experiments. We fit a Poisson log-linear
mixed-effect model to the read counts for each gene and decomposed the total variance
into between-sample, between-treatment and between-experiment variance components.
Identifying stably expressed genes is useful for count normalization and differential
expression analysis. The variance component analysis that we explore here is a first step
towards understanding the sources and nature of the RNA-Seq count variation. When using
a numerical measure to identify stably expressed genes, the outcome depends on multiple
factors: the background sample set and the reference gene set used for count
normalization, the technology used for measuring gene expression, and the specific
numerical stability measure used. Since differential expression (DE) is measured by
relative frequencies, we argue that DE is a relative concept. We advocate using an explicit
reference gene set for count normalization to improve interpretability of DE results, and
recommend using a common reference gene set when analyzing multiple RNA-Seq
experiments to avoid potential inconsistent conclusions.
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ABSTRACT11

We examined RNA-Seq data on 211 biological samples from 24 different Arabidopsis experiments
carried out by different labs. We grouped the samples according to tissue types, and in each of the
groups, we identified genes that are stably expressed across biological samples, treatment conditions,
and experiments. We fit a Poisson log-linear mixed-effect model to the read counts for each gene
and decomposed the total variance into between-sample, between-treatment and between-experiment
variance components. Identifying stably expressed genes is useful for count normalization and differential
expression analysis. The variance component analysis that we explore here is a first step towards
understanding the sources and nature of the RNA-Seq count variation. When using a numerical measure
to identify stably expressed genes, the outcome depends on multiple factors: the background sample
set and the reference gene set used for count normalization, the technology used for measuring gene
expression, and the specific numerical stability measure used. Since differential expression (DE) is
measured by relative frequencies, we argue that DE is a relative concept. We advocate using an explicit
reference gene set for count normalization to improve interpretability of DE results, and recommend
using a common reference gene set when analyzing multiple RNA-Seq experiments to avoid potential
inconsistent conclusions.
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1 INTRODUCTION28

RNA sequencing (RNA-Seq) has become the technology of choice for transcriptome profiling over the29

last few years. The exponential growth in RNA-Seq studies have produced a large amount of Arabidopsis30

thaliana (Arabidopsis) data under a variety of experimental/environmental conditions. It is only natural to31

begin exploring how the large amount of existing data sets can help the analysis of future data. In this32

paper, we discuss identifying stably expressed genes from multiple existing RNA-Seq data sets based on33

a numerical measure of stability. We envision that such identified stably expressed genes could be used as34

a reference set or prior information for count normalization and differential expression (DE) analysis of35

future RNA-Seq data sets obtained from similar or comparable experiments. We also fit a random-effect36

model to the read counts for each gene and decompose the total variance into between-sample, between-37

treatment and between-experiment variance components. The variance component analysis is a first step38

towards understanding the sources and nature of the RNA-Seq count variation. To illustrate our methods,39

we examined RNA-Seq data on 211 Arabidopsis samples from 24 different experiments carried out by40

different labs and identified genes that were stably expressed across biological samples, experimental or41

environmental conditions, and experiments (labs).42

A reference set of stably-expressed genes will be useful for count normalization. A key task of43

RNA-Seq analysis is to detect DE genes under various experimental or environmental conditions. Count44

normalization is needed to adjust for differences in sequencing depths or library sizes (total numbers of45

mapped reads for each biological sample) due to chance variation in sample preparation. In DE analysis,46
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gene expression levels are often estimated from relative read frequencies. For this reason, normalization47

is also needed to account for the fact that non-differentially expressing genes may exhibit an apparent48

reduction or increase in relative read frequencies due to the respective increased or decreased relative read49

frequencies of truly differentially expressing genes. Many existing normalization methods, such as the50

trimmed mean of M-values normalization method (TMM) (Robinson and Oshlack, 2010) and Anders51

and Huber’s normalization (Anders and Huber, 2010), assume that the majority of the genes within an52

experiment are not DE, and examine the sample distribution of the fold changes between samples. If the53

experiment condition can affect expression levels of more than half of the genes, many of the existing54

normalization methods may be unreliable (Lovén et al., 2012; Wu et al., 2013). This difficulty could55

be alleviated if one could identify a set of stably expressed genes whose expression levels are known56

or expected to not vary much under different experimental conditions. Our idea is to identify such a57

reference set based on a large number of existing data sets.58

Our basic intuition is that a numerical quantification of expression stability—which typically measures59

certain aspects of RNA-Seq count variation—can be more reliably estimated by using more data sets.60

There is, however, a caveat to this idea: as pointed out by Fernandes et al. (2008) and Hruz et al. (2011),61

universally stably expressed genes may not exist. Hruz et al. showed that a subset of stably expressed62

genes from a specific biological context may have more variability than other genes if examined across63

a broader range of samples and conditions. Many studies have shown that stably expressed genes are64

subject to change from one experiment to another due to different experimental protocols, different tissue65

types, or other varying conditions (Hong et al., 2010; Reid et al., 2006). The top 100 stably expressed66

genes in the Arabidopsis developmental series of Czechowski et al. (2005) shared only 3 genes with the67

top 50 stably expressed genes identified from Arabidopsis seed samples by Dekkers et al. (2012). In this68

study, we try to balance generality and specificity by identifying different reference gene sets for different69

tissue types of Arabidopsis.70

We can also consider that when a normalization method is applied to a single data set, it effectively71

specifies an implicit reference set of stably expressed genes (those genes that have the least variation72

after normalization). From this perspective, we can view commonly used normalization techniques as73

using an internally identified reference set of genes. In contrast, what we are proposing is that one could74

alternatively identify a reference set externally by looking at past data sets. The internally and externally75

identified reference gene sets will provide different contexts for the DE analysis: in other words, one can76

choose to answer different scientific questions by using different reference sets. In any case, we advocate77

making the reference set explicit during a DE analysis and using a common reference set when analyzing78

multiple datasets.79

We want to clarify that having stable gene expression is not equivalent to maintaining a stable biological80

function. Often times, we may not understand the biological functions of genes with numerically stable81

expression measures. From an operational point of view, however, numerical stability is more tractable.82

In the pre-genomic era, the so-called “house-keeping genes" were often considered to be candidate83

reference genes for normalization (Andersen et al., 2004; Bustin, 2002). House-keeping genes are84

typically constitutive genes that maintain basic cellular function, and therefore are expected to express85

at relatively constant levels in non-pathological situations. However, many studies have shown that86

house-keeping genes are not necessarily stably expressed according to numerical measures (a review87

can be found in Huggett et al. (2005) and reference therein). For example, in the microarray analysis88

of Arabidopsis, Czechowski et al. showed that traditional house-keeping genes such as ACT2, TUB6,89

EF-1α are not stably expressed, and thus not good reference genes for normalization. Spike-in genes have90

also been considered as reference genes for normalization, but Risso et al. (2014) showed that spike-in91

genes are not necessarily stably expressed according numerical measures either.92

In this paper, we identify stably expressed genes from RNA-Seq data sets based on a numerical93

measure—the sum of three variance components estimated from a mixed-effect model. For microarray94

data, there have been many efforts to numerically find stably expressed genes by quantifying the variation95

of measured expression levels across a large number of microarray data sets. For example, Andersen96

et al. (2004) used a linear mixed model to estimate the between-group and within-group variances from97

expression profiles of microarray experiments, and then quantified expression stability by combining98

the two variance components using a Bayesian formulation. Czechowski et al. measured the expression99

stability of each gene using the coefficient of variation (CV). Genes with lower CVs are considered more100

stably expressed. By investigating 721 arrays under 323 conditions throughout development, Czechowski101
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Figure 1. The numbers and overlap of the genes in the three groups of Abrabidopsis samples after
removing genes with low mean counts.

et al. suggested stably expressed (reference) genes under different experimental conditions for Arabidopsis.102

Stamova et al. (2009), Dekkers et al., Gur-Dedeoglu et al. (2009), and Frericks and Esser (2008) screened103

a large number of microarray data sets to identify stably expressed genes in human blood, Arabidopsis104

seed, breast tumor tissues, and mice respectively. Validation experiments (Czechowski et al., 2005;105

Dekkers et al., 2012; Huggett et al., 2005; Stamova et al., 2009) showed that these genes are more stably106

expressed than traditional house-keeping genes.107

Our vision is that identifying stably expressed genes is the first step towards integrative analysis of108

multiple RNA-Seq experiments. It will help to answer fundamental questions related to comparability,109

reproducibility and replicability of RNA-Seq experiments.110

2 MATERIALS & METHODS111

In Section 2.1, we describe the steps for collecting and processing RNA-Seq data sets from Arabidopsis112

experiments. In Section 2.2, we discuss count normalization methods and how to apply them to a subset113

of stably expressed genes. In Section 2.3, we introduce the generalized linear mixed model (GLMM,114

McCulloch and Neuhaus 2001) for estimating three variance components from RNA-Seq data: the115

between-sample, between-treatment and between-experiment variances. We define the total variance116

measure for expression stability as the sum of estimated variance components. In Section 2.4, we review117

the CV and M-value measures for gene expression stability.118

2.1 RNA-Seq data collection and processing119

2.1.1 Overview of the RNA-Seq data sets120

We examined RNA-Seq data from 49 Arabidopsis experiments stored on the NCBI GEO repository (see121

more details below). After screening, we retained data from 211 biological samples in 24 experiments.122

To illustrate our methods for finding stably expressed genes, we divided the experiments into three123

groups: the seedling group contains 60 Arabidopsis seedling samples from 9 experiments; the leaf group124

contains 60 Arabidopsis leaf samples from 5 experiments; the multi-tissue group contains 91 samples from125

10 experiments on multiple tissue types (shoot apical, root tip, primary root, inflorescences and siliques,126

hypocotyl, flower, carpels, aerial tissue, epidermis, seed). Table 1 summarizes the basic information about127

the three groups (see Supplemental Table S1 for more details).

Table 1. Summary statistics for the three groups of Arabidopsis samples.

Group # experiments # treatments # samples # genes
seedling 9 27 60 22207
leaf 5 28 60 20967
multi-tissue 10 39 91 23611

128

To find stably expressed genes in each group, we processed the raw sequencing data and summarized129

the results as count matrices of mapped RNA-Seq short reads (see details below). We removed genes with130
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low mean numbers (less than 3) of mapped read counts for all experiments. Such genes tend to be more131

prone to sequencing noise, less interesting to biologists, and also cause convergence issues when fitting132

statistical models. Many other researchers (such as Anders et al. 2013) recommend removing such genes133

before analyzing RNA-Seq data. The number of remaining genes in each group is also summarized in134

Table 1. Figure 1 shows the numbers and overlap of the genes after this step.135

2.1.2 Details of the data processing steps136

The Gene Expression Omnibus (GEO) repository at National Center for Biotechnology Information137

(NCBI, http://www.ncbi.nlm.nih.gov/) stores raw sequencing data from a large number of138

RNA-Seq experiments. For this study, we restrict our attention to Arabidopsis experiments satisfying the139

following conditions: 1. Ecotype = “Columbia" (we kept only the Columbia samples from experiments140

that compare Columbia samples to other ecotypes); 2. There are at least two treatments and 2 biological141

replicates for each treatment; 3. Library strategy= “RNA-Seq"; 4. Library source = “transcriptomic"; 5.142

Library selection= “cDNA"; 6. Library layout = “Single end"; 7. If there are repeated measurements over143

time, we choose samples from one time point. We screened all the Arabidopsis experiments available144

from the NCBI GEO repository up to May 31, 2015 and downloaded raw RNA-Seq data (Sequence Read145

Archive files) from 49 experiments.146

We assembled our own in-house pipeline to process all the raw RNA-Seq data: align the raw RNA-Seq147

reads to the reference genome and summarize the read counts at the gene level. In the GEO repository,148

the mapped read counts are unavailable for some experiments and the available ones are from different149

processing pipelines. Our pipeline, implemented using the software R (R Core Team, 2015), is summarized150

as follows:151

1. Convert the Sequence Read Archive (SRA) files to FASTQ files using the NCBI SRA Toolkit152

(Leinonen et al. (2010), version 2.3.5-2).153

2. Download the reference genome154

Arabidopsis_thaliana.TAIR10.22.dna.toplevel.fa155

from the Ensembl plants FTP server (http://plants.ensembl.org/info/data/ftp/156

index.html) and build index using build() function from Subread aligner (RSubread, version157

1.16.2, Liao et al. 2013) in the software R (R Core Team, 2015). The index allows fast retrieval of158

the sets of positions in the reference genome where the short reads are more likely to align.159

3. Align short reads in FASTQ files to the Arabidopsis reference genome using the align() function160

from Rsubread.161

4. Summarize the read counts at the gene level using the featureCounts() function from the162

Subread aligner and store the read counts as data matrix. The annotation file163

Arabidopsis_thaliana.TAIR10.22.gtf164

is downloaded from Ensembl plants FTP server. To keep the pipeline simple, we did not count165

multi-mapping or multi-overlapping reads. One potential challenge when dealing with multi-166

mapping reads is that existing methods will assign reads to different gene features proportionally167

and probabilistically, it is unclear to us how to handle the additional uncertainly associated with168

such a process (see, e.g., Anders et al. (2014)). DE analysis of multiple mapped reads often requires169

special method.170

Subread aligner is a recently developed sequence mapping tool that adopts a seed-and-vote paradigm171

to map the RNA-Seq short reads to the genome. It breaks each short read into a series of overlapping172

segments called subreads and uses the subreads to vote on the optimal genome location of the original173

read. The subreads are shorter and can be mapped to the genome much faster. Compared to other aligners174

such as Bowite 2 (Langmead and Salzberg, 2012) or BWA (Li and Durbin, 2009), Subread aligner is both175

faster and more accurate (Liao et al., 2013). We compared results from the above pipeline to results from176

a pipeline described in Anders et al. (2013) over several RNA-Seq experiment data, and Rsubread was177
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more than three times faster and successfully mapped more reads to the reference genome. For researchers178

familiar with R, it also has the advantage that it is completely implemented in R.179

We divided the experiments into three groups as summarized in Table 1. As an additional data quality180

control measure, we keep an experiment only when it has mapping quality (number of successfully181

mapped reads divided by total number of reads) ≥ 50% for all samples. Then within each group, we182

computed an initial set of normalization factors from all samples combined using the method described183

in Section 2.2. An experiment is retained only when the normalization factors of all samples in the184

experiment are between 0.50 and 1.50. If the initial estimated normalization factor is too different from 1185

for a sample, it often indicates that the read counts distribution in the corresponding sample is markedly186

different from the distributions of the rest of the samples. Such samples demand additional attention187

before being incorporated in the studies that we intend to do.188

2.2 Count normalization189

As explained in the introduction, count normalization is needed when analyzing RNA-Seq data to 1)190

adjust for differences in sequencing depths or library sizes; 2) to adjust for the apparent changes in relative191

read frequencies of non-DE genes that occur as a consequence of changes in relative read frequencies of192

truly DE genes.193

For the second type of adjustment, we follow Anders and Huber’s method (Anders and Huber, 2010)
for estimating normalization factors. Let yi j denote the read count for ith gene of the jth sample (m genes
and n samples in total). We first create a pseudo-reference sample where each gene’s expression value is
the geometric mean expression over all real samples for that gene,

yi,0 = (
n

∏
j=1

yi, j)
1/n, i = 1, . . . ,m. (1)

Next we calculate the median fold-change in relative frequency between each sample j and the pseudo-
reference sample,

R′j = median
(

y1, j/N j

y1,0/N0
, . . . ,

ym, j/N j

ym,0/N0

)
, (2)

where N j is the library size for sample j (the sum of RNA-Seq counts mapped to all genes retained in
each sample). Finally, the normalization factor R j for sample j is calculated as

R j =
R′j

(∏n
j=1 R′j)1/n . (3)

Using the estimated normalization factors, the relative frequencies will be computed as yi j/N jR j, which
we will call the normalized relative frequency for gene i in sample j. The assumption made here is that
the median fold change between normalized relative frequencies in two samples should be 1. In other
words, this normalization method assumes that the majority of genes are not DE. The NBPSeq package
(Di et al., 2014) has an inbuilt function for this procedure and it will be used for count normalization
in this paper. With the estimates from equation (3), we see that the median fold change in normalized
relative frequencies between each sample and the pseudo-reference sample will be set to 1:

median
(

y1, j/N jR j

y1,0/N0R0
, . . . ,

ym, j/N jR j

ym,0/N0R0

)
= 1, (4)

where R0 = (∏n
j=1 R′j)

−1/n.194

We can apply equation (2) to a subset of reference genes to estimate normalization factors. In doing195

so, effectively, the median fold change in equation (4) among the reference genes will be set to 1 in each196

sample j. Other normalization methods may make different assumptions than Anders and Huber’s, but197

some assumptions of a similar nature seem unavoidable. For example, the TMM method of Robinson and198

Oshlack (2010) is based on a similar principle: assuming the majority of the genes are not DE. The TMM199

method can be applied to a subset of genes selected based on an initial screening of mean expression level200

and fold changes. In TMM method, one can also specify certain quantile (instead of the median) of the201

fold changes to be 1.202
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In this paper, we will identify stably expressed genes from multiple data sets based on numerical mea-203

sure and use them as reference for estimating normalization factors (from equations (2) and (3)). However,204

to identify the stably expressed genes, we first need a set of initially estimated normalization factors. To205

tackle this circular dependence, we use a one-step iteration method to estimate the normalization factors:206

1. First, we use all the genes to calculate the initial normalization factors;207

2. Then, we fit a GLMM to each gene and estimate the total variance measure, incorporating the initial208

normalization factors as an offset term (see Section 2.3);209

3. Next, we select the top 1000 stably expressed genes based on the total variance measure estimated210

from step 2 above, and use them as reference genes to recalculate the normalization factors.211

In practice, this one-step method seems to be adequate and further iterations will only slightly change the212

set of 1000 stably expressed genes. For example, for the multi-tissue group of experiments, if we were213

to run one more iteration of steps 2 and 3, there would be 946 overlapping genes between the top 1000214

genes from the first iteration and those from the second iteration.215

2.3 Poisson log-linear mixed-effects regression model and the total variance measure216

of expression stability217

We fit a Poisson log-linear mixed-effects regression model to the RNA-Seq counts mapped to each gene
and measure gene expression stability using a total variance measure. Let Yi jkl be the number of RNA-Seq
reads mapped to gene i in sample j from treatment group k in experiment l. We will fit regression models
to each gene separately and suppress subscript i from the model equations. For each gene, we fit a Poisson
log-linear mixed-effects regression model

Yjkl ∼ Poisson(µ jkl), (5)

log(µ jkl) = log(R jklN jkl)+ξ +αl +βk(l)+ ε jkl , (6)

which is a specific type of generalized linear mixed model (GLMM, McCulloch and Neuhaus (2001)).218

In equation (6), N jkl and R jkl are the library size and normalization factor discussed in Section 2.2. We219

will call R jklN jkl the normalized library size. The parameter ξ is a fixed-effect term for the baseline log220

mean of the relative counts (counts divided by the normalized library sizes). The values α , β , and ε221

represent the experiment effect, the treatment effect (nested within each experiment), and the sample222

effect respectively. We view α , β and ε as random effects and assume that they are independent and223

follow normal distributions:224

αl ∼ N(0,σ2
experiment), βk(l) ∼ N(0,σ2

treatment), ε jkl ∼ N(0,σ2
sample), (7)

where σ2
experiment, σ2

treatment and σ2
sample are called variance-components—they quantify the overall vari-225

ances of the corresponding random effect terms.226

The sample effect ε represents the extra-Poisson variation in read counts among samples in the same227

treatment group and σ2
sample plays a similar role as the over-dispersion parameter in a negative binomial228

model (Anders and Huber 2010; Di et al. 2011). The experiment effect, α , accounts for all sources of229

variation at the experiment level, including differences in lab personnel and conditions, day light hours,230

age of the plants, temperature, sequencing platform, and other unidentified sources. The contributions231

from these different experiment-level sources are often difficult to separate statistically. We treat the232

experiment effect α as a random effect because we view the collected experiments as a random sample233

from the pool of all Arabidopsis RNA-Seq experiments. We also treat the treatment effect β as a random234

effect. In a DE test, β is usually considered as a fixed-effect term. Here for evaluation of expression235

stability, we are not interested in the specific levels of the individual β ’s and focus more on the overall236

variation of β under a range of treatment types.237

We define the stability measure as the estimated total variance,

σ̂
2 = σ̂

2
sample + σ̂

2
treatment + σ̂

2
experiment. (8)

The parameters (ξ ,σ2
experiment,σ

2
treatment,σ

2
sample) are estimated using the glmer() function of the R pack-238

age lme4 (Bates et al. (2012), version 1.1.7), which uses a Gaussian-Hermite quadrature to approximate239
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the likelihood function. We rank all the genes according to their values of σ̂2 in increasing order (smallest240

first), and consider highly ranked (e.g., top 1000) genes to be stably expressed.241

Normal models (equation (7)) are commonly assumed for the random effects in the GLMM settings.242

The normality assumption is likely a simplification of reality, yet it is a good starting point and should be243

adequate for finding genes with low total variation—the stably expressed ones.244

2.4 Other stability measures245

The assessment of gene expression stability depends on the specific stability measure used. Czechowski246

et al. and Dekkers et al. used the coefficient of variation (CV) measure, computed as standard deviation247

devided by mean, to find stably expressed genes from microarray data.248

The M-value in geNorm (Vandesompele et al., 2002) is a well-cited measure. For a set of m0 genes,
the M-value measure works as follows: First, the pairwise variation between gene i1 and gene i2 is
calculated as the standard deviation of the log fold changes between their expression levels across all the
n samples:

Vi1,i2 = st.dev
{

log
(

y1,i1
y1,i2

)
, . . . , log

(
yn,i1
yn,i2

)}
.

Next, the M-value for gene i is defined as the average pairwise variation between gene i and all other
genes

Mi =
∑k 6=i Vi,k

m0−1
.

In the Results section, we compare the M-value to the total variance measure on RNA-Seq data from249

the multi-tissue group experiments, and compare the stably expressed genes identified from these two250

measures to those identified from microarray data using the CV measure.251

3 RESULTS252

In Section 3.1, we summarize the stably expressed genes identified from three different experiment groups253

and emphasize that stability is context-dependent. In Section 3.2, we show that traditional house-keeping254

genes are not necessarily stably expressed according to our numerical measure, and that microarray data255

and RNA-Seq data may often give different sets of stably expressed genes. In Section 3.3, we further256

demonstrate that when using a numerical measure to quantify gene expression stability, the outcome will257

depend on the specific numeric measure used. These points should be intuitive, but they are not often258

emphasized in practice. In Section 3.4, we discuss results from our variance component analysis. In259

Section 3.5, we discuss how to use the identified stably expressed genes for count normalization.260

3.1 Stably Expressed Genes261

Using the total variance, σ̂2, from the GLMM (see equation (6) in Section 2.3) as a stability measure, we262

identified stably expressed genes from the three groups of experiments described in Section 2.1: the group263

of seedling experiments, the group of leaf experiments, and the group of experiments on different tissue264

types (see Table 1 for a summary). As we mentioned in the Introduction, absolutely stably expressed265

genes may not exist. Choosing different sample sets as reference allows us to identify stably expressed266

genes for different biological contexts.267

In Supplemental Tables S2–S4 , we summarize the top 1000 most stably expressed genes in each
group. In Fig 2, we provide the histograms of the mean Count Per Million (CPM) for the 1000 most
stably expressed genes identified in each group. For each gene, the CPM is computed as

count×106

normalized library size
(9)

in each sample and the mean is computed over all samples.268

The lists of the top 1000 genes in the three groups share 104 genes in common (see Supplemental Table269

S5 for more details). These genes are stably expressed under a wide range of experimental conditions270

and in different tissue types, and thus may be worth further study. This list of 104 genes has significant271

overlap with the top 100 stably expressed genes identified by Czechowski et al. from a developmental272

series of microarray samples: 9 out of these 104 genes (see Supplemental Table S6 for details),273
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Figure 2. Histograms of the mean CPM (see equation (9)) for the top 1000 most stably expressed genes identified
from the seedling (a), leaf (b) and multi-tissue (c) groups using the total variance measure σ̂2. The mean CPM is
computed over all samples within each respective group. Note that the x and y axis scales differ between
the three plots.

AT1G13320, AT1G54080, AT2G20790, AT2G32170, AT3G10330,274

AT4G24550, AT5G26760, AT5G46210, AT5G46630,275

appeared in the list of the top 100 stably expressed genes out of 14000 genes they examined (the probability276

is 4.8×10−9 for a list of 104 genes random selected from a set of 14000 genes to have an overlap of size277

9 or more with a pre-selected list of 100 genes). In particular, one gene, AT1G13320, is in all but one of278

the ten lists of top 500 stably expressed genes identified by Czechowski et al. for different experimental279

and experimental conditions (the only exception is the set of diurnal series), and is also identified by Hong280

et al. (2010) as a stably expressed gene under all but one of the six experimental conditions they examined.281

This gene is ranked 159 (top 0.7%), 112 (top 0.5%), 513 (top 2.2%) in the three groups we examined,282

respectively, according to our stability measure. This gene is a subunit of protein phosphatase type 2A283

complex and is involved in regulation of phosphorylation and regulation of protein phosphatase type 2A284

activity. It has been used as a reference gene for normalization in many papers (e.g., Baron et al. (2012);285

Bournier et al. (2013); these two papers cited Czechowski et al. as reference).286

3.2 Comparison to house-keeping genes and stably expressed genes identified from287

microarray data288

Czechowski et al. discussed the expression stability of house-keeping genes and showed that the house-289

keeping genes are not stably expressed according to their numerical measure. In particular, they compared290

the expression profiles of five traditional house-keeping genes (AT1G13440, AT3G18780, AT4G05320,291

AT5G12250, AT5G60390) and five genes (AT1G13320, AT5G59830, AT2G28390, AT4G33380 and292

AT4G34270) that they identified as stably expressed according to the CV measure from a developmental293

series of microarray experiments (see Fig.1 of that paper). In Fig.3, we compare the expression profiles of294

these 10 genes from Czechowski et al. to the expression profiles of five genes (AT1G64840, AT1G75420,295

AT2G32910, AT3G51310, AT5G48340) that we randomly selected from the top 100 most stably expressed296

genes identified from the multi-tissue group RNA-Seq data according the total variance σ̂2. For each of297

the 15 genes, Fig.3 shows the expression levels measured in CPM over 91 samples in the eight experiments298

in the multi-tissue group, and Table 2 summarizes the variance components estimated from the GLMM in299

Section 2.3.300

The five house-keeping genes show large total variation with all three variance-components relatively301

large as compared to the other 10 genes. This is consistent with Czechowski’s observation that house-302

keeping genes are not necessarily stably expressed according to a numerical measure. Three of the303

five stably-expressed genes identified by Czechowski are among the top 1000 stably-expressed genes304

according to our stability measure, the total variance σ̂2. Czechowski et al. identified those five genes305

from microarray data and different experiments. It is not too surprising those genes might not be the306

most stable in RNA-Seq experiments: the two technologies differ in many aspects including coverage and307

sensitivity.308
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Figure 3. Expression profiles of 15 genes—as measured by RNA-Seq CPM—across 91 samples in the
multi-tissue group. The 15 genes include (from top to bottom) (a) five stably expressed genes (randomly
selected out of the top 100) identified from the multi-tissue group RNA-Seq data using the total variance
measure σ̂2, (b) five stably expressed identified by Czechowski et al. according to the CV measure from a
developmental series of microarray experiments, and (c) five traditional house-keeping genes (HKG)
discussed in Czechowski et al..
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Table 2. Variance components estimated from the multi-tissue group RNA-Seq data for the 15 genes in
Fig.3 (identified from different sources). Columns 3–5 are the estimated variance components. Column 6
lists the stability ranking according to the total variance σ̂2 in the multi-tissue group.

Source Gene betweeen-
sample

between-
treatment

between-
experiment

Rank

RNA-Seq

AT1G75420 0.0012 0.0014 0.0050 5
AT5G48340 0.0042 0.0019 0.0074 46
AT2G32910 0.0007 0.0019 0.0113 53
AT1G64840 0.0051 0.0008 0.0095 72
AT3G51310 0.0028 0.0025 0.0100 73

Microarray

AT2G28390 0.0034 0.0000 0.0111 62
AT1G13320 0.0036 0.0003 0.0258 513
AT4G34270 0.0063 0.0000 0.0365 1074
AT1G59830 0.0044 0.0039 0.0370 1211
AT4G33380 0.0103 0.0016 0.0747 3404

HKG

AT1G13440 0.0234 0.0058 0.1375 6562
AT5G60390 0.0267 0.0068 0.2270 8867
AT4G05320 0.0123 0.0094 0.2690 9409
AT5G12250 0.0313 0.0128 0.3262 10589
AT3G18780 0.0375 0.0211 1.0313 14951

The house-keeping genes identified in Czechowski et al. tend to have higher CPM. This is partly309

due to a selection preference: the authors there intentionally found genes with higher CPM for use as310

references so that they can be observed in most of the experiments. As we will explain later, we suggest311

using a collection of 100 to 1000 genes as reference gene set for normalization, we did not specifically312

target for genes with high CPM.313

3.3 Factors affecting stability ranking314

The previous two subsections demonstrate that when using a numerical measure to quantify gene expres-315

sion stability, the outcome is dependent on 1) the biological context reflected in the reference sample set316

used and 2) the technology used for measuring gene expression. It should also be intuitive, and we will317

further clarify in the second half of this subsection, that the stability ranking is also dependent on 3) the318

specific numerical measure used. In this section, we will first compare the lists of stably-expressed genes319

identified under different scenarios where one or more of the above three factors differ. We then further320

discuss the subtle roles played by the specific stability measure and the reference gene set by comparing321

the total variance σ̂2 measure from the GLMM (see equation (6)) to the M-value measure used in the322

geNorm method (Vandesompele et al., 2002).323

We look at an additional five lists of stably expressed genes identified under different scenarios and324

examine how each of these five lists overlaps with the the top stably-expressed genes identified from the325

multi-tissue group of RNA-Seq experiments according to the total variance measure σ̂2 (see Section 2.3).326

The five lists are:327

L1: 100 top stably expressed genes from the multi-tissue group according to the M-value in geNorm328

(applied to (count+1)) of Vandesompele et al. ;329

L2: 100 top stably expressed genes from the seedling group according to the total variance σ̂2 from the330

GLMM;331

L3: 100 top stably expressed genes from the leaf group according to the total variance σ̂2 from the332

GLMM;333

L4: 100 stably expressed genes identified from a developmental series of microarray experiments by334

Czechowski et al. using the CV measure (see Section 2.4);335
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L5: 50 stably expressed genes identified by Dekkers et al. from microarray seed experiments using the336

CV measure.337

For each list Li above, we measure how it overlaps with the top stably expressed genes (the reference set)
from the multi-tissue group using the recall percentage

#{Li∩ reference set}
#{Li}

×100, (10)

where #{} denotes the number of elements in the list. In Fig.4, we plot the recall percentage versus the338

number of top stably-expressed genes we selected as reference from the multi-tissue group.339

We have the following observations:340

1. The list L1 is identified from the same set of RNA-Seq experiments as the reference sets, but using341

a different stability measure (M-value in geNorm). This list has significant overlap with the top342

stably-expressed genes identified using the total variance measure: 29 and 98 out of the 100 genes343

from the list L1 are among the top 100 and 1000 most stably-expressed genes, respectively, from344

the multi-tissue group identified using the total variance measure.345

2. The lists L2 and L3 are identified from different sets of RNA-Seq experiments (leaf and seedling346

experiments) using the same stability measure as used for the reference sets. The lists L4 and L5 are347

identified from microarray experiments (a developmental series and a seed group) and using the348

CV measure. The overlapping (recall) percentages are still statistically significant, but much less349

than in the case of L1. This shows that differences in tissue type and in measuring technology both350

influence the expression stability ranking, and to comparable degrees. The lists L3 and L5 have the351

least overlapping percentages with the reference sets. These lists are identified from a leaf group352

and a seed group respectively. Our understanding is that the leaf group and the seed group are more353

biologically homogeneous than the multi-tissue group and thus provide very different biological354

contexts for evaluating expression stability.355
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Figure 4. Comparison of top stably expressed genes identified under different scenarios. We choose the
top 100 stably expressed genes as described in L1–L4, and the top 50 stably expressed genes in L5 (see
Section 3.3). and plot the recall percentages between these lists and the top most stably expressed genes
identified from the multi-tissue group according to the total variance measure. The x-axis is the number
of most stably expressed genes in multi-tissue group according to the total variance measure, and the
y-axis shows the recall percentage (see equation (10)) for each of the five lists.

When applied to the same set of samples, the M-value and total variance measure σ̂2 give similar
expression stability ranking: the rank correlation is 0.97 (see also, observation 1 above). We point out that
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the reason is because the M-value and normalization step needed for computing our total variance measure
have similar fundamental assumptions. The basic principle behind the M-value is that the expression ratio
of two stably-expressed genes should be identical in all samples. In formula, it means that the expression
values of two stably-expressed genes i1, i2 in any two samples j1, j2 should satisfy

yi1, j1
yi2, j1

=
yi1, j2
yi2, j2

. (11)

Our total variance measure σ̂2 is estimated from normalized data. The basic assumption in the normaliza-
tion step is that majority of genes are not DE. In formula, it means for any stably-expressed gene i1, its
expression level as measured by the relative frequency should be stable across all samples,

yi1, j1
S j1

=
yi1, j2
S j2

, (12)

where S j1 to S j2 are the normalized library sizes (i.e., R jN j in equation (6)). This implies for any two
stably-expressed genes i1 and i2

yi1, j1
yi1, j2

=
yi2, j1
yi2, j2

=
S j1
S j2

. (13)

The first equation in (13) is equivalent to equation (11). (In practical application of both methods, the356

stability of any single gene is evaluated by comparing its expression to a set of reference genes. See the357

Method section 2.2 for more details.)358

In practice, the geNorm program (Vandesompele et al., 2002) is frequently used to rank a set of359

reference genes identified from other methods. An iterative elimination procedure is used along with the360

M-value to determine the final ranks of the expression stability: after each iteration, the gene receiving361

the largest M-value will be removed and a new set of M-values will be computed for the remaining genes,362

and the iteration will go on until there are only two genes left. We did not use such an iterative procedure363

in the comparisons above (i.e., we only computed one set of M-values for all genes). We provided some364

comments about the iterative elimination procedure in the Appendix.365

3.4 Sources of variation366

For each gene, the GLMM (equation (6) of section 2.3) allows us to decompose total count variance367

into between-sample, between-treatment and between-experiment variance components. The estimated368

variance components tell us how much each component contributes to the overall count variation. Table369

3 summarizes the percentages—averaged over all genes—of the total variance attributable to each of370

the three components for three groups of RNA-Seq samples (seedling, leaf and multi-tissue groups in371

Section 2.1). Figure 5 shows the histograms of the percentages. Figure 6 shows the stacked bar plot372

of variance components estimated from the multi-tissue group for 20 genes randomly selected from373

the top 1000 stably expressed genes and 20 genes randomly selected from 23611 genes. As expected,374

the between-experiment variance component, on average, explains the largest proportion of the total375

variation. The between-experiment variation is relatively smaller among the leaf samples, indicating376

that the leaf samples are more homogeneous. There is more variation in the relative percentages of total377

variance explained by the between-sample and between-treatment variance components. In principle,378

the between-treatment variation will be greater when there is a higher proportion of DE genes or when379

the samples are more homogeneous. In practice, the between-sample variance depends greatly on what380

samples are used as biological replicates.381

382

3.5 Reference gene set for normalization383

Once we have ranked the genes according to our numerical stability measure (i.e, the total variance384

measure, σ̂2), one application is to use an explicit set of most stably expressed genes as reference genes385

for count normalization. This new approach allows investigators to prescribe a specific biological context386

for evaluating gene stability by choosing the most relevant reference samples and experiments when387

computing the stability measure. For example, the most stably expressed genes identified from the388
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Table 3. Percentages—averaged over all genes—of the total variance attributable to each of the three
variance components (between-sample, between-treatment, between-experiment) for the three groups of
RNA-Seq samples (the seedling, the leaf and the multi-tissue groups).

Source Seedling Leaf Multi-tissue
between-sample 7.2% 16.0% 7.6%
between-treatment 20.1% 28.0% 5.1%
between-experiment 72.6% 56.0% 87.3%

Source between−experiment between−sample between−treatment
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Figure 5. Distributions (over all genes) of the percentages of the total variance attributable to the
between-sample, and between-treatment, or the between-experiment variance component, in the seedling
(a), the leaf (b), and the multi-tissue groups (c).

multi-tissue group and those identified from the seedling group will provide different biological contexts.389

In contrast, existing normalization approaches are often applied to the single data set under study, and390

thus provide a single, narrow context.391

Even under a specific biological context, it is almost impossible to know whether the genes in any392

reference set are absolutely stably expressed, even though commonly used normalization methods often393

enforce some assumptions on the reference gene set: for example, when we use Anders and Huber’s394

method to estimate the normalization factors based on a subset of reference genes, roughly speaking, the395

median fold change among the reference genes will be set to 1 (see Section 2.2 for more details). A subtle396

point we want to make is that since it is impossible to know how well such or similar assumptions on397

DE hold for a reference gene set, we can improve the interpretability of the DE test results by making398

the reference gene set explicit: we can slightly change our perspective and interpret all DE results as399

relative to the reference gene set. For example, a fold change of 2 inferred from the GLMM model can be400

interpreted as the fold change of a gene is 2 times the true (but often unknowable) median fold change of401

the reference genes. When one estimates the normalization factors based on all genes, one is effectively402

specifying an implicit set of genes as a reference set. Our proposal is to make the reference set explicit403

and interpret DE results as relative to the reference gene set.404

405

Interpreting the DE results as relative to an explicit reference set is especially beneficial when one406

wants to compare DE results from an experiment to previously published results. When the interest is in407

comparing different experiments, we recommend using a common reference set. For example, when two408

RNA-Seq data sets are separately normalized with different reference sets, a fold change of two observed409

in one experiment may not be directly comparable to a fold change of two observed in the other. This410

concern can be alleviated by using a common set of reference genes. We use a toy example to illustrate411

this point in Table 4 where we examine the mean counts for 5 genes in two two-group comparison412

experiments. If we use different reference gene sets for count normalization in the two experiments, for413
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Figure 6. Stacked bar plots of the three variance components for selected genes in the multi-tissue group.
(a): 20 genes randomly selected from top 1000 stably expressed genes; (b): 20 genes randomly selected
from all the genes.

example, we use genes 1–3 as reference in experiment 1, but use genes 3–5 as reference in experiment414

2, we may conclude that gene 3 is not DE in either experiment. If we use a common reference gene415

set—either genes 1–3 or genes 3–5—for normalization, however, we will be able to discover, in either416

case, that the DE behavior of gene 3 is different in the two experiments. Note that the DE conclusion in417

both experiments will depend on the reference genes used: if genes 1–3 are used as reference, gene 3 is418

not DE in experiment 1, but will be DE in experiment 2; if genes 3–5 are used as reference, gene 3 will be419

considered DE in experiment 1, but not DE in experiment 2. The point is, in either case, we will notice420

that the DE behavior of gene 3 is different between the two experiments. This information will be lost if421

one uses different reference sets to assess DE in the two experiments.422

In practice, we recommend using the top 1000 most stably expressed genes for estimating normal-423

ization factors. The key is to avoid using too few (e.g., less than 10) or too many (e.g., using all genes)424

reference genes: intuitively, using too few, the estimates will be unstable; using too many, the results may425

be subject to influence from highly unstable genes. Our simple simulations suggest that using between426

100 to 10000 genes seems to give stable results. In the first set of three examples, we used Anders and427

Huber’s method (see equation (2)) to estimate normalization factors for samples in each of the seedling,428

leaf and multi-tissue groups of experiments (see Section 2.1). We used the top 10, 100, 1000, and 10000429

stably expressed genes identified earlier (see Section 3.1 for details) as reference gene sets. Figure 7 shows430

the pairwise scatter plots and correlation coefficient between the normalization factors when different431

numbers of top stable genes are used as reference. A stronger correlation indicates the normalization432

factors estimated from the two settings are highly consistent. The plots and correlation coefficients433

suggest using between 100 and 1000 genes tend to give similar normalization factor estimates. We also434

used the top 10, 100, 1000, and 10000 stably expressed genes identified from the multi-tissue group as435

reference set for estimating normalization factors for a set of 48 root samples from a new experiment436

(GSE64410, Vragović et al. (2015)). The largest Pearson correlation 0.993 is between the normalization437

factors estimated using the top 100 and top 1000 stably expressed genes as reference. Based on the above438
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Table 4. A toy example for illustrating the importance of using a common explicit set of reference genes
when comparing RNA-Seq data from multiple experiments. If a common reference gene set (e.g., genes
1–3) is used as reference for count normalization, we will notice that the DE behavior of gene 3 differs in
the two experiments. If the two experiments are separately normalized using genes 1–3 as reference in
experiment 1, but using genes 3–5 as reference in experiment 2, we may conclude that gene 3 is not DE in
either group.

Exp. 1 Exp. 2
Gene Control Treatment Control Treatmetn

1 10 20 10 20
2 10 20 10 20
3 10 20 10 10
4 10 10 10 10
5 10 10 10 10

observations, using 1000 most stably expressed genes as reference seems to be a reasonable heuristic rule.439

3.6 An example440

In this part, we illustrate the effect of using different reference gene sets for computing normalization441

factors on a real data set and explain the implication on DE analysis.442

Wang et al. (2012) performed RNA-Seq experiments using 10-day old seedlings to investigate the role443

of Arabidopsis SNW/Ski-interacting (SKIP) protein on transcriptome-wide changes in alternative splicing.444

Two biological replicates each from wild type (Col-0) and skip-2 mutant were compared. We retrieved445

and processed the raw RNA-Seq data from this experiment using our pipeline (see Section 2.1, accession446

number GSE32216). For this data set, the normalization factors for the four samples (two wild types447

followed by two mutants) estimated using all genes, (0.84,0.62,1.38,1.39), differ markedly from the448

normalization factors, (0.71,0.54,1.59,1.63), estimated using the 1000 reference genes that we identified449

using the total variance measure from the seedling group (see section 3.1).450

The implication on DE analysis is that if we use the 1000 stably expressed genes for normalization, we451

will expect to see more under-expressed genes and less over-expressed gene in the mutant group relative to452

the wild type group. The two sets of estimated normalization factors reflect different assumptions: roughly453

speaking, when using all genes to compute the normalization factors, the assumption is that median fold454

change among all genes is 1; when using the 1000 reference genes to compute the normalization factors,455

the assumption is that the median fold change among the set of 1000 genes is 1. It is difficult to know456

which assumption is more reasonable without additional biological insights. However, the benefit of using457

an explicit set of 1000 genes as reference is the improved interpretability by making the reference gene458

set, and thus the implied assumption, more explicit. Furthermore, if one wants to compare the DE results459

from this experiment to other DE results from the collection of seedling experiments, then one should use460

a common reference set of genes for count normalization.461

4 CONCLUSION AND DISCUSSION462

In this paper, we advocate quantifying gene expression stability by applying a numerical stability measure463

to a large number of existing RNA-Seq data sets. Similar strategies have also been used by others to find464

stably expressed genes from microarray data. Since DE is measured by relative frequencies, we argue465

that DE is a relative concept and using an explicit reference gene set can improve interpretability of DE466

results, and furthermore, using a common reference gene set can avoid inconsistent conclusions when467

comparing multiple experiments (see Section 3.5).468

It should be clear but worth emphasizing that when using a numerical measure to identify stably469

expressed genes, the outcome depends on multiple factors: the background sample set and the reference470

gene set used for count normalization, the technology used for measuring gene expression, and the471

specific numerical stability measure used. In this study, to illustrate our proposed methods, we identified472

three sets of stably expressed genes from three sets of Arabidopsis experiments. The major point is that473

stably expressed genes identified from different backgrounds will provide different biological contexts for474

evaluating differential expression. In practice, researchers can choose the specific context. A practical475
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Figure 7. Matrices of scatter plots of normalization factors estimated using different reference gene sets.
The subfigures (a), (b) and (c) show normalization factors estimated for the samples in the seedling, leaf,
and multi-tissue groups correspondingly. In each case, the top 10, 100, 1000, and 10,000 stably expressed
genes are used as reference to calculate the normalization factors. The subfigure (d) shows the
normalization factors estimated for a new root experiment (GSE64410, with sample size 48) using the top
10–10,000 stably expressed genes identified from the multi-tissue group as reference. The normalization
factors are estimated using the method described in Section 2.2.

challenge in applying such a philosophy is that no two experiments will have identical settings, and476

researchers have to decide what experiments can be considered comparable. This is a difficult question;477

however, we believe it has to be asked from now on: biologists perform comparative experiments with478

the intent that the conclusions from a single experiment will be generalizable beyond the context of a479

single lab. If we do not understand comparability between different experiments, such generalization480

is impossible. Defining and characterizing comparability is a challenging topic that we would like to481
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investigate more in the future.482

To identify a set of stably expressed genes, our method still needs to estimate an initial set of483

normalization factors, which requires that we must make assumptions about relative fold changes between484

samples. This kind of circular dependence seems unavoidable Vandesompele et al.. In this paper, we used485

a one-step iteration strategy to reduce the dependence on the initially estimated normalization factors. In486

future work, we intend to look at the genes through evolutionary genetics methods (e.g., 1001 genomes,487

Weigel and Mott (2009)). For example, evolutionary genetics methods can help us test whether a gene is488

under negative, neutral, or positive selection and help us identify genes that are well conserved through489

the evolutionary history. We need to be mindful that a well conserved gene is not necessarily stably490

expressed, just like the house-keeping genes. However, it would be interesting to ask whether there is491

correlation between measures of expression stability and measures of conservativeness, and so on.492

In the GLMM model we fit, the random effect terms such as the sample and treatment effects were493

modeled as normal random variables (Section 2.3). For the purpose of identifying stably expressed genes,494

this should be adequate, since we are mainly interested in the variances of these random effects (i.e.,495

the variance components). In the future, it may also be of interest to model these random effects more496

accurately, for example, in order to build a prior distribution of the random effect terms for analyzing a497

new data set. A more careful examination of the individual data sets suggests that the between-sample498

variance varies greatly between experiments. Our observation suggests that different labs often have499

different understanding of what is deemed as “biological replicates”.500

The R codes for reproducing results in this paper are available at Github: https://github.com/501

zhuob/StablyExpressedGenes502

APPENDIX. THE ITERATIVE ELIMINATION PROCEDURE IN GENORM503

In this part, we discuss the effect of an iterative elimination procedure used by geNorm. This iterative504

elimination procedure creates an extra layer of complexity that is not well explored in literature. We use a505

toy example below to illustrate one subtle aspect of the iterative elimination procedure. In this example,506

we consider the expression values of 7 genes in two samples shown in Table 5. When M-value is used to507

rank all 7 genes, the initial ranking of expression stability is given in column 4 of the table: gene 7 is the508

least stable and genes 4 and 5 are considered the most stable ones. Once genes 6 and 7 are eliminated,509

however, the recalculated M-values will rank genes 1–3 as more stable than genes 4 and 5 (see column510

5 of Table 5). The root cause of this reversal of ranking is that when an iterative elimination procedure511

is used, effectively, the reference gene set is changing after each iteration: in the initial ranking, the512

expression patterns genes 4 and 5 are close to the “middle of the pack” and thus considered as the most513

stable, and the expression patterns of genes 1–3 and genes 6 and 7 are considered relatively more extreme;514

once genes 6 and 7 are removed, however, the “middle of the pack” is shifted towards the expression515

patterns of genes 1–3, and thus genes 1–3 become the most stably expressed. With this understanding, one516

could and should make a conscious decision on whether such a behavior as described above is desirable517

or not.518

The essence of the above toy example is that the expression profiles of the set of genes to be ranked519

are clustered into subgroups. In practice geNorm is often used to rank a set of stably expressed genes.520

In such applications, the impact of the iterative elimination might be limited. For example, if we use521

M-value to rank the top 1000 stably expressed genes identified from the multi-tissue group (3.1), the top522

100 mostly stably expressed genes from geNorm runs with and without using the iterative elimination523

will have 77 genes in common.524

The point we want to emphasize is that gene stability is a relative concept and the stability ranking525

depends on which set of genes we use as reference. In an iterative elimination procedure, the reference526

gene set will change after each iteration. The procedure can thus give surprising results and the adoption527

of it in practice should not be automatic.528
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Table 5. A toy example showing the effect of iterative elimination. Columns 2 and 3 represent expression
levels for seven genes in two samples, column 4 is the stability ranking of genes by M-value without
iterative elimination, and column 5 is the ranking after two geNorm iterations.

Raw Counts Rank
Gene sample 1 sample 2 rank 1 rank 2

Gene1 1 1 3 1
Gene2 1 1 3 1
Gene3 1 1 3 1
Gene4 1 2 1 4
Gene5 1 2 1 4
Gene6 1 3 6
Gene7 1 4 7

Library Size 7 14
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