

Diet and ecological roles of the endangered big-headed turtle Platysternon megacephalum

Yik-Hei Sung $^{\text{Corresp., 1, 2}}$, Billy C.H. Hau 1 , Nancy E Karraker 1,3

Corresponding Author: Yik-Hei Sung Email address: heisyh@gmail.com

Populations of the big-headed turtle Platysternon megacephalum are declining at unprecedented rates across most of its distribution in Southeast Asia owing to unsustainable harvest for pet, food, and Chinese medicine markets. It was proposed for upgrading from endangered to critically endangered as a result of these declines. The ecology of Asian freshwater turtles is grossly understudied and research becomes more challenging as populations decline. Basic ecological information is needed to delineate important roles played by these species in ecosystems and to inform conservation efforts. We studied the diet and ecological roles of *P. megacephalum* in five streams in Hong Kong. Fruits, mainly of *Machilus* spp., made up >70% of the diet, but they also consumed crabs, molluscs, and beetles. Mean diet volume differed among sites, and may be explained by the history of illegal trapping of the sites. Digestion of fruits by *P. megacephalum* enhanced germination success of seeds by about 30% and suggests that these turtles may play important roles in cross-ecosystem resource subsidies. Understanding important ecological roles played by endangered species, such as P. megacephalum, can help to garner support for their conservation, and we recommend that ecological studies on Asian freshwater turtles to be carried out wherever robust populations remain.

¹ School of Biological Sciences, The University of Hong Kong, Hong Kong SAR, China

² Department of Biology, Hong Kong Baptist University, Hong Kong SAR, China

³ Department of Natural Resources Science, University of Rhode Island, Kingston, Rhode Island, United States of America

2	megacephalum
3	
4	Yik-Hei Sung ^{1,2} , Billy C.H. Hau ¹ and Nancy E. Karraker ^{1,3}
5	
6	¹ School of Biological Sciences, The University of Hong Kong, Hong Kong SAR,
7	China
8	² Present Address: Department of Biology, Hong Kong Baptist University, Hong
9	Kong SAR, China
10	³ Present Address: Department of Natural Resources Science, University of Rhode
11	Island, Kingston, RI 02881, U.S.A.
12	
13	Corresponding Author:
14	Yik-Hei Sung ^{1,2}
15	
16	E-mail address: heisyh@gmail.com , yhsung@hkbu.edu.hk
17	

Diet and ecological roles of the endangered big-headed turtle *Platysternon*

Diet and ecological roles of the endangered big-headed turtle *Platysternon* 18 megacephalum 19 20 Yik-Hei Sung^{1,2,*}, Billy C.H. Hau¹ and Nancy E. Karraker^{1,3} 21 22 ¹School of Biological Sciences, The University of Hong Kong, Hong Kong SAR, China 23 24 ²Present Address: Department of Biology, Hong Kong Baptist University, Hong Kong SAR, 25 China ³Present Address: Department of Natural Resources Science, University of Rhode Island, 26 27 Kingston, RI 02881, U.S.A. 28 29 Corresponding author 30 Yik-Hei Sung 31 heisyh@gmail.com, yhsung@hkbu.edu.hk 32 33 **ABSTRACT** Populations of the big-headed turtle *Platysternon megacephalum* are declining at unprecedented 34 35 rates across most of its distribution in Southeast Asia owing to unsustainable harvest for pet, food, and Chinese medicine markets. It was proposed for upgrading from endangered to 36 critically endangered as a result of these declines. The ecology of Asian freshwater turtles is 37 grossly understudied and research becomes more challenging as populations decline. Basic 38 39 ecological information is needed to delineate important roles played by these species in ecosystems and to inform conservation efforts. We studied the diet and ecological roles of P. 40

41	megacephalum in five streams in Hong Kong. Fruits, mainly of Machilus, made up >70% of
42	the diet, but they also consumed crabs, molluscs, and beetles. Mean diet volume differed among
43	sites, and may be explained by the history of illegal trapping of the sites. Digestion of fruits by P
44	megacephalum enhanced germination success of seeds by about 30% and suggests that these
45	turtles may play important roles in cross-ecosystem resource subsidies. Understanding important
46	ecological roles played by endangered species, such as P. megacephalum, can help to garner
47	support for their conservation, and we recommend that ecological studies on Asian freshwater
48	turtles to be carried out wherever robust populations remain.
49	
50	INTRODUCTION
51	Populations of Asian turtles have been declining at rapid rates because of insatiable demand for
52	pet, food and traditional medicine markets (Cheung & Dudgeon, 2006). Over 80% of species are
53	threatened and more than 50% are listed as endangered or critically endangered by the
54	International Union for the Conservion of Nature. Populations of most Asian turtles have
55	declined to such low levels making makes basic ecological studies impossible for many species
56	(Shen et al., 2010).
57	The ecological roles of most Asian freshwater turtles remain unknown. Studies in North
58	America showed that freshwater turtles can considerably influence ecosystem processes (Sterrett
59	et al., 2014) through movements of seeds and nutrients from aquatic to terrestrial habitats (Moll
60	& Jansen, 1995) and potentially by enhancing seed germination. Understanding the ecological
61	roles of and ecosystem services facilitated by endangered freshwater turtles can raise public
62	awareness which is crucial for successful conservation (Mace et al., 2012).
63	Populations of Platysternon megacephalum are declining at unprecedented rates across its

86

54	distribution (Hendrie, 2000; Stuart & Timmins, 2000; Sung et al., 2013; Tana et al., 2000; Wan
65	et al., 2015), and thus it was proposed to upgraded from Endangered to Critically Endangered
56	recently (Horne et al., 2012). However, there is no evidence that harvesting is abating. Captive
67	breeding of P. megaphalum has been carried out by various zoos and hobbyists, yet it has
58	achieved little success (Shelmidine et al., 2016; Sung et al., 2014; Wei et al., 2016), which may
59	be due to our limited knowledge about their natural history (Sung et al., 2014). Only recently
70	have researchers begun studying this species in the wild including distribution (<i>Pipatsawasdikul</i>
71	et al., 2010), spatial ecology (Shen et al., 2010; Sung et al., 2015a), growth (Sung et al., 2015b)
72	and reproduction (Sung et al., 2014). The information will benefit conservation programs on the
73	species, but much remains unknown. For example, information as basic as the diet of wild
74	individuals is lacking. This turtle was long regarded as strictly carnivorous, feeding on molluscs,
75	crustaceans and fish, but that information was based solely on anecdotal observations (Bonin et
76	al., 2006; Ernst & Barbour, 1989).
77	In order to develop conservation actions for endangered species, such as <i>P. megacephalum</i> ,
78	basic ecological information is needed. The objectives of this study were to quantify the diet of
79	wild P. megacephalum and investigate ecological roles associated with diet.
30	
31	MATERIALS & METHODS
32	Study area
33	We conducted this study in five streams in the Hong Kong Special Administrative Region, China
34	(22°09'-22°37'N, 113°50'-114°30'E). Elevations of the study sites range from 300–800 m

above sea level, and riparian vegetation is mainly secondary forest dominated by Machilus spp.

Among the five study streams, four are located in national parks and are accessible by the public

87	and one is in a private, fenced and patrolled conservation area. We cannot disclose the exact
88	locations of study sites to ensure the security of these populations; we referred to study sites as
89	KF (private conservation area), MS, SH, TO and TN. In Hong Kong, <i>Platysternon</i>
90	megacephalum is protected under the Wild Animals Protection Ordinance Cap. 170, which
91	prohibits any collection or use, but turtle populations in protected areas have been subjected to
92	illegal harvesting (Sung et al., 2013)
93	Sample Collection
94	Turtles were captured as part of a mark-recapture study (Sung et al., 2013) carried out between
95	September 2009 to June 2011, which included wet (April to September) and dry (October to
96	March) seasons. We collected basic morphometric data on captured turtles, including straight-
97	line carapace length (CL) using calipers, and body mass using a spring scale. We sexed turtles by
98	examining secondary sexual characteristics, including distance of cloaca from the edge of the
99	plastron and thickness of the tail base above the cloaca, and all turtles smaller than 105 mm in
100	CL were considered to be juveniles (Sung et al., 2013). All procedures were approved by the
101	Committee on the Use of Live Animals in Teaching and Research, the University of Hong Kong
102	(CULATR 2249-10) and Agricultural Fisheries and Conservation Department of the Hong Kong
103	Government.
104	We collected faecal samples from captured turtles that were kept in plastic enclosure with
105	approximately two cm of water for 20 to 24 hours. We filtered the water and preserved the faecal
106	samples in 70% ethanol. We collect samples from 61 individuals and no more than three samples
107	were collected from a single in vidual. We attempted stomach flushing following Legler (1977)
108	to obtain stomach contents, yet we were successful in only one of 30 attempts. We used only
109	faecal samples in this study.

110 We sorted the samples under a dissecting microscope (MZ8, Leica Microsystems, Wetzlar, Germany) and identified diet items to order or lower taxonomic levels if possible. We 111 determined the volume of each diet category in each sample by volumetric displacement to the 112 nearest 0.1ml. We regarded camples of a diet item displacing > 0.1ml of volume as 0.05ml 113 (Lindeman, 2006). Plant seed were assessed for damage and proportion damaged was 114 115 documented. **Seed germination test** 116 To investigate the impact of gut passage on germination success and rate of *Machilus* seeds, we 117 118 collected undamaged digested seeds from faecal samples prior to preserving the rest of a sample in ethanol, and planted them in seed trays in a greenhouse. We collected *Machilus* spp. fruit from 119 120 the bottoms of study streams and created one control treatment of seeds with fruit pulp and 121 another control treatment in which we removed the pulp from the seeds. Seeds that passed through turtles represented the third treatment. One seed was planted in each unit of a tray 122 123 beneath 1 cm of potting soil. Seeds of all treatments were planted in four trays in a randomized complete block design, with each tray containing eight to sixteen replicates of each treatment. 124 Seeds were watered approximately three times per week, depending upon ambient temperature 125 and drying of the potting soil. Seeds that did not germinate within half a year after planting were 126 regarded as unviable. 127 128 **Data Analysis** calculated an index of relative importance (IRI), as modified by Bjorndal et al. (1997) from 129 the original formula developed by Pinkas et al. (1971), for each diet category using the following 130 formula: IRI = $100(F_iV_i/\sum_{i=1}^n(F_iV_i))$, where F = percentage frequency of occurrence, V = 131 percentage volume, i = type of diet item, and n = number of type of diet item, across all stomach 132

content samples of a particular age and sex group (*Pinkas et al., 1971*).

We calculated niche breadth by abundance of diet items for female, male and juvenile 134 turtles using Levin's niche breadth index, $N_B = 1/p_i^2$ where p_i is the proportion of diet category i135 of the total diet eaten by a particular age and sex group in a particular season. To evaluate diet 136 diversity (Gray, 2000), we calculated the Shannon Index by abundance of diet items for female, 137 male, and juvenile turtles using the formula, $H = -\sum_{i=1}^{n} p_i Inp_i$ where p_i is the proportion of diet 138 139 category i of the total abundance of all diet items eaten by a particular sex in a particular season. We compared mean abundance, volume, and species richness of diet items in faecal 140 samples among seasons, sites, and between sexes using generalized linear mixed models with a 141 142 negative binomial error variance. Diet samples from juveniles were excluded because of a low 143 sample size. We included seasons, sites, and sexes as fixed factors, turtle identity as a random factor to account for individual variations, and carapace length of turtles as an offset to control 144 145 the effect of body size (Zuur et al., 2009). Wet seasons, site KF, and females were regarded as 146 the reference categories in the Wald Z test. We performed the analysis in R (R Development Core Team, 2014) using glmer.nb in the lme4 package (Bates, 2010). 147 148 We compared the diet composition among seasons, sites, and age and sex groups based on 149 abundance of diet items with non-metric multidimensional scaling and analysis of similarity using Bray-Curtis similarity index. We used similarity percentage procedure to determine the 150 contribution by each diet item to the differences among seasons, sites, and age and sex groups. 151 We conducted the analyses using PRIMER 6.0 (Clarke & Warwick, 2001) 152 We compared germination success of seeds controls 153 seeds with and without pulp using a generalized linear mixed model with a binomial error 154

variance. We included seed tray location as a random factor. Seeds from faecal samples were

regarded as the reference category in the Wald Z test. We performed the analysis in R (R 156 Development Core Team, 2014) using glmer in the lme4 package (Bates, 2010). 157 158 159 RESULTS We collected 141 faecal samples from 61 individual turtles: 89 contained at least one item, 47 160 were from females [CL = 115.0 \pm 12.7 mm (mean \pm SD)], 33 were from males (CL = 144.0 \pm 161 26.6 mm) and nine were from juveniles (CL = 72.0 ± 17.6 mm). We identified 581 diet items 162 163 belonging to 24 categories (Table 1). The most dominant food item was fruit of *Machilus* spp. which constituted over 80%, 80% and 73% of the volume of faecal samples of female, male and 164 juvenile turtles, respectively. Platysternon megacephalum fed on a variety of animals including 165 166 frogs, lizards, birds, fish, mammals, crabs, snails, and insects. Mean abundance of diet items was significantly higher in the yet 167 season (Table 2; Table 3), whereas it was similar between sexes, and among sites. Mean volume 168 differed among sites, but it was similar between sexes and seasons (Table 3). Mean volume in 169 170 KF, the protected site, was significantly higher than at other sites. Mean species richness did not 171 differ between seasons, sexes, and sites (Table 3). 172 In general, the niche breadth in the wet season was broader than that in the dry season as shown by Shannon index (Table 3). Niche breadth of juvenile turtles was wider than that of adult 173 174 turtles as revealed by Levin's standardized niche breadth (Table 3). Diet composition was similar between seasons (R = -0.134, P = 0.99), and sexes and ages 175 176 (R = -0.028, P = 0.82), but differed among sites (R = 0.339, P < 0.001; Figure 1). In pairwise comparisons, diet composition of turtles in KF and SH differed from that of other sites (KF: P < 177 0.02; SH: P < 0.05), whereas the diet of turtles in MS, TN and TO was similar (P > 0.67). 178 179 Machilus seeds and molluscs contributed the most to the dissimilarity between the diet of turtles

in KF and of sites (SIMPER, contribution %: *Machilus* seeds = 30.1 - 36.8, molluscs = 8.42 - 11.8; Table 4). *Machilus* seeds and crabs contributed the most to the dissimilarity between the diet of turtles in SH and other sites (*Machilus* seeds = 21.9 - 30.1%, crabs = 6.5 - 17 .

Of seeds consumed by turtles 64% were damaged, either by mastication or during the digestion process. Of intact seeds that were planted, 37.5% (n = 32) germinated, compared with 3.6% (n=56) of control seeds with pulp removed (Z = -3.45, P < 0.001) and 2.9% (n = 35) with pulp intact (Z = -2.80, P < 0.005).

DISCUSSION

This is the first study to quantify the diet of the endangered *Platysternon megacephalum* in the wild and to assess its potential role in enhancing seed germination and cross-ecosystem resource subsidies (*Richardson et al., 2010*). *P. megacephalum* have long by regarded as carnivorous (*Bonin et al., 2006*), but we found that fruit constituted a major proportion of its diet, and we believe that this fruit is consumed within the stream channel. Fruit from *Machilus* trees made up >80% of the diet volume for males and females and >70% for juveniles. In Hong Kong, complete deforestation occurred before the Second World War Corlett, 1999), and trees in the genus *Machilus* have become the dominant species in secondary forests (*Zhuang, 1997*). At least four species of *Machilus* occurs in the riparian habitats of the study streams. Fruiting of these *Machilus* species spans from March to August and October to December (*AFCD, 2008*), and the steep banks of hillstreams inhabited by *P. megacephalum* serve to channel large quantities of *Machilus* fruits downslope and into the streams. Thus fallen fruits provide a constant food supply to *P. megacephalum* through most of the year. Fruits of *Turpinia arguta* were also consumed, and consumption of *Ficus* fruits has also been reported by illegal hunters in Hainan, China (Y.H.

225

204 consume a higher diversity of fruits than observed in this study. Germation success of *Machilus* seeds ingested by *P. megacephalum* was about 30% 205 higher than seeds not ingested. Although about 65% of seeds in faecal samples were damaged, 206 207 enhanced germination success following ingestion by this turtle compared with the very low 208 germination success (<4%) of uningested seeds probably outweighs the damage to some seeds. 209 Notably, M. wangchiana is rare in Hong Kong and its limited distribution in Hong Kong 210 overlaps with that of P. megacephalum (Herbarium, 2016). Enhanced germination success of 211 seeds ingested by turtles has been documented in other species (Braun & Brooks Jr, 1987; Cobo & Andreu, 1988; Rust & Roth, 1981), but most studies have focused on tortoises that both ingest 212 and defecate seeds in terrestrial habitats. 213 214 To our knowledge, only two studies (Kimmons & Moll, 2010; Moll & Jansen, 1995) have 215 examined the effects of ingestion by aquatic turtles on seed germination. Given life histories of 216 the focal species of those studies, each would be capable of ingesting seeds in an aquatic habitat and defecating them in a terrestrial habitat, thereby transporting seeds from aquatic habitats 217 where germination is unlikely to terrestrial habitats where it is possible. However, of three 218 219 species examined, ingestion of plant seeds by Rhinoclemmys funerea in Costa Rica (Moll & Japsen, 1995), and Trachemys scripta and Chelydra serpentina (Kimmons & Moll, 2010) in the 220 221 US did not enhance germination. Ingestion of seeds by P. megacephalum increases germination success but this is only beneficial if the turtle periodically leaves the aquatic habitat. 222 223 In previous research on this species' spatial ecology (Sung et al., 2015a), we found that individuals are highly aquatic and make few movements away from the stream. However, 224

believe that we probably underestimated terrestrial movements because turtles probably move

Sung, unpublished data). Given the broad distribution of P. megacephalum in Asia, they likely

227

228

229

230

231

232

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

into terrestrial habitats during extreme storm events in the monsoonal wet season, when these high velocity, torrential streams are far too dangerous to be visited by researchers. For example, on 15 days between May and September 2010, there were rainstorms of a severity level (Hong Kong Observatory, 2016) that would likely have driven turtles out of streams and have made the streams too dangerous for researchers. In addition to leaving streams during major storm events, females must also leave streams to nest. In mainland China, translocated turtles purchased from markets spent about 7% or their time on land (Shen et al., 2010), but it is not known how their habitat use differs from that of turtles in their original streams. Although probably contributing to seed dispersal, the role of *P. megacephalum* may be less important than that of other groups, such as frugivorous birds (Corlett, 2011). Importance of animals in the diet of P. megacephalum may be more pronounced than it appeared in this study. We found that the most dominant animal prey items were crabs, molluscs and beetles, which all have hard exoskeletons. Remains of small or soft-bodied animals, such as earthworm, were underrepresented in faecal analysis and thus the relative importance of fruits may be overestimated has been suggested in some other omnivorous turtles (Caputo & Vogt, 2008). Stable isotope analysis may also be useful to elucidate its trophic level in the ecosystem (Bearhop et al., 2004). Occurrence of bird feathers and rodent bones in faecal samples suggested that P. megacephalum may be opportunistic scavengers. Turtles, such as Macrochelys temminckii, have been reported to scavenge on mammals (Elsey, 2006). As densities of P. megacephalum can be relatively high in protected populations (Sung et al., 2013), the high standing biomass and an omnivorous feeding ecology may underscore their importance in nutrient recycling (Sterrett et al., 2014) in aquatic ecosystems and between the land-water interface.

Diet composition of *P. megacephalum* differed between study streams and this may be associated with the different demographic differences among sites. *P. megacephalum* may exhibit ontogenetic shifts in diet, for example from carnivorous to increasingly herbivorous with age, as has been documented in other freshwater turtles (*Chen & Lue, 1998; Parmenter & Avery, 1990; Spencer et al., 1998*). We found that juvenile *P. megacephalum* exhibited lower relative importance of plants and wider niche breadth than adults. Illegal trapping has depleted populations conservation area (*Sung et al., 2013*). This may explain the higher abundance and diversity of diet items in from turtles in the KF population, which exhibits the sex and age structure of a healthy population (*Sung et al., 2013*) It should be noted, however, that we do not have data on availability of diet items, so we cannot disregard this explanation.

CONCLUSIONS

Ecological roles of Asian freshwater turtles have garnered little attention as rapid population declines and low densities of most species have limited opportunities for ecological study. We found that *P. megacephalum* are important in the food chain may facilitate important ecological processes, including cycling of plant and animal matter in the aquatic ecosystem and enhancing seed germination across the aquatic-terrestrial habitat interface. Although *P. megacephalum* have disappeared across much of China (*Lau & Shi, 2000; Shi at al., 2007*), populations remain in Hong Kong. We recommend further studies to identify important roles played by this endangered species in aquatic and terrestrial habitats while populations remain. Such information on this species and other freshwater turtle species. Asia may lead to greater awareness about the need for conservation and will help to inform captive breeding programs.

272								
273	Acknowledgements We are grateful to the staff of Kadoorie Farm and Botanic Garden, and							
274	particularly A. Brown, G. Ades, P. Crow, R. Kendrick, A. Grioni, and M. Lau, for supporting							
275	this project in many ways and for their dedication to the conservation of Asian turtles. We thank							
276	the Agricultural Fisheries and Conservation Department of the Hong Kong Government for							
277	issuing a permit for conducting research on <i>P. megacephalum</i> and general support. Thanks to L.							
278	Ng, M. Lo, and L. Wong for technical and logistical support and numerous biologists for their							
279	assistance in the field. All procedures were approved by the Committee on the Use of Live							
280	Animals in Teaching and Research, the University of Hong Kong (CULATR 2249-10).							
281								
282	References							
283	AFCD. 2008. Flora of Hong Kong. Hong Kong Special Administrative, China: Agriculture,							
284	Fisheries and Conservation Department.							
285	Bates DM. 2010. lme4: Mixed-effects modeling with R. Available at http://lme4.r-forge.r-							
286	project.org/book (accessed 10 April 2015).							
287	Bearhop S, Adams CE, Waldron S, Fuller RA, MacLeod H. 2004. Determining trophic niche							
288	width: a novel approach using stable isotope analysis. Journal of Animal Ecology							
289	73 :1007–1012. DOI 10.1111/j.0021-8790.2004.00861.x.							
290	Bjorndal KA, Bolten AB, Lagueux CJ, Jackson DR. 1997. Dietary overlap in three sympatric							
291	congeneric freshwater turtles (Pseudemys) in Florida. Chelonian Conservation and							
292	Biology 2 :430–432.							
293	Bonin F, Devaux B, Dupre A. 2006. <i>Turtles of the World</i> . Baltimore, Maryland: Johns Hopkins							
294	University Press.							

295	Braun J, Brooks Jr GR. 1987. Box turtles (Terrapene carolina) as potential agents for seed
296	dispersal. American Midland Naturalist 117:312-318. DOI 10.2307/2425973.
297	Caputo FP, Vogt RC. 2008. Stomach flushing vs. fecal analysis: the example of <i>Phrynops rufipes</i>
298	(Testudines: Chelidae). <i>Copeia</i> 2008 :301–305. DOI 10.1643/CH-05-031.
299	Chen T-H, Lue K-Y. 1998. Ecology of the Chinese stripe-necked turtle, <i>Ocadia sinensis</i>
300	(Testudines: Emydidae), in the Keelung River, northern Taiwan. Copeia 1998:944–952.
301	DOI 10.2307/1447341.
302	Cheung S, Dudgeon D. 2006. Quantifying the Asian turtle crisis: market surveys in southern
303	China, 2000-2003. Aquatic Conservation: Marine and Freshwater Ecosystems 16:751-
304	770. DOI 10.1002/aqc.803.
305	Clarke KR, Warwick RM. 2001. Change in Marine Communities: An Approach to Statistical
306	Analysis and Interpretation. Plymouth: Primer-E Ltd.
307	Cobo M, Andreu AC. 1988. Seed consumption and dispersal by the spur-thighed tortoise <i>Testudo</i>
308	graeca. Oikos 51 :267-273. DOI 10.2307/3565307.
309	Corlett RT. 1999. Environmental forestry in Hong Kong: 1871-1997. Forest Ecology and
310	Management 116:93–105. DOI 10.1016/S0378-1127(98)00443-5.
311	Corlett RT. 2011. Seed dispersal in Hong Kong, China: past, present and possible futures.
312	<i>Integrative Zoology</i> 6 :97–109. DOI 10.1111/j.1749-4877.2011.00235.x.
313	Elsey RM. 2006. Food habits of <i>Macrochelys temminckii</i> (alligator snapping turtle) from
314	Arkansas and Louisiana. Southeastern Naturalist 5:443-452. DOI 10.1656/1528-
315	7092(2006)5[443:FHOMTA]2.0.CO;2.
316	Ernst C, Barbour R. 1989. <i>Turtles of the World</i> . Washington D.C.: Smithsonian Institution Press.
317	Gray JS. 2000. The measurement of marine species diversity, with an application to the benthic

318	fauna of the Norwegian continental shelf. Journal of Experimental Marine Biology and
319	Ecology 250 :23–49. DOI 10.1016/S0022-0981(00)00178-7.
320	Hendrie D. 2000. Status and conservation of tortoises and freshwater turtles in Vietnam. In: van
321	Dijk PP, Stuart B, and Rhodin AGJ, eds. Asian Turtle Trade: Proceedings of a Workshop
322	on Conservation and Trade of Freshwater Turtles and Tortoises in Asia Chelonian
323	Research Monographs. Lunenburg, Massachusetts: MTC Printing, 63–73.
324	Herbarium HK. 2016. Hong Kong Plant Database, Agriculture, Fisheries, and Conservation
325	Department of the Hong Kong Government. Available at http://www.herbarium.gov.hk
326	(accessed 14 July 2016).
327	Hong Kong Observatory. 2016. HKO warnings and signals database, 2010 data, Hong Kong
328	Government. Available at http://www.hko.gov.hk (accessed 7 July 2016).
329	Horne B, Poole C, Walde A. 2012. Conservation of Asian Tortoises and Freshwater Turtles:
330	Setting Priorities for the Next Ten Years. Recommendations and conclusions from the
331	workshop in Singapore, February 21-24, 2011. Singapore: Wildlife Conservation Society
332	Kimmons JB, Moll D. 2010. Seed dispersal by red-eared sliders (Trachemys scripta elegans) and
333	common snapping turtles (Chelydra serpentina). Chelonian Conservation and Biology
334	9 :289–294. DOI 10.2744/CCB-0797.1.
335	Lau M, Shi H. 2000. Conservation and trade of terrestrial and freshwater turtles and tortoises in
336	the People's Republic of China. In: van Dijk PP, Stuart B, and Rhodin AGJ, eds. Asian
337	Turtle Trade: Proceedings of a Workshop on Conservation and Trade of Freshwater
338	Turtles and Tortoises in Asia Chelonian Research Monographs. Lunenburg,
339	Massachusetts: MTC Printing, 30–38.
340	Legler JM. 1977. Stomach flushing: A technique for chelonian dietary studies. Herpetologica

341	33 :281–284.
342	Lindeman PV. 2006. Zebra and quagga mussels (<i>Dreissena</i> spp.) and other prey of a Lake Erie
343	population of common map turtles (Emydidae: Graptemys geographica). Copeia
344	2006 :268–273. DOI 10.1643/0045-8511(2006)6[268:ZAQMDS]2.0.CO;2.
345	Mace GM, Norris K, Fitter AH. 2012. Biodiversity and ecosystem services: a multilayered
346	relationship. Trends in Ecology & Evolution 27:19–26. DOI 10.1016/j.tree.2011.08.006
347	Moll D, Jansen KP. 1995. Evidence for a role in seed dispersal by two tropical herbivorous
348	turtles. <i>Biotropica</i> 27 :121–127. DOI 10.2307/2388909.
349	Parmenter RR, Avery HW. 1990. The feeding ecology of the slider turtle. In: Gibbons DW, ed.
350	Life History and Ecology of the Slider Turtle. Washington D.C.: Smithsonian Institution
351	Press, 257–266.
352	Pinkas L, Oliphant MS, Iverson ILK. 1971. Food habits of albacore, bluefin tuna, and bonito in
353	California waters. Fish Bulletin California 152:1–105.
354	Pipatsawasdikul K, Voris HK, Thirakhupt K. 2010. Distribution of the big-headed turtle
355	(Platysternon megacephalum, Gray 1831) in Thailand. Zoological Studies 49:640-650.
356	R Development Core Team. 2014. R: A language and environment for statistical computing.
357	Available at http://www.R-project.org (accessed 5 March 2015).
358	Richardson JS, Zhang Y, Marczak LB. 2010. Resource subsidies across the land-freshwater
359	interface and responses in recipient communities. River Research and Applications
360	26 :55–66. DOI 10.1002/rra.1283.
361	Rust R, Roth R. 1981. Seed production and seedling establishment in the mayapple,
362	Podophyllum peltatum L. American Midland Naturalist 105:51-60.
363	Shelmidine N, Murphy B, Massarone K. 2016. Husbandry and propagation of the Chinese

364	big-headed turtle (Platysternon megacephalum) at the Wildlife Conservation Society's
365	Prospect Park Zoo. Zoo Biology 35 :174–179. DOI 10.1002/zoo.21271.
366	Shen JW, Pike DA, Du WG. 2010. Movements and microhabitat use of translocated big-headed
367	turtles (Platysternon megacephalum) in Southern China. Chelonian Conservation and
368	Biology 9:154–161. DOI 10.2744/CCB-0833.1.
369	Shi H, Parham JF, Lau M, Chen T-H. 2007. Farming endangered turtles to extinction in China.
370	Conservation Biology 21 :5–6. DOI 10.1111/j.1523-1739.2006.00622_2.x.
371	Spencer RJ, Thompson MB, Hume ID. 1998. The diet and digestive energetics of an Australian
372	short-necked turtle, Emydura macquarii. Comparative Biochemistry and Physiology A
373	Molecular & Integrative Physiology 121:341–349. DOI 10.1016/S1095-6433(98)10132-0
374	
375	Sterrett SC, Maerz JC, Katz RA. 2014. What can turtles teach us about the theory of ecological
376	stoichiometry? Freshwater Biology 60:443-455. DOI 10.1111/fwb.12516.
377	Stuart B, Timmins R. 2000. Conservation status and trade of turtles in Laos. In: van Dijk PP,
378	Stuart B, and Rhodin AGJ, eds. Asian Turtle Trade: Proceedings of a Workshop on
379	Conservation and Trade of Freshwater Turtles and Tortoises in Asia Chelonian Research
380	Monographs. Lunenburg, Massachusetts: MTC Printing, 58-62.
381	Sung Y-H, Hau BCH, Karraker NE. 2014. Reproduction of endangered Big-headed Turtle,
382	Platysternon megacephalum (Reptilia: Testudines: Platysternidae). Acta Herpetologica
383	9:243–247. DOI 10.13128/Acta_Herpetol-14184.
384	Sung Y-H, Hau BCH, Karraker NE. 2015a. Spatial ecology of endangered big-headed turtles
385	(Platysternon megacephalum): Implications of its vulnerability to illegal trapping.
386	Journal of Wildlife Management 79:537–543. DOI 10.1002/jwmg.861.

387	Sung Y-H, Hau BCH, Lau MWN, Crow PA, Kendrick RC, Buhlmann KA, Ades GWJ, Karraker
388	NE. 2015b. Growth rate and an evaluation of age estimation for the endangered big-
389	headed turtle (<i>Platysternon megacephalum</i>) in China. <i>Journal of Herpetology</i> 49 :99–103.
390	DOI 10.1670/12-166.
391	Sung Y-H, Karraker NE, Hau BCH. 2013. Demographic evidence of illegal harvesting of an
392	endangered Asian turtle. Conservation Biology 27:1421–1428. DOI 10.1111/cobi.12102.
393	Tana T, Hour P, Thach C, Sopha L, Sophat C, Piseth H, Kimchay H. 2000. Overview of turtle
394	trade in Cambodia. In: van Dijk PP, Stuart B, and Rhodin AGJ, eds. Asian Turtle Trade:
395	Proceedings of a Workshop on Conservation and Trade of Freshwater Turtles and
396	Tortoises in Asia Chelonian Research Monographs. Lunenburg, Massachusetts: MTC
397	Printing, 55–57.
398	Wan JP-H, Chan BP-L, Liao C, Mi H, Lau M, Li F, Wang H, Sung Y-H. 2015. Conservation
399	status of freshwater turtles in Hainan island, China: interviews and field surveys at
400	Yinggeling Nature Reserve. Chelonian Conservation and Biology 14:100-103. DOI
401	10.2744/1071-8443-14.1.100.
402	Wei Y, Gong S, Shi H, Li W. 2016. Quantitative analysis of courtship and mating behaviours in
403	the big-headed turtle, <i>Platysternon megacephalum</i> . The Herpetological Journal 26 :85–91.
404	
405	Zhuang X. 1997. Rehabilitation and development of forest on degraded hills of Hong Kong.
406	Forest Ecology and Management 99 :197–201. DOI 10.1016/S0378-1127(97)00205-3.
407	Zuur AF, Ieno EN, Walker NJ, Saveliev AA, Smith GM. 2009. Mixed effects models and
408	extensions in ecology with R. New York: Springer.
409	

414

415

412 Table 1. Volume, frequency of occurrence and indext of relative importance of food items.

Percentage volume (V_i), percentage frequency of occurrence (F_i) and index of relative importance (IRI) of different food items in the diet of *Platysternon megacephalum* in five streams in Hong Kong between 2009 and 2011.

	Food items		Adult female (n=33)			Adult male (n=47)			Juvenile (n=9)		
			V_{i}	F_{i}	IRI	V_{i}	F_{i}	IRI	V_{i}	F_{i}	IRI
Plant	Lauraceae	Machilus fruit	80.5	22. 6	91.3	80.2	31.7	94.1	73.2	31.6	87.2
	Staphyleaceae	Turpinia fruit	1.0	1.5	0.1	0.5	2.9	0.1	< 0.1	<0.1	< 0.1
		Other plant matter	3.4	16.5	2.8	4.3	12.5	2.0	10.6	21.1	8.4
Animal	Amphibia	Frog	0.2	0.7	< 0.1	0.2	1.9	< 0.1			
	Aves	Bird	0.3	1.5	< 0.1	0.4	1.0	< 0.1			
	Mammalia	Rodent				0.4	1.0	< 0.1			
	Pisces	Fish	1.6	2.3	0.2	1.2	1.9	0.1			
	Reptilia	Lizard	< 0.1	0.8	< 0.1						
	Crustacea	Crab	4.6	10.5	2.4	4.1	9.6	1.4	4.1	5.3	0.8
	Mollusca	Snail	1.5	7.5	0.6	1.3	11.5	0.5	2.1	10.5	0.8
	Insecta	Coleoptera	5.0	9.0	2.3	6.9	6.7	1.7			
		Diptera	0.2	0.8	< 0.1	< 0.1	1.92	< 0.01			
		Ephemeroptera	< 0.1	0.8	< 0.1						
		Homoptera	0.1	2.3	< 0.1	< 0.1	2.9	< 0.1	3.8	10.5	1.5
		Hymenoptera	0.2	10.5	0.1	< 0.1	4.8	< 0.1	0.1	5.3	< 0.1
		Hymenoptera	< 0.1	0.8	< 0.1						
		Isoptera	0.1	3.0	< 0.1	0.3	2.9	< 0.1	2.7	5.3	0.5
		Lepidoptera	0.3	0.7	< 0.1	0.1	1.0	< 0.1			
		Mantodea	< 0.1	0.8	< 0.1						
		Odonata	0.4	3.0	0.1	0.1	2.9	< 0.1	0.7	5.3	0.1
		Orthoptera	0.1	0.7	< 0.1	<0.1	1.0	<0.1			
		Trichoptera	0.2	0.7	< 0.1	<0.1	1.0	<0.1			
		Unidentified insect	< 0.1	2.3	< 0.1	<0.1	1.0	<0.1			

Unidentified matter	< 0.1	0.7	< 0.1	2.7	5.3	0.5

Table 2. **Abundance, volume and species richness of diet items.** Mean (± SD) abundance, volume, and species richness of diet items, Levin's standardised niche breadth, and diversity [as Exp (*H*')] in the diet of *Platysternon megacephalum* in five streams in Hong Kong between 2009 and 2011.

Age and	Season	n	Abundance	Volume	Species	Niche	Exp
sex					richness	breadth	(H')
group						index	
Female	Wet	37	4.6 ± 2.3	4.4 ± 3.4	23	0.08	5.75
	Dry	10	7.0 ± 8.1	8.0 ± 13.5	6	0.08	3.67
Male	Wet	26	5.6 ± 5.0	13.8 ± 14.4	17	0.09	5.93
	Dry	7	7.7 ± 7.4	6.9 ± 8.0	7	0.04	2.56
Juvenile	Wet	6	2.7 ± 2.1	1.4 ± 1.0	7	0.14	5.10
	Dry	3	3.7 ± 3.1	1.7± 1.6	5	0.10	4.01

Table 3. Statistical results (GLWW) comparing abundance, volume and species richness of diet items between seasons, sexes and sites. Estimates of parameters that significantly affect mean abundance and volume of diet items of *Platysternon megacephalum* in five streams in Hong Kong between 2009 and 2011. Significant (P < 0.05) variables are in bold.

Λ	7	7
7	_	,

424

425

Variables	Factors	Estimates	Standard	Z	Р
			error		
Abundance					
	Season (Dry)	0.591	0.242	2.441	0.015
	Sex (Male)	-0.065	0.211	-0.311	0.756
	Site (MS)	-0.714	0.454	-1.574	0.116
	Site (SH)	-0.026	0.278	-0.094	0.925
	Site (TN)	-0.483	0.390	-1.238	0.216
	Site (TO)	-0.367	0.335	-1.097	0.273
Volume					
	Season (Dry)	0.267	0.315	0.849	0.396
	Sex (Male)	-0.270	0.272	-0.996	0.319
	Site (MS)	-1.694	0.592	-2.861	0.004
	Site (SH)	-0.615	0.350	-1.756	0.079
	Site (TO)	-1.172	0.433	-2.709	0.007
	Site (TN)	-1.792	0.558	-3.212	0.001
Species richness					
	Season (Dry)	0.240	0.190	1.262	0.207

PeerJ

Sex (Male)	-0.164	0.137	-1.190	0.234
Site (MS)	-0.132	0.298	-0.443	0.658
Site (SH)	0.065	0.174	0.375	0.707
Site (TO)	0.042	0.211	0.201	0.841
Site (TN)	0.176	0.260	0.677	0.498

428

PeerJ

Table 4. **Five most dominant food items in different study streams.** Index of relative importance of five most abundant food items in the diet of *Platysternon megacephalum* in five study streams in Hong Kong between 2009 and 2011.

	KF	MS	SH	TN	ТО
Sample size	46	6	20	7	10
Mean carapace length (mm)	132	102	110	102	119
Diet item					
Machilus fruit	88.9	32.0	80.2	5.0	5.6
Crabs	1.5	44.7	1.3	65.4	37.4
Other plant matter	6.0	7.3	9.2	7.3	53.7
Coleoptera	2.4	14.6	7.4	2.3	20.2
Turpinia fruit	0.1	0.0	0.0	16.4	0.0

435

436

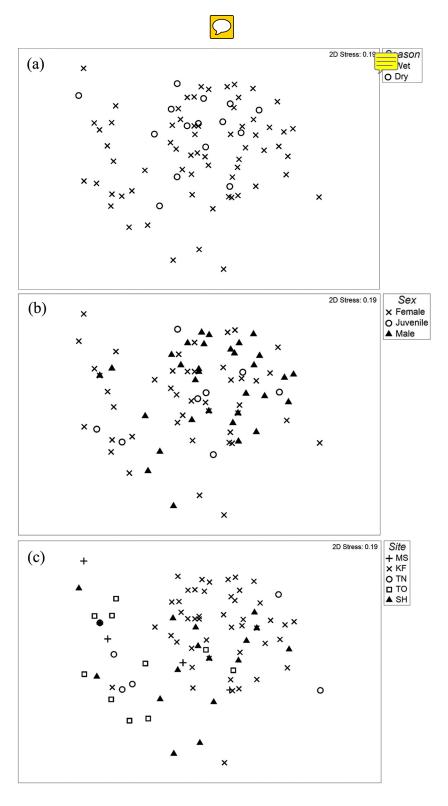


Fig. 1. Composition of food items in different seasons, by different age and sex groups and in different sites represented on nMDS plot. Two-dimensional non-metric multidimensional scaling representing Bray-Curtis distances among composition of food items consumed by

- 438 Platysternon megacephalum (A) in different seasons, (B) by different age and sex groups and (C)
- in different study sites in Hong Kong between 2009 and 2011.
- 440