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Abstract 19 

 20 

Background. Functional traits are the primary biotic component driving organism influence 21 

on ecosystem functions; in consequence traits are widely used in ecological research. 22 

However, most animal trait-based studies use easy-to-measure characteristics of species that 23 

are at best only weakly associated with functions. Animal-mediated pollination is a key 24 

ecosystem function and is likely to be influenced by pollinator traits, but to date no one has 25 

identified functional traits that are simple to measure and have good predictive power.  26 

 27 

Methods. Here, we show that a simple, easy to measure trait (hairiness) can predict 28 

pollinator effectiveness with high accuracy. We used a novel image analysis method to 29 

calculate entropy values for insect body surfaces as a measure of hairiness. We evaluated the 30 

power of our method for predicting pollinator effectiveness by regressing pollinator hairiness 31 

(entropy) against single visit pollen deposition (SVD) and pollen loads on insects. We used 32 

linear models and AICC model selection to determine which body regions were the best 33 

predictors of SVD and pollen load.  34 

 35 

Results. We found that hairiness can be used as a robust proxy of SVD. The best models for 36 

predicting SVD for the flower species Brassica rapa and Actinidia deliciosa were hairiness 37 

on the face and thorax as predictors (R2 = 0.98 and 0.91 respectively). The best model for 38 

predicting pollen load for B. rapa was hairiness on the face (R2 = 0.81).  39 

 40 

Discussion. We suggest that the match between pollinator body region hairiness and plant 41 

reproductive structure morphology is a powerful predictor of pollinator effectiveness. We 42 

show that pollinator hairiness is strongly linked to pollination – an important ecosystem 43 
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function, and provide a rigorous and time-efficient method for measuring hairiness. 44 

Identifying and accurately measuring key traits that drive ecosystem processes is critical as 45 

global change increasingly alters ecological communities, and subsequently, ecosystem 46 

functions worldwide. 47 

 48 

Introduction 49 

Trait-based approaches are now widely used in functional ecology, from the level of 50 

individual organisms to ecosystems (Cadotte et al. 2011). Functional traits are defined as the 51 

characteristics of an organism’s phenotype that determine its effect on ecosystem level 52 

processes (Naeem & Wright 2003; Petchey & Gaston 2006). Accordingly, functional traits 53 

are recognised as the primary biotic component by which organisms influence ecosystem 54 

functions (Gagic et al. 2015; Hillebrand & Matthiessen 2009). Trait-based research is 55 

dominated by studies on plants and primary productivity, and little is known about key traits 56 

for animal-mediated and multi-trophic functions, particularly for terrestrial invertebrates 57 

(Didham et al. 2016; Gagic et al. 2015; Lavorel et al. 2013). 58 

 59 

Most animal trait-based studies simply quantify easy-to-measure morphological 60 

characteristics, without a mechanistic underpinning to demonstrate these “traits” have any 61 

influence on the ecosystem function of interest (Didham et al. 2016). This results in low 62 

predictive power, particularly where trait selection lacks strong justification through explicit 63 

ecological questions (Gagic et al. 2015; Petchey & Gaston 2006). If the ultimate goal of 64 

trait-based ecology is to identify the mechanisms that drive biodiversity impacts on 65 

ecosystem function, then traits must be quantifiable at the level of the individual organism, 66 

and be inherently linked to an ecosystem function (Bolnick et al. 2011; Pasari et al. 2013; 67 

Violle et al. 2007). 68 
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 69 

Methodology that allows collection of trait data in a rigorous yet time-efficient manner and 70 

with direct functional interpretation will greatly enhance the power of trait-based studies. 71 

Instead of subjectively selecting a large number of traits with unspecified links to ecosystem 72 

functions, it would be better to identify fewer, uncorrelated traits, that have a strong bearing 73 

on the function of interest (Carmona et al. 2016). Selecting traits that are measurable on a 74 

continuous scale, would also improve predictive power of studies (McGill et al. 2006; Violle 75 

et al. 2012). However, far greater time and effort is required to measure such traits, 76 

exacerbating the already demanding nature of trait-based community ecology (Petchey & 77 

Gaston 2006). 78 

 79 

Animal-mediated pollination is a multi-trophic function, driven by the interaction between 80 

animal pollinators and plants (Kremen et al. 2007). A majority of the world’s wild plant 81 

species are pollinated by animals (Ollerton et al. 2011), and over a third of global crops are 82 

dependent on animal pollination (Klein et al. 2007b). Understanding which pollinator traits 83 

determine the effectiveness of different pollinators is critical to understanding the 84 

mechanisms of pollination processes. However, current traits used in pollination studies 85 

often have weak associations with pollination function and/or have low predictive power. 86 

For example Larsen, Williams & Kremen (2005) used body mass to explain pollen 87 

deposition by solitary bees even when the relationship was weak and non-significant. Many 88 

trait-based pollination studies have subsequently used body mass or similar size measures, 89 

despite their low predictive power. Similarly, Hoehn et al (2008) used spatial and temporal 90 

visitation preferences of bees to explain differences in plants reproductive output. They 91 

found significant relationships (i.e. low P values) between spatial and temporal visitation 92 

preferences and seed set, but with small R2 values, suggesting these traits have weak 93 
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predictive power. To advance trait-based pollination research we require traits that are good 94 

predictors of pollination success. 95 

 96 

Observational studies suggest that insect body hairs are important for collecting pollen that is 97 

used by insects for food and larval provisioning (Holloway 1976; Thorp 2000). Hairs 98 

facilitate active pollen collection, e.g., many bees have specialised hair structures called 99 

scopae that are used to transport pollen to the nest for larval provisioning (Thorp 2000). 100 

Additionally, both bees and flies have hairs distributed across their body surfaces which act 101 

to passively collect pollen for adult feeding (Holloway 1976). Differences in the density and 102 

distribution of hairs on pollen feeding insects likely reflects their feeding behaviour, the 103 

types of flowers they visit, and whether they use pollen for adult feeding and/or larval 104 

provisioning (Thorp 2000). However, despite anecdotal evidence that insect body hairs are 105 

important for pollen collection and pollination, there is no proven method for measuring 106 

hairiness, nor is there evidence that hairier insects are more effective pollinators. 107 

 108 

Here, we present a novel method based on image entropy analysis for quantifying pollinator 109 

hairiness. We define pollination effectiveness as single visit pollen deposition (SVD): the 110 

number of conspecific pollen grains deposited on a virgin stigma in a single visit (King et al. 111 

2013; Ne'eman et al. 2010). SVD is a measure of an insects’ ability to acquire free pollen 112 

grains on the body surface and accurately deposit them on a conspecific stigma. We predict 113 

that hairiness, specifically on the body parts that contact the stigma, will have a strong 114 

association with SVD. We show that the best model for predicting pollinator SVD for pak 115 

choi Brassica rapa is highly predictive and includes hairiness of the face and thorax dorsal 116 

regions as predictors, and the face region alone explains more than 90% of the variation. 117 

Similarly, the best model for predicting SVD for kiwifruit Actinidia deliciosa includes the 118 
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face and thorax ventral regions and has good predictive power. Our novel method for 119 

measuring hairiness is rigorous, time efficient and inherently linked to pollination function. 120 

Accordingly, this method could be applied in diverse trait-based pollination studies to 121 

progress understanding of the mechanisms that drive pollination processes. 122 

 123 

Materials and Methods 124 

Imaging for hairiness analysis  125 

We photographed pinned insect specimens using the Visionary Digital Passport portable 126 

imaging system (Figure 1). Images were taken with a Canon EOS 5D Mark II digital camera 127 

(5616 x 3744 pix). The camera colour profile was sRGB IEC61966-2.1, focal length was 128 

65mm and F-number was 4.5. We used ventral, dorsal and frontal shots with clear 129 

illumination to minimise reflection from shinny insect body surfaces. All photographs were 130 

taken on a plain white background. Raw images were exported to Helicon Focus 6 where 131 

they were stacked and stored in .jpg file format. 132 

 133 

Image processing and analysis 134 

We produced code to quantify insect pollinator hairiness using MATLAB (MathWorks, 135 

Natick, MA, USA), and functions from the MATLAB Image Processing ToolBox. We 136 

quantified relative hairiness by creating an entropy image for each insect photograph, and 137 

computed the average entropy within user-defined regions (Gonzales et al. 2004). To 138 

calculate entropy values for each image we designed three main functions. The first function 139 

allows the user to define up to four regions of interest (RoIs) within each image. The user 140 

can define regions by drawing contours as closed polygonal lines of any arbitrary number of 141 

vertexes. All information about regions (location, area and input image file name) is stored 142 

as a structure in a .mat file. 143 
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 144 

The second function executes image pre-processing. We found that some insects had pollen 145 

grains or other artefacts attached to their bodies, which would alter the entropy results. Our 146 

pre-processing function eliminates these objects from the image by running two filtering 147 

processes. First, the function eliminates small objects with an area less than the user 148 

definable threshold (8 pixels by default). For the first task, each marked region is segmented 149 

using an optimized threshold obtained by applying a spatially dependant thresholding 150 

technique. Once each region has been segmented, a labelling process is executed for all 151 

resulting objects and those with an area smaller than the minimum value defined by the user 152 

are removed. Secondly, as pollen grains are often round in shape, the function eliminates 153 

near-circular objects. The perimeter of each object is calculated and its similarity to a circle 154 

(S) id defined as: 155 

𝑆 =
4𝜋 ∙ 𝐴𝑟𝑒𝑎
𝑃𝑒𝑟𝑖𝑚𝑒𝑡𝑒𝑟! 

Objects with a similarity coefficient not within the bounds defined by the user (5% by 156 

default) are also removed from the image. Perimeter calculation is carried out by finding the 157 

object’s boundary, and computing the accumulated distance from pixel centre to pixel centre 158 

across the border, rather than simply counting the number of pixels in the border. The 159 

entropy filter will not process objects that have been marked as “deleted” by the pre-160 

processing function. This initial pre-processing provides flexibility by allowing users to 161 

define the minimum area threshold and the degree of similarity of objects to a circle. Users 162 

can also disable the image pre-processing by toggling a flag when running the entropy filter. 163 

 164 

Once pre-processing is complete, each image is passed to the third function, which is the 165 

entropy filter calculation stage. The entropy filter produces an overall measure of 166 

randomness within each of the user defined regions on the image. In information theory, 167 



8 
 

entropy (also expressed as Shannon Entropy) is an indicator of the average amount of 168 

information contained in a message (Shannon 1948). Therefore, Shannon Entropy, H, of a 169 

discrete random variable 𝑋 that can take n possible values 𝑥!, 𝑥!, . . . , 𝑥! , with a probability 170 

mass function 𝑃(𝑋) is given by: 171 

𝐻(𝑋) = − 𝑃 𝑥! ∙ 𝐿𝑜𝑔!(𝑃 𝑥! )
!

!!!

 

When this definition is used in image processing, local entropy defines the degree of 172 

complexity (variability) within a given neighbourhood around a pixel. In our case, this 173 

neighbourhood (often referred to as the structuring element) is a disk with radius 𝑟 (we call 174 

the radius of influence) that can be defined by the user (7 pixels by default). Thus for a given 175 

pixel in position (i,j) in the input image, the entropy filter computes the histogram 𝐺!" (using 176 

256 bins) of all pixels within its radius of influence, and returns its entropy value 𝐻!" as: 177 

𝐻!" = −𝐺!" ∙ 𝑙𝑜𝑔!(𝐺!") 

where 𝐺!" is a vector containing the histogram results for pixel (i,j) and (∙) is the dot product 178 

operator. Using default parameters, our entropy filter employs a 7 pixel (13 x 13 179 

neighbourhood) radius of influence, and a disk-shaped structuring element, which we 180 

determined based on the size of hairs. Therefore, in the entropy image, each pixel takes a 181 

value of entropy when considering 160 pixels around it (by default). We determined the 182 

optimal radius of influence for the entropy filter by running our entropy function with the 183 

radius of influence set as a variable parameter. We then visually compared the contrast in 184 

areas of low vs. high hairiness in the resulting entropy images (i.e. Figure 1). We found that 185 

a 7 pixel radius of influence gave the best contrast between low and high hairiness areas for 186 

our species set. Hair thickness values across species typically ranged between 3.5-4.5 pixels 187 

and therefore, the 7 pixel radius of influence is approximately two times the width of a hair. 188 

 189 
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The definition of the optimum radius of influence depends on the size of the morphological 190 

responsible for the complexity in the RoI. This is defined not only by the physical size of 191 

these features but also by the pixel-to-millimetre scaling factor (i.e. number of pixels in the 192 

sensor plane per mm in the scene plane). Thus, although 7 pixels is the optimum in our case 193 

to detect hairs, the entropy filter function takes this radius as an external parameter which 194 

can be adjusted by the user to meet their needs. 195 

 196 

The entropy filter function is a process that runs over three different entropy layers (ER, EG, 197 

EB), one for each of the camera’s colour channels (Red, Green, and Blue), for each input 198 

image. These three images are combined into a final combined entropy image ES, where 199 

each pixel in position (i,j) takes the value ES(i,j): 200 

𝐸!(!,!) = 𝐸!(!,!) ∙ 𝐸!(!,!) ∙ 𝐸!(!,!) 

Once entropy calculations are complete, our function computes averages and standard 201 

deviations of ES within each of the regions previously defined by the user, and writes the 202 

results into a .csv file (one row per image). Entropy values produced by this function are 203 

consistent for different photos of the same region on the same specimen (Supporting 204 

Information 6; Table S2). The scripts for the image pre-processing, region marking and 205 

entropy analysis functions are provided, along with a MATLAB tutorial (Supporting 206 

Information 1-4). 207 

 208 

Hairiness as a predictor of SVD and pollen load 209 

 210 

Model flower floral biology and pollinator collection  211 

Chris Cutler� 2016-10-29 6:23 PM
Comment [1]: Is this supposed to 
be a second-level heading without 
text? If so, the next heading (“Model 
flower floral biology and pollinator 
collection”) and others should be a 
different format. Or, should this 
heading be removed? 
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We used pak choi Brassica rapa var. chinensis (Brassicaceae) and kiwifruit Actinidia 212 

deliciosa (Actinidiaceae) as model flowers to determine if our measurement of insect 213 

hairiness is a good predictor of pollinator effectiveness. 214 

 215 

Both B. rapa and A. deliciosa are important mass flowering global food crops (Klein et al. 216 

2007a; Rader et al. 2009). B. rapa has an actinomorphic open pollinated yellow flower with 217 

four sepals, four petals, and six stamens (four long and two short) (Walker et al. 1999). The 218 

nectaries are located in the centre of the flower, between the stamens and the petals, forcing 219 

pollinators to introduce their head between the petals. B. rapa shows increased seed set in 220 

the presence of insect pollinators and the flowers are visited by a diverse assemblage of 221 

insects that differ in their ability to transfer pollen (Rader et al. 2013). A. deliciosa is 222 

dioecious with individual plants producing either male or female flowers. Flowers are large 223 

(4-6 cm in diameter) and typically have 5-9 white/cream coloured petals (Devi et al. 2015). 224 

Flowers have multiple stamens and staminodes with yellow anthers. Female flowers have a 225 

large stigma with multiple branches that form a brush-like structure. Both male and female 226 

flowers do not produce nectar but both produce pollen, which acts as a reward to visitors. 227 

Like B. rapa, A. deliciosa flowers are visited by a diverse range of insects that differ in their 228 

ability to transfer pollen, and seed set is increased in the presence of insect pollinators (Craig 229 

et al. 1988). 230 

 231 

We collected pollinating insects for image analysis during the summer of December 2014 – 232 

January 2015. Insects were chilled immediately and then killed by freezing within 1 day and 233 

stored at -18°C in individual vials. All insects were identified to species level with assistance 234 

from expert taxonomists. 235 

 236 
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Image processing 237 

We measured the hairiness of 10 insect pollinator species (n=8-10 individuals per species), 238 

across five families and two orders. This included social, semi-social and solitary bees and 239 

pollinating flies. Regions marked included: 1) face; 2) head dorsal; 3) head ventral; 4) front 240 

leg; 5) thorax dorsal; 6) thorax ventral; 7) abdomen dorsal and 8) abdomen ventral. All 241 

entropy analysis was carried out using our image processing method outlined above. 242 

 243 

Single visit pollen deposition (SVD) and pollen load 244 

For B. rapa we used SVD data for insect pollinators presented in Rader et al. (2009) and 245 

Howlett et al. (2011); a brief description of their methods follows. 246 

 247 

Pollen deposition on stigmatic surfaces (SVD) was estimated using manipulation 248 

experiments. Virgin B. rapa inflorescences were bagged to exclude all pollinators. Once 249 

flowers had opened, the bag was removed, and flowers were observed until an insect visited 250 

and contacted the stigma in a single visit. The stigma was then removed and stored in 251 

gelatine-fuchsin and the insect was captured for later identification. SVD was quantified by 252 

counting all B. rapa pollen grains on the stigma. Mean values of SVD for each species are 253 

used in our regression models. 254 

 255 

To quantify the number of pollen grains carried (pollen load), sensu Howlett et al. (2011), 256 

collected insects while foraging on B. rapa flowers. Insects were captured using plastic vials 257 

containing a rapid killing agent (ethyl acetate). Once dead, a cube of gelatine-fuchsin was 258 

used to remove all pollen from the insect’s body surface. Pollen collecting structures (e.g., 259 

corbiculae, scopae) were not included in analyses because pollen from these structures is not 260 

available for pollination. Slides were prepared in the field by melting the gelatine-fuchsin 261 
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cubes containing pollen samples onto microscope slides. B. rapa pollen grains from each 262 

sample were then quantified by counting pollen grains in an equal-area subset from the 263 

sample and multiplying this by the number of equivalent sized subset areas within the total 264 

sample. 265 

 266 

We measured SVD for A. deliciosa (n = 8-12 per pollinator species). SVD measurements 267 

were taken for insect movements from staminate to pistillate flowers, using a method that 268 

differed from B. rapa. Individual pistillate buds were enclosed within paper bags 2-3 days 269 

prior to opening, and were later used as test flowers to evaluate pollen deposition by 270 

flowering visiting species. Each bag was secured using a wire tie (coated in plastic) that was 271 

gently twisted to exclude pollinators from visiting the opening flowers. Following flower 272 

opening, the bag was removed and the flower pedicel abscised where it joined the vine. The 273 

test flower was then carefully positioned using forceps to hold the pedicel 1-2 cm from a 274 

staminate flower containing a foraging insect, avoiding any contacting between flowers. If 275 

the test flower was visited by an insect, we allowed it to forage with minimal disturbance 276 

until it moved from the flower on its own accord. The first stigma touched by the foraging 277 

insect was then lightly marked near its base using a fine black felt pen. We then placed the 278 

marked stigma onto a slide and applied a drop of Alexander stain (Dafni 2007). Alexander 279 

stain was used due to its effectiveness to stain staminate and pistillate pollen differently 280 

(pistillate pollen - green-blue, staminate pollen - dark red) (Goodwin & Perry 1992). 281 

 282 

Statistical analyses 283 

We used linear regression models and AICC (small sample corrected Akaike information 284 

criteria) model selection to determine if our measure of pollinator hairiness is a good 285 

predictor of SVD and pollen load. We constructed global models with SVD or pollen load as 286 
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the response variable, body region as predictors and body length as an interaction i.e. SVD 287 

or pollen load ~ body length * entropy face + entropy head dorsal + entropy head ventral + 288 

front leg + entropy thorax dorsal + entropy thorax ventral + entropy abdomen dorsal + 289 

entropy abdomen ventral. Global linear models were constructed using the lm(stats) 290 

function. We excluded other body size measurements from models as they had high 291 

correlation coefficients (Pearson’s r > 0.7) with body length. AICC model selection was 292 

carried out on the global models using the function glmulti() with fitfunction = “lm” in the 293 

package glmulti. We examined heteroscedasticity and normality of errors of models by 294 

visually inspecting diagnostic plots using the glmulti package (Crawley 2002). Variance 295 

inflation factors (VIF) of predictor variables were checked for the best models using the vif() 296 

function in the car package. All analyses were done in R version 3.2.4 (R Development Core 297 

Team 2014). 298 

 299 

Results 300 

Body hairiness as a predictor of SVD 301 

For SVD on B. rapa, the face and thorax dorsal regions were retained in the best model 302 

selected by AICC, which had an adjusted R2 value of 0.98. The subsequent top models within 303 

10 AICC points all retained the face and thorax dorsal regions and additionally included the 304 

abdomen ventral (adjusted R2 = 0.98), head dorsal (adjusted R2 = 0.98), and thorax ventral 305 

(adjusted R2 = 0.97) and front leg (adjusted R2 = 0.97) regions respectively (Table 1; Figure 306 

2). The model with the face region included as a single predictor had an adjusted R2 value of 307 

0.88, indicating that this region alone explained a majority of the variation in the top SVD 308 

models. 309 

 310 

Chris Cutler� 2016-10-29 6:18 PM
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The best model for predicting SVD on A. deliciosa included the face and thorax ventral 311 

regions as predictors (adjusted R2 = 0.91) (Table 1; Figure 3). However, the subsequent top 312 

four models were within two AICC points of the best model and therefore cannot be 313 

discounted as the potential top model. The face, thorax ventral, head ventral and abdomen 314 

ventral regions were retained in four of the five top models, which indicates that hairiness of 315 

the face and ventral regions is important for pollen deposition on A. deliciosa. 316 

 317 

Body hairiness as a predictor of pollen load 318 

The best model for pollen load retained the face region only and had an adjusted R2 value of 319 

0.81 (Figure 4; Table 1). The subsequent best models retained the abdomen dorsal (adjusted 320 

R2 value of 0.73), the face and head dorsal (adjusted R2 = 0.83), the face and abdomen dorsal 321 

(adjusted R2 = 0.82) and the abdomen dorsal and front leg (adjusted R2 = 0.8) regions 322 

respectively. 323 

 324 

Discussion 325 

Here we present a rigorous and time-efficient method for quantifying hairiness, and 326 

demonstrate that this measure is an important pollinator functional trait. We show that insect 327 

pollinator hairiness is a strong predictor of SVD for the open-pollinated flower B. rapa. 328 

Linear models that included multiple body regions as predictors had the highest predictive 329 

power; the top model for SVD retained the face and thorax dorsal regions. However, the face 330 

region was retained in all of the top models, and when included as a single predictor, had a 331 

very strong positive association with SVD. In addition, we show that hairiness, particularly 332 

on the face and ventral regions, is a good predictor of SVD for A. deliciosa, which has a 333 

different floral morphology, suggesting our method could be suitable for a range of flower 334 

types. Hairiness was also a good predictor for pollen load, and the face region was again 335 

Chris Cutler� 2016-10-29 4:56 PM
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retained in the top model for B. rapa. The abdomen dorsal, head dorsal and front leg regions 338 

were also good predictors of pollen load and were retained in the subsequent top models. 339 

Our results validate the importance of insect body hairs for transporting and depositing 340 

pollen. Surprisingly, we did not find strong associations between SVD and body size, and 341 

top models did not contain the body length interaction. Similarly, body length was not 342 

retained in the top models for pollen load. This indicates that our measure of hairiness has 343 

far greater predictive power than body size for both SVD and pollen load. 344 

 345 

When deciding on which body regions to measure hairiness, researchers may first need to 346 

assess additional pollinator traits, such as flower visiting behaviour. This is because the way 347 

in which insects interact with flowers influences what body parts most frequently contact the 348 

floral reproductive structures (Roubik 2000). For some open pollinated flowers, such as B. 349 

rapa, facial hairs are probably the most important for pollen deposition because the face is 350 

the most likely region to contact the anthers and stigma. However, for flowers with different 351 

floral morphologies, facial hairs may not be as important because the floral reproductive 352 

structures have different positions relative to the insect’s body structures. For example, disc-353 

shaped flowers tend to deposit their pollen on the ventral regions of pollinators, while labiate 354 

flowers deposit their pollen on the dorsal regions (Bartomeus et al. 2008). We found that 355 

hairiness on the face and ventral regions of pollinators was most important for pollen 356 

deposition on A. deliciosa flowers. The reproductive parts of A. deliciosa form a brush 357 

shaped structure and therefore are most likely to contact the face and ventral surfaces of 358 

pollinators. Accordingly, where studies focus on a single plant species i.e. crop based 359 

studies, it is important to consider trait matching when selecting pollinator body region(s) to 360 

analyse (Butterfield & Suding 2013; Garibaldi et al. 2015). 361 

 362 
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It is important to consider that pollinator performance is a function of both SVD and 363 

visitation frequency, and these two components operate independently (Kremen et al. 2002; 364 

Mayfield et al. 2001). Here, we focus on a single trait that is important for pollinator 365 

efficiency (SVD), but to calculate pollinator performance researchers need to measure both 366 

efficiency and visitation rate. Additional pollinator traits related to visitation rate, as well as 367 

other behavioural traits such as activity patterns relative to the timing of stigma receptivity 368 

(Potts et al. 2001) and foraging behaviour, e.g., nectar vs. pollen foraging (Herrera 1987; 369 

Javorek et al. 2002; Rathcke 1983), may be important for predicting pollination 370 

performance. In some circumstances it might also be important to consider trait differences 371 

between male and female pollinators, particularly for some bee species. Male and female 372 

bees may have different pollen deposition efficiency due to differences in their foraging 373 

behaviour and resource requirements. For example, female bees are likely to visit flowers to 374 

collect pollen for nest provisioning while males simply consume nectar and pollen during 375 

visits (Cane et al. 2011). For some flowers, male bees have a similar pollination efficiency 376 

compared to females (e.g., summer squash Cucurbita pepo; Cane et al. 2011) while for 377 

others, female bees are more effective than males (e.g., lowbush blueberry Vaccinium 378 

angustifolium; Javorek et al. 2002). 379 

 380 

For community-level studies that use functional diversity approaches, our method could be 381 

used to quantify hairiness for several body regions and weighted to give better representation 382 

of trait diversity within the pollinator community. This is necessary where plant 383 

communities contain diverse floral traits i.e. open-pollinated vs. closed-tubular flowers 384 

(Fontaine et al. 2006). Hairs on different areas of the insect body are likely to vary in relative 385 

importance for pollen deposition depending on trait matching (Bartomeus et al. 2016). Our 386 

method requires hairiness to be measured at the individual-level (Figure S1), which makes it 387 
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an ideal trait to use in new functional diversity frameworks that use trait probabilistic 388 

densities rather than trait averages (Carmona et al. 2016; Fontana et al. 2016). Combining 389 

predictive traits, such as pollinator hairiness, with new methods that amalgamate 390 

intraspecific trait variation with multidimensional functional diversity, will greatly improve 391 

the explanatory power of trait-based pollination studies. 392 

 393 

One of the greatest constraints to advancing trait-based ecology is the time-demanding 394 

nature of collecting trait data. This is because ecological communities typically contain 395 

many species, which have multiple traits that need to be measured and replicated (Petchey & 396 

Gaston 2006). To improve the predictive power of trait-based ecology and streamline the 397 

data collection process we must firstly identify traits that are strongly linked to ecosystem 398 

functions and secondly, develop rigorous and time-efficient methodologies to measure traits 399 

at the individual level. We achieve this by providing a method for quantifying a highly 400 

predictive trait at the individual-level, in a time-efficient manner. Our method also 401 

complements other recently developed predictive methods for estimating difficult-to-402 

measure traits that are important for pollination processes i.e. bee tongue length; Cariveau et 403 

al. (2016). 404 

 405 

Predicating the functional importance of organisms is critical in a rapidly changing 406 

environment where accelerating biodiversity loss threatens ecosystem functions (McGill et 407 

al. 2015). Our novel method for measuring pollinator hairiness could be used in any studies 408 

that require quantification of hairiness, such as understanding adhesion in insects (Bullock et 409 

al. 2008; Clemente et al. 2010) or epizoochory (Albert et al. 2015; Sorensen 1986). It is also 410 

a much needed addition to the pollination biologist’s toolbox, and will progress the 411 
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endeavour to standardise trait-based approaches in pollination research. This is a crucial step 412 

towards developing a strong mechanistic underpinning for trait-based pollination research. 413 
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