A large and unusually colored new snake species of the genus *Tantilla* (Squamata; Colubridae) from the Peruvian Andes (#12701)

First submission

Please read the **Important notes** below, and the **Review guidance** on the next page. When ready **submit online**. The manuscript starts on page 3.

Important notes

Editor and deadline

Michael Wink / 10 Sep 2016

Files Please visit the overview page to <u>download and review</u> the files

not included in this review pdf.

Declarations One or more DNA sequences were reported.

Involves vertebrate animals.

Involves a field study on animals or plants.

Describes a new species.

Please in full read before you begin

How to review

When ready <u>submit your review online</u>. The review form is divided into 5 sections. Please consider these when composing your review:

- 1. BASIC REPORTING
- 2. EXPERIMENTAL DESIGN
- 3. VALIDITY OF THE FINDINGS
- 4. General comments
- 5. Confidential notes to the editor
- You can also annotate this **pdf** and upload it as part of your review

To finish, enter your editorial recommendation (accept, revise or reject) and submit.

BASIC REPORTING

- Clear, unambiguous, professional English language used throughout.
- Intro & background to show context.
 Literature well referenced & relevant.
- Structure conforms to **PeerJ standard**, discipline norm, or improved for clarity.
- Figures are relevant, high quality, well labelled & described.
- Raw data supplied (See <u>PeerJ policy</u>).

EXPERIMENTAL DESIGN

- Original primary research within Scope of the journal.
- Research question well defined, relevant & meaningful. It is stated how research fills an identified knowledge gap.
- Rigorous investigation performed to a high technical & ethical standard.
- Methods described with sufficient detail & information to replicate.

VALIDITY OF THE FINDINGS

- Impact and novelty not assessed.

 Negative/inconclusive results accepted.

 Meaningful replication encouraged where rationale & benefit to literature is clearly stated.
- Data is robust, statistically sound, & controlled.
- Conclusion well stated, linked to original research question & limited to supporting results.
- Speculation is welcome, but should be identified as such.

The above is the editorial criteria summary. To view in full visit https://peerj.com/about/editorial-criteria/

A large and unusually colored new snake species of the genus Tantilla (Squamata; Colubridae) from the Peruvian Andes

Claudia Koch Corresp., 1, Pablo J Venegas 2

Corresponding Author: Claudia Koch Email address: c.koch@zfmk.de

A new colubrid species of the genus *Tantilla* is described from the dry forest of the thern Peruvian Andes on the basis of two specimens which exhibit a conspicuous sexual dimorphism. It represents the third species of the genus in Peru. The new species is easily distinguished from its congeners on the basis of mtDNA sequence divergence and by the combination of scalation characteristics and the unusual transversely-banded color pattern on the dorsum. A detailed description of the skull morphology of the new species is given based on micro-computed tomography images. The habitat of this new species is gravely threatened due to human interventions. Thorough investigation and conservation actions in the intern-andean valley Marañón River of is urgently needed.

 $^{^{}m 1}$ Department of Herpetology, Zoologisches Forschungsmuseum Alexander Koenig (ZFMK), Bonn, Germany

Department of Herpetology, Centro de Ornitología y Biodiversidad (CORBIDI), Lima, Peru

Manuscript to be reviewed

- A large and unusually colored new snake species of the genus *Tantilla* (Squamata;
- 2 Colubridae) from the Peruvian Andes
- 3 Claudia Koch¹ & Pablo J. Venegas²

4

- ¹Zoologisches Forschungsmuseum Alexander Koenig (ZFMK), Adenauerallee 160, 53113
- 6 Bonn, Germany
- ²Centro de Ornitología y Biodiversidad (CORBIDI), Santa Rita 117, Huertos de San Antonio,
- 8 Surco, Lima, Perú
- 9 Corresponding author: Claudia Koch, E-mail: c.koch@zfmk.de

25

26

1 ABSTRACT

- A new colubrid species of the genus *Tantilla* is described from the dry forest of the Northern
- Peruvian Andes on the basis of two specimens which exhibit a conspicuous sexual
- dimorphism. *Tantilla tjiasmantoi* sp. nov. represents the third species of the genus in Peru.
- 15 The new species is easily distinguished from its congeners on the basis of mtDNA sequence
- divergence and by the combination of scalation characteristics and the unusual transversely-
- banded color pattern on the dorsum. A detailed description of the skull morphology of the
- new species is given based on micro-computed tomography images. The habitat of this new
- species is gravely threatened due to human interventions. Thorough investigation and
- 20 conservation actions in the intern-andean valley Marañón River of is urgently needed.
- **Key words:** Colubridae, dry forest, endemic, hemipenes, intern-andean valley, La Libertad,
- 23 Marañón, micro-computed tomography, osteology, skull morphology, new cies, osteology,
- 24 phylogenetic relationship, Reptilia, Serpentes, X-ray

INTRODUCTION

- 27 Seasonally dry tropical forests (SDTF) are characterised by a distinct seasonality with several
- 28 months of arid-like conditions in which many plants lose their leaves (Murphy & Lugo,
- 29 1986). In South America SDTFs are discontinuously distributed and can occupy large areas
- such as the Caatinga in notineastern Brazil or small fragments as being found in inter-
- Ander alleys of Peru or Ecuador (Werneck et al., 2011). Nevertheless, the different areas of
- 32 South American SDTFs are very divers and the species compositions differ substantially
- 33 (Miles et al., 2006). However, SDTFs are considered as being one of the most threatened
- tropical ecosystems with a strong rate of annual deforestation (Janzen, 1988). The Equatorial
- dry forest is one representative of this forest type, which expands from such Ecuador to the
- northern part of Peru (Brack, 1986; Särkinen et al., 2011; Venegas, 2005). Although it has so
- far rarely been studied with respect to its flora and fauna, recent studies indicate that
- 38 especially the inter-Andean part of this dry forest, along the valley of the Marañón River and
- its tributaries, is home to a high proportion of endemic species (Statterfield et al., 1998;
- 40 Bridgewater et al., 2003; Koch, Venegas & Böhme, 2006, 2015; Koch et al., 2011, 2013;
- Venegas et al., 2008; Särkinen et al., 2011). Unfortunately, this part of the Equatorial dry

Manuscript to be reviewed

forest is facing multiple and complex threats due to logging, agriculture and narcotics plantations, mining activities, and above all due to several planned hydroelectric projects that 43 will lead to flooding of vast portions of the inter-Andean dry forest (Q & V Ingenieros SAC, 44 2007; Finer & Jenkins, 2012). These threats, together with the enormous lack of knowledge 45 that still exists about its biodiversity, and the fact that no protected area has so far been 46 designated in the inter-Andean part of the Equatorial dry forest (IUCN & UNEP-WCMC). 47 2016), highlights the urgent priority for conservation and research activities in this area. 48 To contribute to the knowledge of the peculiar herpetofauna of the Andean dry forest, we 49 conducted fieldwork in intended dean valleys of the thern Peruvian Departments of 50 Amazonas, Cajamarca, and La Libertad and surveyed 28 localities along a stretch of more 51 than 350 km of the Marañón River and its tributaries. In two of the southernmost investigation 52 areas in the Department of La Libertad, we collected each a specimen of a new colubrid 53 species, which we could have assign to any of the known genera based on outer 54 morpholo la traits alone. However, a phylogenetic analysis based on 12S and 16S rRNA 55 together with a comparison of the skull morphology via micro-computed tomography (micro-56 CT) scans revealed sufficient evidence to place it in the genus *Tantilla* Baird & Girard, 1853. 57 Currently, 61 species within the genus *Tantilla* are recognized (Wilson & Mata-Silva, 2015; 58 Mata-Silva & Wilson, 2016). Twelve species occur in mainland South America, of which 59 only two are found in Peru: T. capistrata Cope, 187 T. melanocephala (Linnaeus, 60 1758). Most species of the genus have either a ph-colored or a longitudinally striped dorsal 61 color pattern. Only T. shawi Taylor, 1949 from Mexico, T. semicincta (Duméril, Bibron & 62 Duméril, 1854) from Colombia and Venezuela, and T. supracincta (Peters, 1863) from 63 Colombia, Costa Rica, Ecuador, Nicaragua, and Panama have a transversely-banded color 64

66

67

65

MATERIALS AND METHODS

68 Fieldwork, data sampling and Zoobank registration

- The specimens were detected during visual encounter surveys (Crump & Scott, 1994) during our fieldwork conducted between March 2009 and November 2010. Altitudes above sea level
- and geographic coordinates were recorded with a GPS (Garmin GPSMap 60CSx) using the
- 72 geodetic datum WGS84. Air temperatures and humidity were taken with a digital thermo-

pattern on the dorsal part of the body (Wilson, 1976; Wilson & Mata-Silva, 2015).

- 73 hygrometer (Extech) using an external sensor. Specimens were collected and processed
- 74 following the guidelines and protocols stated in the current countries. All the necessary
- research and collecting (0020-2009-AG-DGFFS-DGEFFS, 0424-2010-AG-DGFFS-
- DGEFFS) and export permits (003983-AG-DGFFS) for this study were issued by the
- 77 Ministerio de Agricultura of the government of Peru (Ministerio de Agricultura). All efforts
- were made to monize animal suffering. Both specimens were photographed in live and
- subsequently euthanized with the narcotic T61[®]. After taking tissue samples from the muscle
- of the lateral body side, the specimens were placed for about 12h in 10% formalin for
- fixation, and subsequently stored in 70% ethanol. Finally the specimens were deposited in the
- collections of the Centro de Ornitología y Biodiversidad, Lima, Peru (CORBIDI), and the
- 83 Zoologisches Forschungsmuseum Alexander Koenig, Bonn, Germany (ZFMK).
- The electronic version of this article in Portable Document Format (PDF) will represent a
- published work according to the International Commission on Zoological Nomenclature
- 86 (ICZN), and hence the new names contained in the electronic version are effectively
- published under that Code from the electronic edition alone. This published work and the
- 88 nomenclatural acts it contains have been registered in ZooBank, the online registration system
- for the ICZN. The ZooBank LSIDs (Life Science Identifiers) can be resolved and the
- associated information viewed through any standard web browser by appending the LSID to
- 91 the prefix http://zoobank.org/. The LSIDs for this publication is:
- 92 urn:lsid:zoobank.org:pub:00EBF842-3AFA-4913-B381-95BDF86DAFAB. The online
- version of this work is archived and available from the following digital repositories: PeerJ,
- 94 PubMed Central and CLOCKSS.
- 95 Comparative data for other South American colubrid species and genera were taken from
- 96 Peracca (1904), Van Denburgh (1912), Werner (1924), Stuart & Bailey (1941), Slevin (1942),
- 97 Smith & Taylor (1945), Stuart (1949, 1954), Peters (1960), Fritts & Smith (1969), Peters,
- 98 Donoso-Barros & Orejas-Miranda (1970), Villa (1971, 1990), Myers (1973), Wilson (1976,
- 99 1987), Wilson & Mena (1980), Savages & Donnelly (1988), Perez-Santos & Moreno (1988),
- 100 Savage & Crother (1989), McCranie & Wilson (1991a, 1991b, 1992), McCranie & Villa
- 101 (1993), Cei (1993), Ferrarrezzi (1993), Puorto & Ferrarrezzi (1993), Myers & Cadle (1994),
- 102 Smith & Campbell (1994), Campbell, Camarillo & Ustach (1995), Zaher (1996, 1999),
- Franco, Marques & Puorto (1997), Campbell (1998), Campbell & Smith (1998), Starace
- 104 (1998), Kornacker (1999), Savage (2002), Sawaya & Sazima (2003), Köhler (2003, 2008),
- McCranie & Castaneda (2004), Solórzano (2004), Stafford (2004), Lema, D'Agostini &
- 106 Cappelari (2005), Scott et al. (2006), Cacciali, Carreira & Scott (2007), Harvey et al. (2008),

Manuscript to be reviewed

Jansen & Köhler (2008), Zaher et al. (2009), Myers (2011), Passos, Ramos & Pereira (2012), 107 Moura, Caldeira Costa & Magalhães Pirani (2013), Myers & McDowell (2014), Wilson & 108 Mata-Silva (2015). 109 110 Morphological analyses 111 Measurements of head and scales were taken with a digital caliper and rounded to the nearest 112 0.1 mm, snout-t-length and tail length were taken with a measuring tape and rounded to 113 the nearest 1 mm. Morphometric and meristic characters are abbreviated as follows: SVL 114 (snout- report length, from tip of snout to cloaca); TL (length) f tail); HW (width) head 115 across supraoculars); HH (height of head at highest part of head); HL (len of head); DSN 116 (distance from tip of snout to nostril); DNE (distance from nostril to anterior margin of eye); 117 ED (diameter); MBD (body diameter at midbody); MTD (midtail diameter). The 118 number of ventral scales was counted in longitudinal row from mental to anal plate, and the 119 number of subcaudal scales was counted in longitudinal row from the cloaca to the tip of the 120 121 tail (Dowling, 1951). The number of dorsal scales rows around the body was counted at three different points: (1) at a head's length behind the head; (2) at midbody; (3) at a head's length 122 before the cloaca. A light hocular was used to count and characterize small scales and to 123 identify the number of teeth in the male paratype. 124 For obtaining information on skeletal morphology, specimens were X-rayed in 2D (Faxitron 125 X-ray LX60) and in 3D by use of a micro-CT scanner (Bruker Skyscan 1272). Terminology 126 for the skull structures was adopted from Bulloch & Tanner (1966) and Cundall & Irish 127 (2008). The structures of the skull are abbreviated as follows: PMX (Premaxilla); NA (nasal); 128 SMX (septomaxilla); F (frontal); PFR (prefrontal); P (parietal); PO (postorbital); PRO 129 (prootic); ST (supratemporal); SO (supraoccipital); EXO (exoccipital); Q (quadrate); MX 130 (maxilla); ECP (ectopterygoid); PAL (palatine); MP (maxillary process of palatine); CHP 131 (chanal process of palatine); PT (pterygoid); BS (basisphenoid); BO (basioccipital). 132 The partially everted hemipenes of the male paratype were removed from the specimen and 133 prepared following Zaher & Prudente (2003). Finally the organs were scanned with the micro-134 CT scanner. Left hemipenis was scanned dry, whereas right hemipenis was scanned in 135

136

alcohol. Terminology for hemipenes morphology follows Zaher (1999).

Peer

138 Phylogenetic analysis

139	Genomic DNA was extracted from the collected tissue samples at the Center for Molecular
140	Biodiversity Research of the ZFMK, using the DNeasy Blood & Tissue Kit (Qiagen)
141	following the standardized extraction protocol provided by the manufacturer. Two
142	mitochondrial markers, 12S rRNA and 16S rRNA, and the nuclear gene RAG1
143	(recombination-activating gene 1) were amplified using polymerase chain reactions (PCR)
144	having a final volume of 20 μ l and carried out either on a GeneAmp 2700 or on a Biometra
145	thermal cycler. The QIAGEN® Multiplex PCR Kit (HotStarTaq® DNA Polymerase,
146	Multiplex PCR Buffer with 6 mM MgCl ₂ , dNTP Mix, 2 μ l Q-solution, 2.3 μ l ultrapure H ₂ O)
147	was used for the reaction for all three genes with 1.6 μ l of each primer, and 2.5 μ l of extracted
148	DNA. To amplify the 12S fragment the roughly universal primer pair 12SA-L (light chain)
149	and 12SB-H (heavy chain) of Kocher et al. (1989) was used. The 16S fragment was amplified
150	using the likewise universal primer pair 16sar-L (light chain) and 16sbr-H (heavy chain) of
151	Palumbi et al. (1991). For amplification of RAG1 the primer pair RAG1f2 (light chain) and
152	RAG1r3 (heavy chain) of Schulte & Cartwright (2009) were used. Amplification with the 12S
153	primer pair started with an initial denaturation step for 90 s at 94°C, and 38 cycles were run
154	with denaturing for 45 s at 94°C, annealing for 60 s at 50°C, elongation for 120 s at 74°C, the
155	final elongation for 300 s at 74°C, and cooling at 10°C. Amplification with the 16S primer
156	pair started with an initial denaturation step for 900 s at 95°C, followed by 15 cycles of
157	denaturation for 35 s at 94°C, annealing for 90 s at 60°C, elongation for 90 s at 72°C, plus 25
158	cycles of denaturation for 35 s at 94°C, annealing for 90 s at 45°C, elongation for 90 s at
159	72°C, the final elongation for 600 s at 72°C, and cooling at 10°C. Amplification with the
160	RAG1 primer pair started with an initial denaturation step for 900 s at 95°C, and 40 cycles
161	were run with denaturing for 20 s at 94°C, annealing for 50 s at 60°C, elongation for 90 s at
162	72°C, the final elongation for 600 s at 72°C, and cooling at 10°C. After the PCR, each sample
163	proving successful DNA amplification in an agarose gel electrophoresis, was purified for
164	sequencing using the QIAquick PCR Purification Kit (Qiagen) and the standardized
165	purification protocol provided by the manufacturer. Subsequently, the samples were
166	sequenced by Macrogen Europe Laboratory (Amsterdam, Netherlands). Obtained sequences
167	were checked with the original chromatograph data using BioEdit 7.5.2 (Hall, 1999). The 12S
168	rRNA and 16S rRNA data was supplemented with sequences of 48 species representing 27
169	genera of American colubrid snakes obtained from GenBank. Accession numbers are
170	provided in Table 1. Sequence alignment was done with MAFFT (Katoh, Asimenos & Toh,
171	2009) and manually corrected where necessary. Ambiguous sites (namely in the hypervariable
	Poor! reviewing PDE I (2016:00:12701:0:2:NEW 22 Aug 2016)

1/2	regions of the 168 rRNA) were identified with Gblocks (Castresana, 2000) and excluded from
173	the alignment during subsequent analyses, resulting in 350 bp and 438 bp for 12S and 16S,
174	respectively. For each gene, GTR+I+G was chosen as model of nucleotide substitution by the
175	Akaike information criterion using Modeltest (Posada & Crandall, 1998) as implemented in
176	the package 'phangorn' for Cran R. Phylogenetic trees were inferred using MrBayes 3.2.6
177	(Ronquist et al., 2012), estimating model parameters separately for each gene by partitioning
178	the data set. We used a random starting tree and four independent runs with a maximum of 10
179	million generations each, sampled every 1000. Runs were stopped when the average standard
180	deviation of split frequencies had reached 0.01. Convergence of the Markov chains and
181	effective sample sizes were checked with Tracer v1.6 (Rambaut et al., 2014) and the initial
182	25% of each run were discarded prior to building a consensus tree. In addition to the Bayesian
183	inference (BI), phylogenies were also calculated with Maximum Likelihood (ML) via the
184	RAxML BlackBox (Stamatakis, Hoover & Rougemont, 2008) using the partitioned data, the
185	Gamma model of rate heterogeneity, and 100 bootstraps.
186	
187	RESULTS
188	The taxonomic conclusion of this study is based on the observation of morphological features
189	and inferred phylogenetic relationships.
190	Morphological analyses
191	As typical for the genus <i>Tantilla</i> , the two specimens possess a number of 15 smooth dorsal
192	scale rows throughout the body, one preocular, no loreal, no suboculars, 1+1 temporals, a
193	divided cloacal shield, paired subcaudals (Table 2). Additionally, the skull of the new species
194	is composed of similar bones and bone structures as other species of the genus Tantilla. A
195	comparison with two other congeners (T. capistrata and T. relicta) reveals great similarity to
196	our new species with only minor differences in the shape or size of some bones (Fig. 6).
197	
198	Phylogenetic analysis
199	A pairwise analysis of a fragment of 526 bp of the mitochondrial gene 16S and a 1050 bp
200	for more falls and long and DAC1 of had a major and hand and life and a life
	fragment of the nuclear gene RAG1 of both specimens showed no differences in the 16S

Peer. I

- The Bayesian consensus tree (Fig. 1) obtained from 788 bp of mitochondrial DNA (12S and 202 16S rRNA) was based on 3600 sampled trees and effective sample sizes were > 1000, which 203 indicated good mixing of the Markov chains. Although the topologies obtained from BI and 204 ML differ and the nodes were generally not very well resolved in terms of posterior 205 probabilities and bootstrap values, the four species of *Tantilla* formed a well-supported clade 206 including our two specimens (CORBIDI 7726 and ZFMK 95238). However, node support is 207 lacking between the different species of *Tantilla*, obscuring the exact relationship between 208 209 these taxa. 210 Tantilla tjiasmantoi sp. nov. 211 urn:lsid:zoobank.org:act:15B70DA0-55D5-47D9-8383-453869F3B530 212 Holotype. CORBIDI 7726 from Pías, Province Pataz, Department of La Libertad, Peru (S 213 07°53'56.6", W 077°34'43.8", 1726 m a.s.l), collected by E. Hoyos Granda, A. Beraún and
- 214
- C. Koch on 15 January 2010. 215
- Paratype. ZFMK 95238, from Santa Rosa/El Tingo (Marcamachay), Province Cajabamba, 216
- Department of La Libertad, Peru (07°21'59.3" S, 77°53'53.0" W, 1154 m a.s.l.), collected 217
- by M. Palacios Panta and C. Koch on 13 October 2010. 218
- **Diagnosis and definition.** This comparatively large *Tantilla* is distinguished from its 219
- congeners by the following combination of characters: (1) maximum known SVL of 513 mm 220
- and total length of 638 mm; (2) 179-182 ventrals; (3) 5 paired subcaudals; (4) 7 221
- supralabials; (5) eyes small, not visible from below, with round pupils; (6) dorsals smooth, 222
- without keels or apical pits, rhomboid, in 15 rows throughout the body; (7) loreals absent; (8) 223
- suboculars absent; (9) 2 postoculars; (10) 1 +1 temporals; (11) plate divided; (12) 224
- hypapophyses absent on posterior vertebrae; (13) hemipenes single; (14) body with dark 225
- bands that are not closed on ventral side; (15) conspicuous sexual dimorphism present. 226
- With a maximum known total length of 638 mm *Tantilla tjiasmantoi* sp. nov. is among the 227
- largest species in the genus, only T. shawi, T. impensa, and T. semicincta reach similar or 228
- even larger total length. It can further be easily distinguished from all congeners except for T. 229
- shawi, T. semicincta, and T. supracincta by having a transversely-banded color pattern on the 230
- dorsal part of the body. The higher number of subcaudals (57-65) differentiates the new 231
- species from T. shawi (48-50) and the higher number of ventrals (179-182) further 232

- distinguishes it from *T. semicincta* (161-176) and *T. supracincta* (138-151), as well as from
- the Peruvian species *T. capistrata* (130-156) and *T. melancocephala* (125-177). From the
- other species occurring in mainland South America, it can further be distinguished by a higher
- number of ventrals as compared to *T. alticola* (128-145), *T. andinista* (157), *T. boipiranga*
- 237 (156-167), T. miyatai (165-172), T. nigra (137), T. petersi (172), T. insulamontana (144-157),
- 238 T. reticulata (158-173).
- Description of holotype. an adult female with a snout-vellength (SVL) of 513 mm; tail
- length (TL) 125 mm; head length (HL) 16.3 mm; head width at broadest point (HW) 12.2
- mm; head height (HH) 6.1 mm; TL/Total Length 0.2; SVL/HL 31.5; SVL/HW 42.1; SVL/HH
- 84.1; HW/HL 0.75; HH/HL 2.7; eye diameter (ED) 1.5 mm; HL/ED 10.9; HW/ED 8.1;
- 243 midbody diameter (MBD) 11.5 mm; SVL/MBD 44.6; distance from tip of snout to nostril
- (DSN) 1.5 mm; distance from nostril to anterior margin of eye (DNE) 3 mm; midtail diameter
- 245 (MTD) 2.9 mm.
- Body robust, tail long, body and tail round in cross-section; dorsal scales in 15-15-15-rows,
- without reduction, rhomboid, smooth, lacking keels or apical pits; 182 ventrals; tail distinctly
- smaller in diameter than the body, long and tapering, tail spine pointed; 57 paired subcaudals;
- plate divided.
- 250 Head (Fig. 2) distinct from the body and horizonly compressed, laterally broadened behind
- 251 the eyes. Rostral visible in dorsal view, slightly triangular with dorsal termination subacute,
- about 1.9 times wider than high. Snout rounded in dorsal view. Two internasals, subequal,
- about twice as broad as long, laterally in contact with anterior and posterior nasals. Prefrontals
- large, 1.2 times broader than long, laterally contacting postnasal, second supralabial and
- preocular. Frontal slightly hexagonal with dorsal termination acute, about 1.2 times longer
- 256 than wide, laterally in contact with supraoculars, laterodorsally in contact with parietals.
- Supraoculars about 2.1 times wider than high. Parietals large, 1.6 times longer than wide,
- 258 median suture about as long as frontal length. Nostrils located in posterior portion of anterior
- 259 nasals. Anterior nasals about as high as broad, contacting rostral, internasal, postnasal, and
- 260 first supralabial. Posterior nasals about 1.8 times longer than high, contacting anterior nasal,
- internasal, prefrontal, and first and second supralabial. No loreal. Eyes small with round
- pupils, partly visible in dorsal view, surrounded by one preocular, one supraocular, two
- postoculars, and third and fourth supralabial. No suboculars. Preoculars almost squarish.
- Superior postoculars, about 1.5 times longer than high; lower postoculars slightly pentagonal
- to almost circular. Supralabials 7/7, increasing in size posteriard, last one very large, about 3

 Peerl reviewing PDF | (2016:08:12701:0:2:NEW 23 Aug 2016)

266

Manuscript to be reviewed

preocular, third contacting prefrontal and eye, fourth contacting eye and lower postocular, 267 fifth contacting lower postocular and anterior temporal, sixth contacting anterior temporal, 268 seventh contacting anterior and posterior temporals, and first scale of dorsolateral and lateral 269 body scale row, respectively. 1 +1 temporals, almost rectangular, separating supralabials 5-7 270 from parietals, anterior temporal about 2.5 times longer than high on both sides, 1.3 times 271 longer than posterior one on left side and almost twice as long as posterior one on right side of 272 head, posterior temporal 1.8 times longer than high on left side and about 1.1 times longer 273 than high on right side of head. Mental subrhombical, 1.4 times broader than long, separated 274 from chinshields by first pair of infralabials, which contact each other along the ventral 275 midline. Infralabials 7/7, fourth largest, second smallest, first to fourth contacting anterior pair 276 of chinshields; fourth infralabial contacting posterior chinshield and first gular scale. Two 277 pairs of almost rectangular chinshields; anterior chinshields about 1.7 times longer than wide 278 and 1.3 times longer than posterior chinshields; posterior chinshields about 2.2 times longer 279 than wide, laterally contacting fourth infralabial, dorsally separated from the ventrals by four 280 gular scales. 281 Trunk vertebrae 185; hypapophyses present on anterior 1/5 of trunk vertebrae, absent on 282 posterior vertebrae; caudal vertebrae 56 (Fig. 4). 283 **Coloration.** In live, the dorsal ground color of head, body and tail is orange-yellowish, 284 slightly paler laterally, most scales on body and tail with reddish-brown outlines; there are 285 about 27 blackish dorsal crossbars on the body that are for seven scales in length and are 286 stretched across all dorsal scale rows except the most lateral row, slightly longer than ground 287 color interspaces, fused in some parts of the body to form a zigzag band, slightly mottled in 288 289 some parts with yellow. There are 12 dark tail blotches, reaching to subcaudals on both sides, fused in median part of the tail along the midline to form a zigzag band. Head with a large 290 dark dorsal t-shirt-shaped blotch covering frontal, supraoculars, most of parietals except for 291 the most posterior parts, and posterior part of prefrontals, the dark blotch is laterally extended 292 at eye level, covering orbit, preocular, third supralabial, and adjacent parts of second and 293 fourth supralabials, respectively. Infralabials, rostral and mental yellowish, except for 294 blackish region surrounding the lingual groove. The ventral scales of head and body and 295 subcaudal scales are cream-colored with dark dotted outlines in some parts. The coloration of 296 297 the tongue is black to grayish-black (Fig. 3).

times higher and 2.2 times broader than first supralabial, second contacting postnasal and

Ĭ	0	No.
п	U	ILU

298	In preservative, the dorsal pattern on body and tail of a light ground color with dark
299	crossbands remains unchanged, likewise the dark coloration of the head; the orange-yellowish
300	dorsal ground color changed to cream and the darker outlines of most dorsal scales
301	disappeared; the ventral coloration changed to grayish-white in some parts (Fig. 3). The
302	coloration of the tongue changed to gray.
303	Variation. The single paratype is a small male with a conspicuous sexual dimorphism in body
304	size and ventral coloration compared to the holotype. As the hemipenes ornamentation is as
305	detailed as in other adult specimens of the genus <i>Tantilla</i> we assumed it to be already sexually
306	mature. Intraspecific variation in scale counts and measurements is shown in Table 2. The
307	paratype further differs from the holotype in the following characters: SVL/HL 24.4; HW/HL
308	0.58; ED 1.1 mm; HL/ED 7.4; HW/ED 4.3; MBD 3.5 mm; SVL/MBD 56.6; DSN 1.0 mm;
309	DNE 1.3 mm; MTD 1.3 mm. On the right side this specimen has only 6 infralabials, of which
310	the third one is the largest.
311	The dorsal ground coloration of the paratype (Fig. 3) in live is bright yellow and there are 35
312	blackish dorsal crossbars on the body and 16 dark tail blotches, some of the latter are fused to
313	form a zigzag band, the black parts are usually not mottled with yellow. The t-shirt-shaped
314	dark pattern on the dorsal surface of the head is also present in this specimen, but there is a
315	dark vertical line on the left side of the head covering whole sixth and adjacent parts of
316	seventh supralabial. On left side of the head posterior part of second infralabial and
317	infralabials three to five are dark, on right side of head the posterior part of third infralabial
318	and the infralabials four to six are dark. The ventral coloration differs from the holotype as the
319	dark dorsal coloration of the paratype continues on the ventral scales, and thus sometimes
320	forming complete rings around the body or creating a checkerboard pattern on the ventral
321	surface of black and cream squares.
322	Cranial osteology . The snout is terminated by a small, single, toothless, median premaxilla.
323	The triangular-shaped dorsal process of the premaxilla is not contacting the anterior portion of
324	the two nasals. The paired nasals are slightly convex and oval-shaped in dorsal view, medially
325	in contact and separate anteriorly to from an interspace. Their posterior edges are in contact
326	with the anterior inner edges of the frontals. The paired frontals are dorsally flat,
327	subrectangular, longer than broad, slightly larger than the nasals, and in close medial contact.
328	The posterolateral edge of each frontal forms a supraorbital ridge which is perforated with
329	two supraorbital foramina. The lateral surface of the frontal forms a major portion of the
330	mesial wall of the orbit. The prefrontal is loosely attached to the anterolateral edge of the PeerJ reviewing PDF (2016:08:12701:0:2:NEW 23 Aug 2016)

331	frontal. In lateral view, the prefrontal is anteriorly contacting the posterior edge of the nasal
332	and the septomaxilla, and the ventral border is contacting the dorsal surface of the maxilla.
333	The frontals articulate posteriorly with the fused parietals. In dorsal view, the parietal is flat,
334	oval-shaped except for the more or less straight anterior border along the suture with the
335	frontals. It is the largest of the cranial elements and like the frontals, extends laterally far
336	down, reaching ventrally to the basisphenoid. The parietal forms the posterior portion of each
337	orbit. Its posterolateral borders suture with the prootics and its posterior border sutures with
338	the supraoccipital. The postorbitals are narrow, elongate, flattened, slightly curved bones,
339	larger than the prefrontals. They articulate with the anterolateral surface of the parietal and
340	form the dorsoposterior boundary of each orbit. The single supraoccipital is flat,
341	subpentagonal, and broader than long. Laterally it unites with the prootics and posteriorly
342	with the exoccipitals. The paired prootics are largely separated by the broad supraoccipital.
343	Each prootic is subtrapezoidal in dorsal view and is posteriorly bordered by the exoccipital.
344	Laterally it extends far down, reaching ventrally the basisphenoid and the basioccipital. Each
345	prootic has two large foramen of which the anterior one is anteriorly not enclosed by bone.
346	The posterior foramen is larger than the anterior one. Other smaller foramina pierce each
347	prootic. Posterodorsally each prootic is fused with the elongate, spine-like supratemporal,
348	which connects the posterolateral dorsal part of the skull with the proximal end of the
349	quadrate. Both supratemprals are almost parallel to each other, converging only slightly
350	posteriard. The exoccipitals are dorsally flat, form the posterolateral walls of the braincase
351	and are joined together by a mid-dorsal suture. Ventrally they are resting upon the
352	basioccipital. The basioccipital is pentagonal-shaped and joined anteroventrally with the
353	basisphenoid along a straight transverse suture. The basisphenoid is applied anteriorly without
354	a suture to the narrow, elongate parasphenoid, forming a single bone, which extends
355	anteriorly into the rostrum area and becomes the floor of the orbit. Each maxilla is a curved
356	bar with a small horizontal dorsoposteriorly-pointing process, about midway on the mesial
357	border, that articulates with the ventral surface of the prefrontal. Anterodorsally articulates
358	with the posteroventral surface of the septomaxilla. The posterior end of the maxilla is
359	broadened and received by the flattened, pincers-shaped ectopterygoid, which connects it to
360	the pterygoid. Each maxilla bears sockets for about 18 prediastemal, slightly recurved teeth,
361	followed by two slightly enlarged, ungrooved fangs. The ectopterygoid do not bear teeth. The
362	narrow palatine bears 13 or 14 teeth. The posterior end of each palatine articulates with the
363	anterior end of the pterygoid. At about the height of the third and fourth tooth each palatine
364	possesses a broad, horizontally flattened, lateral maxillary process. At about the height of the

Manuscript to be reviewed

365	sixth to eighth tooth each palatine possesses a similar but median choanal process with the
366	apex directed anteriorly. The pterygoid is a slightly curved, flattened bar with about 17 teeth
367	along the medial border. The subtriangular quadrate articulates with the lateral border of the
368	supratemporal and its distal surface articulates with the mandibular condyle. The mandible is
369	composed of two jaw bones. The anterolateral portion of the jaw is formed by the dentary,
370	which contains a row of about 22, slightly recurved teeth. The longer proximal part of each
371	jaw is without teeth. (Fig. 5). There are 179 trunk vertebrae and 70 caudal vertebrae (Fig. 4).
372	Hemipenial morphology. The hemipenes are unilobed, unicalyculate and noncapitate with a
373	single sulcus spermaticus. The apical part is mostly uniformly spinulate. The hemipenial body
374	is more or less uniformly ornamented with long and thin spines, which increase in size
375	towards the base (Fig. 7).
376	Etymology. The species is dedicated to Wewin Tjiasmanto (Indonesia) in recognition of his
377	support of nature conservation and taxonomic research through the BIOPAT initiative.
378	Distribution and natural history. This species is so far known from the southern portion of
379	the seasonally dry forest along the Marañón River and its tributaries, from near Santa Rosa de
380	Marcamachay at the Río Crisnejas, Province Cajabamba, and from near Laguna de Pías,
381	Province Pataz, both Department of La Libertad, at elevations of 1154 m and 1726 m a.s.l,
382	respectively (Fig. 8). The female CORBIDI 7726 was detected on 7^{th} of January 2010 at 12.30
383	pm resting on a stone. The male ZFMK 95238 was detected on 12 th of October 2010 at 8.15
384	pm on pebbly-clayey ground. Air temperature when animals were sighted was 33.3°C and
385	29.100
303	28.1°C, respectively.

DISCUSSION

Despite the comparatively close localities (> om air distance) and similarities in scale counts and arrangement of scales, the conspicuous differences of both specimens in body size and ventral coloration created some doubt if they represent the same species. A pairwise analysis of 1576 bp derived from the mitochondrial gene 16S and the nuclear gene RAG1 showed only a single difference in one base position in the RAG1 fragment, thus strongly supporting the assumption that both specimens belong to the same species. The collection and examination of further specimens is needed to determine whether the differences in size and color pattern are a product of sexual dimorphism or are referred to a different cause (e.g. age dependence, geographic variation).

397

398

399

400

401

402

403

404

405

406

407

408

409

410

411

412

413

414

415

416

417

418

419

420

421

422

423

424

Manuscript to be reviewed

In order to get a general idea of the phylogenetic position of the new species described herein, we performed phylogenetic analyses based on 12S rRNA and 16S rRNA. We did not attempt to conduct a taxonomically extensive analysis of South American Colubridae, instead we preferred to include only those species, for which the two gene regions sequenced in this study were available in GenBank. Our phylogenetic tree based on mitochondrial DNA (Fig. 1) corroborates the assignment of our new species into the genus *Tantilla*. Both the monophyly of the sampled *Tantilla* and the conspecificity of our two dimorphic specimens are well supported by the analyses. However, intrageneric relationships remain dubious due to the few species with genetic data available. Moreover, scutellation characteristics and the comparison of the skull morphology via micro-CT scans (Fig. 6) strongly support this hypothesis. With currently 62 species assigned to this genus it represents the second largest genus of world colubrid snakes, after the genus Atractus. However, taxonomic approaches are limited by the fact that pretty much nothing concrete is known about the phylogenetic relationships within the genus *Tantilla*, and its monophyly has not yet been tested adequately. Only few specimens representing than ten species of *Tantilla* have been included in previous DNAbased studies (e.g. Vidal et al., 2000; Lawson et al., 2005; Burbrink & Myers, 2015; Schrey et al., 2015; Chambers & Hebert, 2016). Thus, a comprehensive study to include a large genomic sample, both numerical and geographical, of a large number of species of *Tantilla* is needed to clarify the phylogenetic relationship among the different species, to uncover their diversity and evolutionary history, and to further support our current generic assignation. The habitat of this new species is gravely threatened due to human interventions, such as deforestation, mining activities and intended dam constructions for hydroelectric projects. To date no protected area has been established in the Marañón river valley. We hope that this beautiful and untypically colored new *Tantilla* could serve as a flagship species, together with several other endemic species of reptile and birds, for the establishment of conservation strategies in this region. If no such strategies will soon be developed and implemented the destruction of this unique habitat will proceed and will lead to a decline of its diversity, which

425

426

427

428

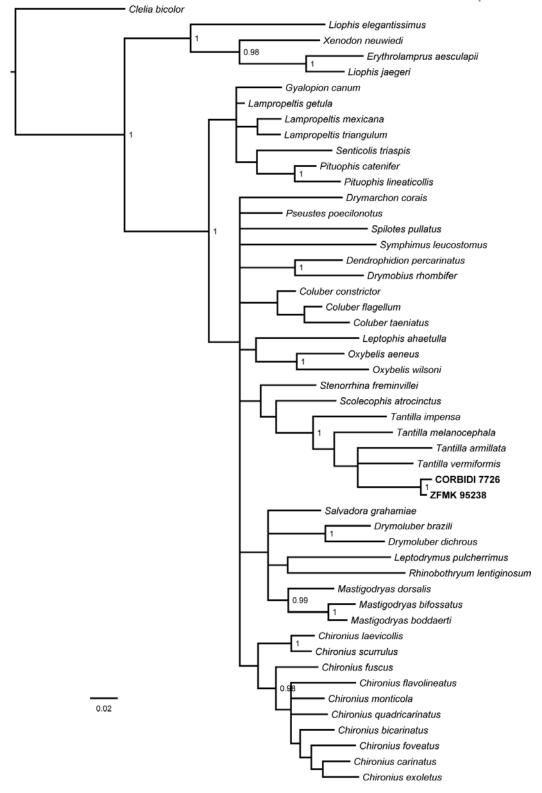
ACKNOWLEDGEMENTS

Peter Rühr and Morris Flecks (both ZFMK) kindly helped with the micro-CT imaging and phylogenetic analysis, respectively. We are indebted to Hussam Zaher for sharing his PeerJ reviewing PDF | (2016:08:12701:0:2:NEW 23 Aug 2016)

may also have a negative impact on the endemic new species described herein.

Manuscript to be reviewed

429	expertise on hemipenes morphology with us. CK thanks the Deutscher Akademischer
430	Austauschdienst (DAAD), the Alexander Koenig Stiftung (AKS) and the Alexander Koenig
431	Gesellschaft (AKG) for financial support. The Ministerio de Agricultura, Pe indly
432	provided collecting and export permits. We thank Alfredo Beraún, Erick Hoyos Granda, and
433	Manuel Palacios Panta for assistance during the fieldwork. We are indebted to the residents of
434	Santa Rosa and Laguna de Pías for their hospitality, support and assistance during the
435	fieldwork.


Table 1. Taxa used for phylogenetic analysis and respective GenBank accession numbers.

Species	12S rRNA	16S rRNA
Chironius bicarinatus	HM565744	HM582206
Chironius carinatus	HM565745	HM582207
Chironius exoletus	HM565746	HM582208
Chironius flavolineatus	HM565747	HM582209
Chironius foveatus	HM565748	HM582210
Chironius fuscus	HM565749	HM582211
Chironius laevicollis	HM565751	HM582213
Chironius monticola	HM565753	HM582214
Chironius quadricarinatus	HM565755	HM582215
Chironius scurrulus	HM565756	HM582216
Clelia bicolor	GQ457787	GQ457729
Coluber constrictor	AY122667	· ·
Coluber flagellum	AY122668	
Coluber taeniatus	AY122669	
Dendrophidion percarinatus	HM565757	HM582217
Drymarchon corais	HM565758	HM582218
Drymobius rhombifer	HM565761	HM582220
Drymoluber brazili	HM565760	HM582219
Drymoluber dichrous	HM565759	HM582221
Erythrolamprus aesculapii	GQ457795	GQ457736
Gyalopion canum	KR814624	KR814641
Lampropeltis getula	AY122821	
Lampropeltis mexicana	FJ623962	
Lampropeltis triangulum	FJ623963	
Leptodrymus pulcherrimus	KR814627	KR814649
Leptophis ahaetulla	HM565762	HM582222
Liophis elegantissimus	GQ457808	GQ457748
Liophis jaegeri	GQ457809	GQ457749
Mastigodryas bifossatus	HM565763	HM582223
Mastigodryas boddaerti	HM565764	HM582224
Mastigodryas dorsalis	KR814625	KR814650
Oxybelis aeneus	HM565765	HM582225
Oxybelis wilsoni	KR814626	KR814647
Pituophis catenifer	KU833245	KU833245
Pituophis lineaticollis	AF512746	AF512746
Pseustes poecilonotus	3.2.0.2.7.10	KR815895
Rhinobothryum lentiginosum	HM565767	HM582227
Salvadora grahamiae	AY122847	111/16 0222 /
Scolecophis atrocinctus	KR814619	KR814642
Senticolis triaspis	AY122848	1211011012
Spilotes pullatus	HM565768	HM582228
Stenorrhina freminvillei	HM565769	111.12 02220
Symphimus leucostomus	KR814618	KR814651
Tantilla armillata	KR814613	KR814644
Tantilla impensa	KR814614	KR814645
Tantilla melanocephala	AF158424	AF158491
Tantilla vermiformis	KR814615	KR814646
Xenodon neuwiedi	GQ457841	GQ457779
CORBIDI 7726	XXX	XXX XXX
ZFMK 95238	AAA	XXX

Table 2. Scale counts and measurements of the type specimens of *Tantilla tjiasmantoi* sp.

441 nov.

	♀ Holotype	∂ Paratype
	CORBIDI 7726	ZFMK 95238
Dorsal scale rows	15-15-15	15-15-15
Ventrals	182	179
Subcaudals	57	65
Supralabials	7	7
Infralabials	7	6-7
Internasals	2	2
Prefrontals	2	2
Preoculars	1	1
Postoculars	2	2
Supraoculars	1	1
Suboculars	absent	absent
Loreal	absent	absent
Anterior temporals	1	1
Posterior temporals	1	1
Sublinguals (paired)	2	2
Snout-vent-length (SVL)	513 mm	198 mm
Tail length	125 mm	56 mm
Tail length/Total length	0.2	0.22
Head width (at widest	11.9 mm	4.7 mm
point)		
Head length (from tip of	16.3 mm	8.1 mm
snout to end of quadrate)		
Head width/ head length	0.73	0.58

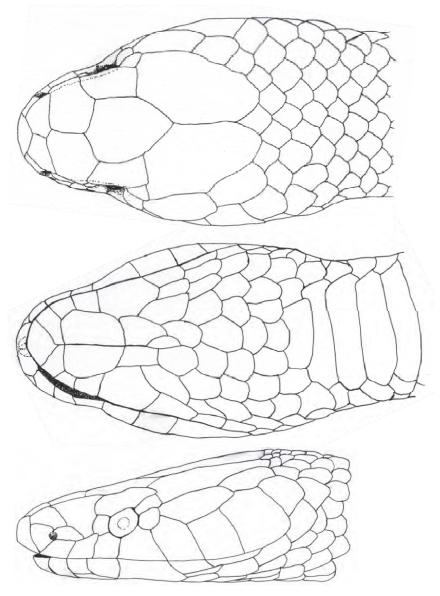


Figure 1. Bayesian consensus tree based on 788 bp of mitochondrial DNA (12S and 16S rRNA) of our specimens (CORBIDI 7726 and ZFMK 95238) and 48 further species representing 27 genera of American colubrid snakes. Numbers at nodes are the Bayesian posterior probabilities (values < 0.95 not shown).

445

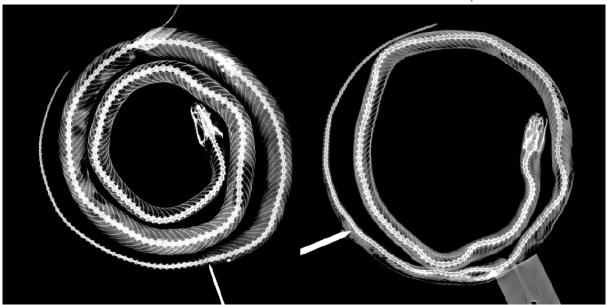
446

447

451

452

Figure 2. Dorsal (top), ventral (center) and lateral (bottom) views of head of female holotype of *Tantilla tjiasmantoi* sp. nov. from La Libertad, Peru (CORBIDI 7726).

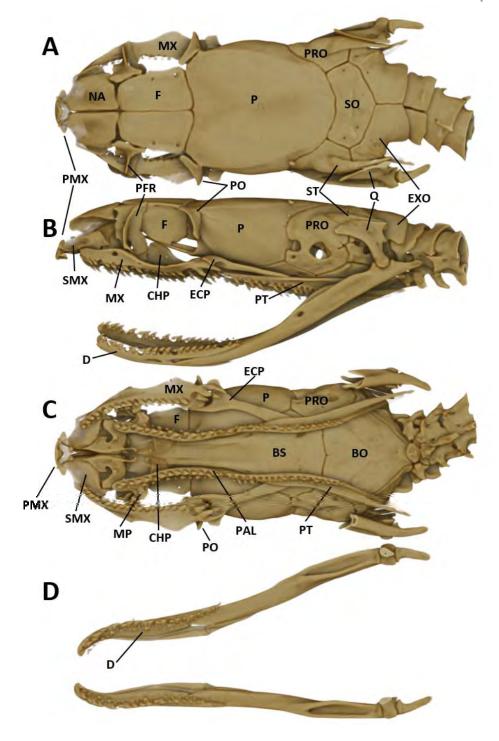


455

456

457

Figure 3. *Tantilla tjiasmantoi* sp. nov. from La Libertad, Peru: female holotype CORBIDI 7726 (left) and male paratype ZFMK 95238 (right) in live in dorsal view (top), and in preservative in ventral view (bottom).

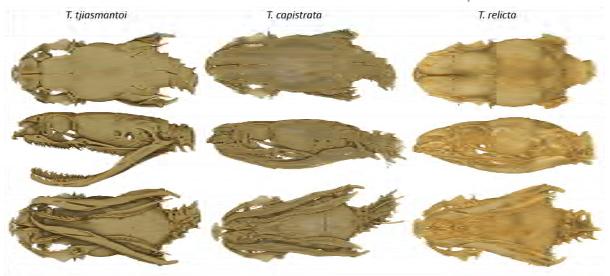


460

461

462

Figure 4. X-ray photographies of body of *Tantilla tjiasmantoi* sp. nov. from La Libertad, Peru (needle marks the cloaca): female holotype CORBIDI 7726 (left) and male paratype ZFMK 95238 (right).


465

466

467

468

Figure 5. Micro-CT images of the male paratype of *Tantilla tjiasmantoi* sp. nov. from La Libertad: dorsal (A), lateral (B), and ventral views of the skull (C, lower jaw removed), and dorsal view of lower jaw (D). See Materials and Methods section for explanation of the abbreviations of the skull structures.

471

472

473

474

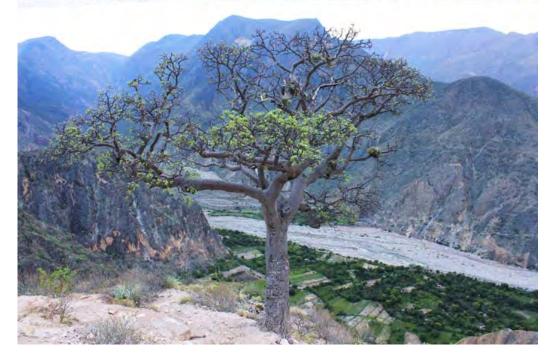

Figure 6. Micro-CT images of the dorsal (above), lateral (center), and ventral (below) views of the skull of three species of *Tantilla: T. tjiasmantoi* sp. nov. from Peru (left), *T. capistrata* from Lambayeque, Peru (ZFMK 85028, middle), and *T. relicta* from Florida, USA (ZFMK 84387, right).

Figure 7. Micro-CT images of the hemipenes of the male paratype of *Tantilla tjiasmantoi* sp. nov. from La Libertad: sulcate (A), asulcate (B), and lateral views (C) of the left (left) and right (right) hemipenis. Left hemipenis was scanned dry, whereas right hemipenis was scanned in alcohol.

483

484

485

Figure 8. Type locality of *Tantilla tjiasmantoi* sp. nov. CORBIDI 7726 near Laguna de Pías, La Libertad, Peru (top), and locality of male paratype ZFMK 95238 near Santa Rosa de Marcamachay, La Libertad, Peru (bottom).

	Wallascript to be revie
487	REFERENCES
488	
489	Brack A. 1986. Las Ecoregiones del Perú. Boletín de Lima 44: 57-70.
490	
491	Bridgewater S, Pennington RT, Reynel CA, Daza A, Pennington TD. 2003. A preliminary
492	floristic and phytogeographic analysis of the woody flora of seasonally dry forests in northern
493	Peru. Candollea 58: 129–141.
494	
495	Bullock RE, Tanner WW. 1966. A comparative osteological study of two species of
496	Colubridae (Pituophis and Thamnophis). Brigham Young University Science Bulletin,
497	Biological Series 8(3): 1–29.
498	
499	Burbrink FT, Myers EA. 2015. Both traits and phylogenetic history influence community
500	structure in snakes over steep environmental gradients. <i>Ecography</i> 38: 1–13. DOI:
501	10.1111/ecog.01148.
502	
503	Cacciali P, Carreira S, Scott NJ. 2007. Redescription of <i>Phalotris nigrilatus</i> Ferrarezzi, 1993
504	(Serpentes: Colubridae: Xenodontinae). Herpetologica 63(4): 552–559. DOI: 10.1655/0018-
505	0831(2007)63[552:ROPNFS]2.0.CO;2.
506	
507	Campbell JA. 1998. Comments on the identities of certain <i>Tantilla</i> (Squamata: Colubridae)
508	from Guatemala, with descriptions of two new species. Scientific Papers of the Natural
509	History Museum, University of Kansas 7:1-14. DOI: 10.5962/bhl.title.16234.
510	
511	Campbell JA, Camarillo JL, Ustach PC. 1995. Redescription and rediagnosis of <i>Tantilla</i>
512	shawi (Serpentes: Colubridae) from the Sierra Madre Oriental of Mexico. The Southwestern
513	Naturalist 40(1): 120–132.
514	
515	Campbell JA, Smith EN. 1998. A new genus and species of colubrid snake from the Sierra de
516	las Minas of Guatemala. Herpetologica 54: 207–220.
F 17	

517

Castresana J. 2000. Selection of conserved blocks from multiple alignments for their use in

519 phylogenetic analysis. *Molecular Biology and Evolution* 17: 540–552. DOI:

520 10.1093/oxfordjournals.molbev.a026334.

- 522 Cei JM. 1993. Reptiles del noroeste, nordeste y este de la Argentina. Torino: Museo
- Regionale Scienze Naturali Torino, Monografie 14, 949 pp.

524

- 525 Chambers EA, Hebert PDN. 2016. Assessing DNA barcodes for species identification in
- North American reptiles and amphibians in natural history collections. *PLoS ONE* 11(4):
- 527 e0154363. DOI: 10.1371/journal.pone.0154363.

528

- 529 Crump ML, Scott NJ. 1994. Visual encounter surveys. In: Heyer WR, Donnelly MA,
- 530 McDiarmid RW, Hayek LC, Foster MS, eds. Measuring and monitoring biological diversity,
- 531 standard methods for amphibians. Washington, DC: Smithsonian Institution Press, 84–92.

532

- 533 Cundall D, Irish FJ. 2008. The snake skull. In: Gans C, Gaunt AS, Adler K, eds. *Biology of*
- 534 the Reptilia, volume 20, Morphology H. The skull of Lepidosauria. Ithaca: Society for the
- 535 Study of Amphibians and Reptiles, 349–692.

536

- Dowling HG. 1951. A proposed standard system of counting ventrals in snakes. *British*
- 538 *Journal of Herpetology* 1: 97–99.

539

- Ferrarezzi H. 1993. Nota sobre o genero *Phalotris* com revisao do grupo nasutus e descricao
- de tres novas especies (Serpentes, Colubridae, Xenodontinae). Memorias do Instituto
- 542 *Butantan, Sao Paulo* 55 (Suppl. 1): 21–38.

543

- Finer M, Jenkins CN. 2012. Proliferation of hydroelectric dams in the Andean Amazon and
- implications for Andes–Amazon connectivity. *PLoS ONE* 7(4): e35126. DOI:
- 546 10.1371/journal.pone.0035126.

547

- Franco FL, Marques OAV, Puorto G. 1997. Two new species of colubrid snakes of the genus
- 549 *Clelia* from Brazil. *Journal of Herpetology* 31(4): 483–490. DOI: 10.2307/1565599.

550

- Fritts TH, Smith HM. 1969. A new genus and species of snake from western Ecuador.
- *Transactions of the Kansas Academy of Sciences* 72(1): 60–66. DOI: 10.2307/3627049.

Manuscript to be reviewed

- Hall TA. 1999. BioEdit: a user-friendly biological sequence alignment editor and analysis
- program for Windows 95/98/NT. *Nucleic Acids Symposium Series* 41: 95–98.

556

- Harvey MB, Rivas Fuenmayor G, Rances Caicedo-Portilla J, Rueda-Alm JV. 2008.
- 558 Systematics of the enigmatic Dipsadine Snake *Tropidodipsas perijanensis* Alemán
- 559 (Serpentes: Colubridae) and review of morphological characters of Dipsadini. Herpetological
- 560 *Monographs* 22(1): 106–132. DOI: 10.1655/08-025.1.

561

- IUCN, UNEP-WCMC. 2016. The World Database on Protected Areas (WDPA) [On-line].
- 563 Available at http://www.protectedplanet.net (accessed 27 June 2016).

564

- Jansen M, K r G. 2008. A new species of *Phalotris* from the eastern lowlands of Bolivia
- (Reptilia, Squamata, Colubridae). Senckenbergiana Biologica 88(1): 103–110.

567

- Janzen DH. 1988. Tropical dry forests: the most endangered major tropical ecosystem. In:
- Wilson EO, Peter FM, ed. *Biodiversity*. Washington, DC: National Academy Press: 130–137.

570

- Katoh K, Asimenos G, Toh H. 2009. Multiple Alignment of DNA Sequences with MAFFT.
- 572 *Methods in Molecular Biology* 537: 39–64. DOI: 10.1007/978-1-59745-251-9 3.

573

- Koch C, Venegas PJ, Böhme W. 2006. A remarkable discovery: Description of a big-growing
- new gecko (Squamata: Gekkonidae: *Phyllopezus*) from northwestern Peru. *Salamandra*
- 576 42(2/3): 145–150.

577

- Koch C, Venegas PJ, Böhme W. 2015. Three new endemic species of *Epictia Gray*, 1845
- (Serpentes: Leptotyphlopidae) from the dry forest of northwestern Peru. Zootaxa 3964(2):
- 580 228–244. DOI: 10.11646/zootaxa.3964.2.4.

581

- Koch C, Venegas PJ, Garcia-Bravo A, Böhme W. 2011. A new bush anole (Iguanidae:
- Polychrotinae: *Polychrus*) from the upper Marañón basin, Peru, with a redescription of
- Polychrus peruvianus (Noble, 1924) and additional information on P. gutturosus Berthold,
- 585 1845. Zookeys 141: 79–107. DOI: 10.3897/zookeys.141.1678.

Manuscript to be reviewed

Koch C, Venegas PJ, Rödder D, Flecks M, Böhme W. 2013. Two new endemic species of Ameiva (Squamata: Teiidae) from the dry forest of northwestern Peru and additional 588 information on Ameiva concolor Ruthven, 1924. Zootaxa 3745(2): 263–295. DOI: 589 590 10.11646/zootaxa.3745.2.6. 591 Kocher TD, Thomas WK, Meyer A, Edwards SV, Pääbo S, Villablanca FX, Wilson AC. 592 1989. Dynamics of mitochondrial DNA evolution in animals: amplification and sequencing 593 with conserved primers. Proceedings of the National Academy of Sciences of United States of 594 595 America 86(16): 6196–6200. DOI: 10.1073/pnas.86.16.6196. 596 Köhler G. 2003. Reptiles of Central America. Ed. Offenbach: Herpeton-Verlag, 367 pp. 597 598 Köhler G. 2008. Reptiles of Central America. 2nd Ed. Offenbach: Herpeton-Verlag, 400 pp. 599 600 601 Kornacker PM. 1999. Checklist and key to the snakes of Venezuela. Rheinbach: PaKo-Verlag, 602 Germany, 270 pp. 603 Lawson R, Slowinski JB, Crother BI, Burbrink FT. 2005. Phylogeny of the Colubroidea 604 (Serpentes): New evidence from mitochondrial and nuclear genes. Molecular Phylogenetics 605 and Evolution 37: 581–601. DOI:10.1016/j.ympev.2005.07.016. 606 607 Lema T, D'Agostini FM, Cappelari LH. 2005. Nova espécie de *Phalotris*, redescricão de *P*. 608 tricolor e osteologia craniana (Serpentes, Elapomorphinae). Iheringia, Série Zoologia 95: 65– 609 78. DOI: 10.1590/s0073-47212005000100010. 610 611 Mata-Silva V, Wilson LD. 2016. The taxonomic status of *Tantilla marcovani* Lema 2004 612 (Squamata: Colubridae). Zootaxa 4092(3): 421–425. DOI: 10.11646/zootaxa.4092.3.7. 613 614 McCranie JR, Castaneda FE. 2004. Notes on the second specimens of *Geophis damiani* 615 Wilson, McCranie, and Williams and Rhadinaea tolpanorum Holm and Cruz D. (Colubridae). 616 Herpetological Review 35(4): 341. 617

- McCranie JR, Villa J. 1993. A new genus for the snake *Enulius sclateri* (Colubridae: 619
- 620 Xenodontinae). Amphibia-Reptilia 14(3): 261–267. DOI: 10.1163/156853893x00453.

621	
622	McCranie JR, Wilson LD. 1991. Rhadinaea montecristi Mertens. Catalogue of American
623	Amphibians and Reptiles 524: 1–2.
624	
625	McCranie JR, Wilson LD. 1991. Rhadinaea kinkelini Boettger. Catalogue of American
626	Amphibians and Reptiles 523: 1–2.
627	
628	McCranie JR, Wilson LD. 1992. Rhadinaea godmani. Catalogue of American Amphibians
629	and Reptiles 546: 1–3.
630	
631	Miles L, Newton AC, DeFries RS, Ravilious C, May I, Blyth S, Kapos V, Gordon JE. 2006.
632	A global overview of the conservation status of tropical dry forests. $Journal\ of\ Biogeography$
633	33: 491–505. DOI: 10.1111/j.1365-2699.2005.01424.x.
634	Moura Ribeiro M, Caldeira Costa H, Magalhães Pirani R. 2013. Rediscovery of <i>Phalotris</i>
635	concolor (Serpentes: Dipsadidae: Elapomorphini). Zoologia 30(4): 430–436. DOI:
636	10.1590/s1984-46702013000400009.
637	
638	Murphy PG, Lugo AE. 1986. Ecology of tropical dry forest. Annual Review of Ecology and
639	Systematics 17: 67–88. DOI: 10.1146/annurev.es.17.110186.000435.
640	Myers CW, Cadle JE. 1994. A new genus for South American snakes related to <i>Rhadinaea</i>
641	obtusa Cope (Colubridae) and resurrection of Taeniophallus Cope for the "Rhadinaea"
642	brevirostris group. American Museum Novitates 3102: 1–33.
643	
644	Myers CW, McDowell SB. 2014. New taxa and cryptic species of Neotropical snakes
645	(Xenodontinae), with commentary on hemipenes as generic and specific characters. Bulletin
646	of the American Museum of Natural History 385(1): 1–112. DOI: 10.1206/862.1.
647	
648	Myers CW. 1973. A new genus for Andean snakes related to Lygophis boursieri and a new
649	species (Colubridae). American Museum Novitates 2522: 1–37.
650	

650

Myers CW. 2011. A new genus and new tribe for Enicognathus melanauchen Jan, 1863, a

652 neglected South American snake (Colubridae: Xenodontinae), with taxonomic notes on some

653 Dipsadinae. *American Museum Novitates* 3715: 1–33. DOI: 10.1206/3715.2.

_	_	
6	5	4

- Palumbi SR, Martin A, Romano S, McMillan WO, Stice L, Grabowski G. 1991. *The Simple*
- 656 Fool's Guide to PCR, Version 2. Honolulu: University of Hawaii Zoology Department, 94 pp.

657

- Passos P, Ramos L, Pereira DN. 2012. Distribution, natural history, and morphology of the
- rare snake, *Caaeteboia amarali* (Serpentes: Dipsadidae). *Salamandra* 48(1): 51–58.

660

- Peracca MG. 1904. Nouvelles espèces d'Ophidiens d'Asie et d'Amerique, faisant partie de la
- collection du Museum d'histoire naturelle de Genève. Revue Suisse de Zoologie 12: 663–668.
- 663 DOI: 10.5962/bhl.part.10151.

664

- Pérez-Santos C, Moreno AG. 1988. Ofidios de Colombia. Torino: Museo Regionale di
- Scienze Naturali, Monographie VI, 517 pp.

667

- Peters JA, Donoso-Barros R, Orejas-Miranda B. 1970. Catalogue of the Neotropical
- 669 Squamata: Part I Snakes. Part II Lizards and Amphisbaenians. United States National
- 670 *Museum Bulletin* 297: 1–347.

671

- Peters JA. 1960. The snakes of the subfamily Dipsadinae. *Miscellaneous Papers of the*
- 673 *Museum of Zoology, University of Michigan* 114: 1–224.

674

- Posada D, Crandall KA. 1998. MODELTEST: testing the model of DNA substitution.
- 676 *Bioinformatics* 14: 817–818. DOI: 10.1093/bioinformatics/14.9.817.

677

- Puorto G, Ferrarezzi H. 1993. Uma nova especie de *Phalotris* Cope, 1862, com comentarios
- sobre o grupo bilineatus (Serpentes: Colubridae: Xenodontinae). *Memorias do Instituto*
- 680 Butantan, Sao Paulo 55 (Suppl. 1): 39–46.

681

- 682 Q&V Ingenieros SAC. 2007. Elaboración de resúmenes ejecutivos y fichas de estudio de las
- 683 centrales hidroeléctricas con potencial para exportación a Brasil. Ministerio de Energía y
- 684 Minas, Dirección General de Electricidad, 79 pp.

- Rambaut A, Suchard MA, Xie D, Drummond AJ. 2014. Tracer v1.6, Available at
- 687 http://beast.bio.ed.ac.uk/Tracer (accessed on 08 August 2016).

รรล

- Ronquist F, Teslenko M, van der Mark P, Ayres DL, Darling A, Höhna S, Larget B, Liu L,
- 690 Suchard MA, Huelsenbeck JP. 2012. MrBayes 3.2: efficient Bayesian phylogenetic inference
- and model choice across a large model space. Systematic Biology 61: 539-542. DOI:
- 692 10.1093/sysbio/sys029.

693

- 694 Särkinen TE, Marcelo-Peña JL, Daza Yomona A, Simon MF, Pennington RT, Hughes CE.
- 695 2011. Underestimated endemic species diversity in the dry inter-Andean valley of the Río
- 696 Marañón, northern Peru: An example from *Mimosa* (Leguminosae, Mimosoideae). *Taxon*
- 697 60(1): 139–150.

698

- 699 Savage JM. 2002. The amphibians and reptiles of Costa Rica: A herpetofauna between two
- 700 continents, between two seas. Chicago: University of Chicago Press, 934 pp.

701

- Savage JM, Crother BI. 1989. The status of *Pliocercus* and *Urotheca* (Serpentes: Colubridae),
- with a review of included species of coral snake mimics. Zoological Journal of the Linnean
- 704 *Society* 95: 335–362. DOI: 10.1111/j.1096-3642.1989.tb02315.x.

705

- Savage JM, Donnelly MA. 1988. Variation and systematics in the colubrid snakes of the
- 707 genus *Hydromorphus*. *Amphibia-Reptilia* 9: 289–300. DOI: 10.1163/156853888x00378.

708

- Sawaya RJ, Sazima I. 2003. A new species of *Tantilla* (Serpentes: Colubridae) from
- 710 southeastern Brazil. *Herpetologica* 59(1): 119–126. DOI: 10.1655/0018-
- 711 0831(2003)059[0119:ansots]2.0.co;2.

712

- Schrey AW, Evans RK, Netherland M, Ashton KG, Mushinsky HR, Mccoy ED. 2015.
- Phylogeography of the Peninsula Crowned Snake (*Tantilla relicta relicta*) on the Lake Wales
- Ridge in Central Florida. *Journal of Herpetology* 49(3): 415–419. DOI: 10.1670/13-190.

716

- Schulte II JA, Cartwright EM. 2009. Phylogenetic relationships among iguanian lizards using
- alternative partitioning methods and TSHZ1: a new phylogenetic marker for reptiles.
- 720 *Molecular Phylogenetics and Evolution* 50: 391–396. DOI: 10.1016/j.ympev.2008.10.018.

- 721
- Scott NJ, Giraudo AR, Scrocchi G, Aquino AL, Cacciali P, Motte M. 2006. The genera
- 723 Boiruna and Clelia (Serpentes: Pseudoboini) in Paraguay and Argentina. Papéis Avulsos de
- 724 *Zoologia (São Paulo)* 46(9): 77–105. DOI: 10.1590/S0031-10492006000900001.

725

- Slevin JR. 1942. Notes on a collection of reptiles from Boquete, Panama, with the description
- of a new species of Hydromorphus. Proceedings of the California Academy Sciences 23: 463–
- 728 480.

729

- 730 Smith EN, Campbell JA. 1994. A new species of *Rhadinea* (Colubridae) from the Caribbean
- 731 Versant of Guatemala. Occasional Papers of the Museum of Natural History, University of
- 732 *Kansas* 167: 1–9.

733

- Smith HM, Taylor EH. 1945. An annotated checklist and key to the snakes of Mexico. *United*
- 735 States National Museum Bulletin 187: iv + 1–239.

736

- 737 Solorzano A. 2004. Serpientes de Costa Rica Snakes of Costa Rica. Costa Rica: Editorial
- 738 INBio, , 792 pp.

739

- Stafford PJ. 2004. A new species of *Tantilla* (Serpentes; Colubridae) of the *taeniata* group
- 741 from Southern Belize. *Journal of Herpetology* 38(1): 43–52. DOI: 10.1670/208-02a.

742

- Stamatakis A, Hoover P, Rougemont J. 2008. A Rapid Bootstrap Algorithm for the RAxML
- 744 Web-Servers. *Systematic Biology* 75: 758–771. DOI: 10.1080/10635150802429642

745

- 746 Starace F. 1998. Guide des Serpents et Amphisbènes de Guyane. Guadeloupe, Guyane: IBIS
- Rouge Editions, 450 pp.

748

- 749 Stattersfield AJ, Crosby MJ, Long AJ, Wege D. 1998. Endemic birds areas of the world.
- 750 Priorities for biodiversity conservation. Cambridge, UK: BirdLife International, 815 pp.

751

- Stuart LC, Bailey JR. 1941. Three new species of the genus *Rhadinaea* from Guatemala.
- 753 Occasional Papers of the Museum of Zoology, University of Michigan 442: 1–11.

Manuscript to be reviewed

- Stuart LC. 1949. A new *Trimetopon* (Ophidia) from Guatemala. *Proceedings of the Biological*
- 756 *Society of Washington* 62: 165–168.

757

- 758 Stuart LC. 1954. Descriptions of some new amphibians and reptiles from Guatemala.
- *Proceedings of the Biological Society of Washington* 67: 159–178.

760

- Van Denburgh J. 1912. Expedition of the California Academy of Sciences to the Galapagos
- Islands, 1905–1906. IV. The snakes of the Galapagos Islands. *Proceedings of the California*.
- 763 *Acadademy of. Sciences* (Ser. 4) 1(4): 323–374.

764

- Venegas PJ. 2005. Herpetofauna del bosque seco Ecuatorial de Peru: taxonomía, ecología y
- 766 biogeografía. *Zonas Áridas* 9: 9–26.

767

- Venegas PJ, Townsend JH, Koch C, Böhme W.2008. Two new sympatric species of leaf-toed
- geckos (Gekkonidae: *Phyllodactylus*) from the Balsas region of the upper Marañón Valley,
- Peru. Journal of Herpetology 42(2): 386–396. DOI: 10.1670/07-1341.1.

771

- Vidal N, Kindl SG, Wong A, Hedges SB. 2000. Phylogenetic relationships of Xenodontine
- snakes inferred from 12S and 16S ribosomal RNA sequences. *Molecular Phylogenetics and*
- 774 Evolution 14(3): 389–402. DOI: 10.1006/mpev.1999.0717.

775

- Villa JD. 1971. Crisantophis, a new genus for Conophis nevermanni Dunn. Journal of
- 777 *Herpetology* 5: 173–77. DOI: 10.2307/1562739.

778

- 779 Villa JD. 1990. Hydromorphus Peters. Central American watersnakes. Catalogue of American
- 780 *Amphibians and Reptiles* 472: 1–2.

- Werneck FP, Costa GC, Colli GR, Prado DE, Sites Jr JW. 2011. Revisiting the historical
- distribution of Seasonally Dry Tropical Forests: new insights based on palaeodistribution
- modelling and palynological evidencegeb. *Global Ecology and Biogeography* 20: 272–288.
- 785 DOI: 10.1111/j.1466-8238.2010.00596.x.
- Werner F. 1924. Neue oder wenig bekannte Schlangen aus dem Naturhistorischen
- 787 Staatsmuseum in Wien. 1. Teil. Sitzungsberichte der Akademie der Wissenschaften in Wien,
- 788 *Abt. l*, 133: 29–56.

703	
790	Wilson LD. 1976. Variation in the colubrid snake Tantilla semicincta (Dumeríl, Bibron, and
791	Dumeríl), with comments on pattern dimorphism. Bulletin of the Southern California
792	Academy of Sciences 75: 42–48.
793	
794	Wilson LD. 1987. A resume of the Colubrid snakes of the genus <i>Tantilla</i> of South America.
795	Milwaukee Public Museum Contributions in Biology and Geology 68: 1–35.
796	
797	Wilson LD, Mata-Silva V. 2015. A checklist and key to the snakes of the Tantilla clade
798	(Squamata: Colubridae), with comments on distribution and conservation. Mesoamerican
799	Herpetology 2(4): 418–498.
800	
801	Wilson LD, Mena CE. 1980. Systematics of the melanocephala group of the colubrid snake
802	genus Tantilla. San Diego Society of Natural History Memoirs 11: 5-58.
803	
804	Zaher H. 1996. A new genus and species of pseudoboine snake, with a revision of the genus
805	Clelia (Serpentes, Xenodontinae). Bolletino dei Musei Regionale Sciencia naturali di Torino
806	14: 289–337.
807	
808	Zaher H. 1999. Hemipenial morphology of the South American xenodontine snakes, with a
809	proposal for a monophyletic Xenodontinae and a reappraisal of colubroid hemipenes. Bulletin
810	of the American Museum of Natural History 240:1–168.
811	
812	Zaher H, Grazziotin FG, Cadle JE, Murphy RW, Moura-Leite JC. 2009. Molecular phylogeny
813	of advanced snakes (Serpentes, Caenophidia) with an emphasis on South American
814	Xenodontines: a revised classification and descriptions of new taxa. Papéis Avulsos de
815	Zoologia (São Paulo) 49(11): 115–153. DOI: 10.1590/S0031-10492009001100001.
816	
817	Zaher H, Prudente AL. 2003. Hemipenes of Siphlophis (Serpentes, Xenodontinae) and
818	techniques of hemipenial preparation in snakes: A response to Dowling. Herpetological
819	Review 34: 302–307.
820	

Manuscript to be reviewed

APPENDIX. Additional specimens examined.

822

73 *Tantilla capistrata*: PERU: Lambayeque: Chaparrí, 446 m a.s.l. (ZFMK 85028).

824

825 Tantilla relicta: USA: Florida: Bushnell (ZFMK 84387).