Genetic analyses indicate that the Australian endemic scorpion *Urodacus yaschenkoi* (Scorpiones: Urodacidae) is a species complex (#12305)

First submission

Please read the **Important notes** below, and the **Review guidance** on the next page. When ready **submit online**. The manuscript starts on page 3.

Important notes

Editor and deadline

Jane Hughes / 24 Aug 2016

Files 1 Other file(s)

Please visit the overview page to **download and review** the files

not included in this review pdf.

Declarations One or more DNA sequences were reported.

Please in full read before you begin

How to review

When ready <u>submit your review online</u>. The review form is divided into 5 sections. Please consider these when composing your review:

- 1. BASIC REPORTING
- 2. EXPERIMENTAL DESIGN
- 3. VALIDITY OF THE FINDINGS
- 4. General comments
- 5. Confidential notes to the editor
- You can also annotate this **pdf** and upload it as part of your review

To finish, enter your editorial recommendation (accept, revise or reject) and submit.

BASIC REPORTING

- Clear, unambiguous, professional English language used throughout.
- Intro & background to show context.
 Literature well referenced & relevant.
- Structure conforms to **PeerJ standard**, discipline norm, or improved for clarity.
- Figures are relevant, high quality, well labelled & described.
- Raw data supplied (See <u>PeerJ policy</u>).

EXPERIMENTAL DESIGN

- Original primary research within **Scope of** the journal.
- Research question well defined, relevant & meaningful. It is stated how research fills an identified knowledge gap.
- Rigorous investigation performed to a high technical & ethical standard.
- Methods described with sufficient detail & information to replicate.

VALIDITY OF THE FINDINGS

- Impact and novelty not assessed.

 Negative/inconclusive results accepted.

 Meaningful replication encouraged where rationale & benefit to literature is clearly stated.
- Data is robust, statistically sound, & controlled.
- Conclusion well stated, linked to original research question & limited to supporting results.
- Speculation is welcome, but should be identified as such.

The above is the editorial criteria summary. To view in full visit https://peerj.com/about/editorial-criteria/

Genetic analyses indicate that the Australian endemic scorpion *Urodacus yaschenkoi* (Scorpiones: Urodacidae) is a species complex

Karen Luna-Ramirez ¹, Adam D Miller ², Gordana Rašić ^{Corresp. 3}

Corresponding Author: Gordana Rašić Email address: gordana.rasic@unimelb.edu.au

Background. The native Australian desert scorpion *Urodacus yaschenkoi*, widely distributed throughout arid zones of the continent, is a promising model organism in biomedical research due to the chemical nature of its venom. Unlike their overseas counterparts, Australian scorpions have received little attention from researchers, and our study provides the first molecular insights into the phylogenetic patterns and history of *U*. yaschenkoi. Methods. We employed Bayesian Inference (BI) methods for the phylogenetic reconstructions and divergence dating among lineages, using unique haplotype sequences from two mitochondrial loci (COXI, 16S) and one nuclear locus (28S). We also implemented two DNA taxonomy approaches (GMYC and PTP/dPTP) to evaluate the presence of cryptic species. Linear Discriminant Analysis was used to test whether the linear combination of 21 variables (ratios of morphological measurements) can predict individual's membership to a putative species. **Results**. Multiple lines of evidence suggest that *U. yaschenkoi* is a species complex. High statistical support for the monophyly of several divergent lineages was found both at the mitochondrial loci and at a nuclear locus. The extent of mitochondrial divergence between these lineages exceeds estimates of interspecific divergence reported for other scorpion groups. The GMYC model identified nine entities and the PTP/bPTP approach identified seven, each representing putative species. Ratios of several traits that approximate body shape had a strong predictive power (83-100%) in discriminating two major molecular lineages. A time-calibrated phylogeny dates the early divergence at the onset of continental-wide aridification in late Miocene, with finer-scale phylogeographic patterns emerging during the Pleistocene. These patterns of phylogeographic structuring are consistent with the evolutionary history of other arid Australian biota. **Discussion.** Our results indicate that the taxonomic status of *U*. yaschenkoi requires revision. Evidence of a species complex needs to be considered for

¹ Projektgruppe "Bioressourcen", Fraunhofer-Institut für Molekularbiologie und Angewandte Oekologie IME, Gießen, Hessen, Germany

² Centre for Integrative Ecology, School of Life and Environmental Sciences, Deakin University, Burwood, Victoria, Australia

 $^{^{3}}$ School of BioSciences, Bio21 Institute, The University of Melbourne, Parkville, Victoria, Australia

future biomedical research, particularly when venom from multiple individuals is pooled for toxinological characterization. The complex evolutionary history of this scorpion highlights the importance of conserving populations from different Australian arid zones in order to preserve patterns of endemism and evolutionary potential.

- 1 Title: Genetic analyses indicate that the Australian endemic scorpion
- 2 Urodacus yaschenkoi (Scorpiones: Urodacidae) is a species complex

- 4 Authors: Luna-Ramírez Ka, Miller ADb,c, Rašić Gb*
- ^a Museum Victoria, 11 Nicholson St., Carlton Gardens, Melbourne, VIC 3053, Australia.
- 6 (Current affiliation: Fraunhofer-Institut für Molekularbiologie und Angewandte Oekologie IME,
- 7 Projektgruppe "Bioressourcen" Heinrich-Buff-Ring 58/62, Gießen 35392; Germany).
- 8 bPest and Environmental Adaptation Research Group, School of BioSciences, The University of
- 9 Melbourne, Victoria 3010, Australia.
- 10 °Centre for Integrative Ecology, School of Life and Environmental Sciences, Deakin University,
- 11 Victoria 3280, Australia.

12

- 13 *Corresponding author: Gordana Rašić, Pest and Disease Vector Group, School of BioSciences,
- 14 The University of Melbourne, Victoria 3010, Australia;
- 15 phone number: +61 3 9035 5237, fax number: +61 3 8344 2279, Email:
- 16 gordana.rasic@unimelb.edu.au

17

18 Running title: Scorpion *Urodacus yaschenkoi* is a species complex

- 20 Abstract
- 21 **Background**. The native Australian desert scorpion *Urodacus yaschenkoi*, widely distributed
- 22 throughout arid zones of the continent, is a promising model organism in biomedical research
- 23 due to the chemical nature of its venom. Unlike their overseas counterparts, Australian scorpions
- 24 have received little attention from researchers, and our study provides the first molecular insights
- 25 into the phylogenetic patterns and history of *U. yaschenkoi*.
- 26 **Methods.** We employed Bayesian Inference (BI) methods for the phylogenetic reconstructions
- and divergence dating among lineages, using unique haplotype sequences from two
- 28 mitochondrial loci (COXI, 16S) and one nuclear locus (28S). We also implemented two DNA
- 29 taxonomy approaches (GMYC and PTP/dPTP) to evaluate the presence of cryptic species.
- 30 Linear Discriminant Analysis was used to test whether the linear combination of 21 variables
- 31 (ratios of morphological measurements) can predict individual's membership to a putative
- 32 species.
- 33 **Results**. Multiple lines of evidence suggest that *U. yaschenkoi* is a species complex. High
- 34 statistical support for the monophyly of several divergent lineages was found both at the
- 35 mitochondrial loci and at a nuclear locus. The extent of mitochondrial divergence between these
- 36 lineages exceeds estimates of interspecific divergence reported for other scorpion groups. The
- 37 GMYC model identified nine entities and the PTP/bPTP approach identified seven, each
- 38 representing putative species. Ratios of several traits that approximate body shape had a strong
- 39 predictive power (83–100%) in discriminating two major molecular lineages. A time-calibrated
- 40 phylogeny dates the early divergence at the onset of continental-wide aridification in late
- 41 Miocene, with finer-scale phylogeographic patterns emerging during the Pleistocene. These

42	patterns of phylogeograophic structuring are consistent with the evolutionary history of other
43	arid Australian biota.
44	Discussion. Our results indicate that the taxonomic status of <i>U. yaschenkoi</i> requires revision.
45	Evidence of a species complex needs to be considered for future biomedical research,
46	particularly when venom from multiple individuals is pooled for toxinological characterization.
47	The complex evolutionary history of this scorpion highlights the importance of conserving
48	populations from different Australian arid zones in order to preserve patterns of endemism and
49	evolutionary potential.
50	
51	Keywords : Australian scorpion, cryptic species, phylogeography, COXI, 16S and 28S rRNA,
52	morphology.
53	

	T 4		•
54	Intro	duct	ากท
JT	IIIUU	uuci	11011

_	_
`	•
.,	.,

56 Scorpions are among the most ancient arthropods, derived from Silurian ancestors (Dunlop et al., 57 2008) and are considered 'living fossils' due to a largely unchanged body plan since the 58 Paleozoic period (Cao et al. 2013; Regier et al. 2010). Extant scorpions inhabit a diversity of 59 terrestrial habitats across all continents except Antarctica, with the greatest species diversity 60 found in tropical and subtropical regions of the world (Lourenço, 2001). Their populations can 61 be sensitive to environmental changes due to a low reproductive rate (long generation time, long 62 gestation time, small litter size) and high mortality of immature females (Lourenço and Cuellar, 63 1995; Fet et al., 1998). Several species have gained threatened status due to over-harvesting for 64 the souvenir and exotic pet trades (CITES, Appendix II, http://www.cites.org/eng/app/appendices.php). 65 66 Scorpions have received widespread public attention due to their venomous nature, with the 67 lethality (LD₅₀) of some scorpion venoms considered to be comparable to that of snake venoms 68 (Oukkache et al., 2014; Chippaux and Goyffon, 2008). Despite the high annual incidence of 69 scorpion-induced fatalities in regions of the Americas, Africa and the Middle East (Cupo 2015; 70 Dabo et al. 2011; de Roodt 2014; Dehghani & Fathi 2012), the venom of most scorpion species 71 is considered harmless (Isbister & Bawaskar 2014). To date 30 species, most belonging to the 72 Buthidae family, are considered medically important (Chippaux and Goyffon, 2008), and the 73 complex mixture of molecular constituents in venoms is increasingly recognized as an important 74 source of new therapeutic and insecticidal agents (Possani et al., 2000; Gurevitz et al., 2007; 75 Rodríguez de la Vega et al., 2010). Despite the medical and ecological relevance of scorpions,

we have only a limited understanding of their phylogenetic and taxonomic relationships.

77	Australia has more than 40 described scorpion species organized into four families: Buthidae,
78	Bothriuridae, Urodacidae and Hormuridae (Koch, 1977; Volschenk et al., 2008; Monod and
79	Prendini 2015). The Urodacidae is an Australian endemic family found across the continent
80	except on the south-eastern seaboard. The family was first described by Koch (1977) that under
81	the current classification includes two genera: Urodacus and the recently described Aops
82	(Volschenk and Prendini, 2008). The genus <i>Urodacus</i> contains 20 species (Prendini, 2000;
83	Volschenk and Prendini, 2008), several of which have recently been described based on
84	morphological characters (Volschenk and Prendini, 2008; Volschenk et al., 2012).
85	Urodacus yaschenkoi (Birula 1903), commonly known as the inland robust scorpion, occupies
86	Australian desert habitats stretching from north-western Victoria through South Australia and
87	across to Western Australia (Fig. 1). The species has emerged as a model organism in toxinology
88	because it produces large volumes of venom compared with other Urodacus species (Luna-
89	Ramírez et al., 2013; Luna-Ramírez et al., 2014), and is abundant across a broad geographic
90	area. The biochemical and molecular characterization of venom for biomedical research
91	generally requires large quantities of starting material, therefore venom is usually extracted from
92	multiple individuals and pooled prior to analysis. To satisfy requirements for analytical
93	procedures and potential drug development, it is necessary that pooled samples come from
94	conspecific individuals. Consequently it is imperative that taxonomic status of <i>U. yaschenkoi</i> is
95	well supported. This scorpion has had several synonyms throughout its taxonomic history,
96	starting from the original description as <i>Hemihoplopus yaschenkoi</i> (Birula 1903), followed by
97	Urodacus granifrons (Kraepelin 1916), U. fossor (Kraepelin 1916), and U. kraepelini (Glauert
98	1963), and finally by <i>U. yaschenkoi</i> (Koch 1977)
99	(https://biodiversity.org.au/afd/taxa/Urodacus_yaschenkoi).

Here we use a combination of molecular and morphological analytical approaches to investigate the taxonomic status of *U. yaschenkoi* across its native range. Specifically, phylogenetic reconstructions were carried out using DNA sequence data from mitochondrial and nuclear loci, and were complemented with the analysis of several morphological characters related to body shape. We also examined the phylogeographic patterns in *U. yaschenkoi* lineages to gain insights into the evolution history of the group and the influence of historical environmental factors on shaping its distribution. The novel results also provide critical information for future toxinological research and conservation of this scorpion.

Materials and Methods

Biological material

Samples of *U. yaschenkoi* were obtained from field and museum collections (Table 1). Live specimens were collected from eight locations (approximately 500 m²) in the semi-arid and arid regions of Central Australia in December 2010 and October 2011 (Table 1 and Fig. 1).

Individuals were collected at night from pitfall traps set in front of their burrows, and those outside their burrows were detected using ultraviolet (UV) lamps that reveal soluble fluorescent components (β-carboniles) in the scorpion exoskeleton (Stachel et al., 1999). Captured scorpions were kept alive and transported to the laboratory for morphological identification according to Koch (1977). Key diagnostic feature that distinguishes *U. yaschenkoi* from other *Urodacus* species is a very small terminal prolateral tarsus unguis. All specimens were handled according to good animal practices defined by the Government of Australia, and all institutions and museums involved approved the animal handling work. Scorpions were anaesthetized by cooling in a refrigerator (4°C) for 5 min before removing ~1 mm² of leg muscle tissue, which was stored

123 in 90% ethanol at 4°C or -20°C for subsequent DNA extraction. Additional samples were 124 obtained from collections at the South Australian Museum (SAM) and Western Australian 125 Museum (WAM) containing specimens collected between 2000 and 2010 (Table 1). 126 DNA extraction, amplification and sequencing 127 Total DNA was extracted from the stored muscle tissue using the DNeasy Blood and Tissue Kit 128 (Qiagen, Venlo, Netherlands) following the manufacturer's instructions. Two mitochondrial loci 129 (cytochrome oxidase subunit I, COXI; large ribosomal subunit, 16S) and a single nuclear locus 130 (28S) were amplified by PCR with a reaction volume of 20 µl containing 0.5 ng of template 131 DNA, 10 µl of Go Taq Master Mix (Promega, Madison, Wisconsin, USA), 0.5 µl of 10 nM 132 primers and 7 µl of RNase-free water (Qiagen). The primer sequences and PCR amplicon sizes 133 are summarized in Table 2. 134 Primers previously designed for the insect *COXI* gene (Simon et al., 1994; Tanaka et al., 2001) 135 were used to amplify a 630-base pair (bp) fragment from the 3' end of the locus. The 136 amplification conditions comprised an initial denaturing step at 95°C for 5 min followed by 35 137 cycles of denaturing at 94°C for 30 s, annealing at 52°C for 40 s, and extension at 72°C for 45 s, 138 and a final extension phase at 72°C for 5 min. For the mitochondrial 16S gene, the scorpion-139 specific primer pairs modified by (Gantenbein et al. 2005) were used to amplify a 425-bp region 140 at the 3' end of the locus. The amplification conditions comprised an initial denaturing step at 141 94°C for 4 min followed by 30 cycles of denaturing at 94°C for 30 s, annealing at 47.5°C for 30 142 s, and extension at 72°C for 30 s, and a final extension phase at 72°C for 7 min. The COXI and 143 16S gene fragments were also amplified from three specimens keyed out as *Urodacus manicatus* 144 and *U. novaehollandiae* (Table 1). Sequences from these taxa were used as outgroups in 145 downstream phylogenetic reconstruction. Primer pairs R1S and R1AS, and R2S and R2AS,

146	designed by (Arabi et al., 2012), were used to amplify 1158-bp and 1246-bp fragments of the
147	28S locus, respectively. Each set of primers amplifies a different region of the gene, which
148	overlaps by 327 bp, and their sequences were concatenated to form a larger product of 2076 bp.
149	The amplification conditions for both sets of primers comprised an initial denaturing step at
150	94°C for 4 min, followed by 30 cycles of denaturing at 94°C for 30 s, annealing at 55°C for 30 s,
151	and extension at 72°C for 30 s, and a final extension phase at 72°C for 7 min.
152	Museum specimens that were not stored under ideal conditions for preservation failed to yield
153	COXI amplicons suitable for direct sequencing. To address this issue, additional PCR primers
154	were designed to amplify smaller fragments for COXI locus (Table 2), resulting in amplicons of
155	150 bp that were used for subsequent analysis. For the SAM specimens, the amplification of the
156	28S nuclear gene failed entirely and these samples were excluded from further analysis. All
157	amplicons were sequenced in both directions using the PCR amplification primers, and carried
158	out on an Applied Biosystems 3130 genetic analyzer by Macrogen Inc. (Seoul, South Korea).
159	Sequences were aligned and edited in Geneious Pro v6.1 (Biomatters Ltd) using the MUSCLE
160	alignment option with default parameters. All chromatograms were checked for the presence of
161	multiple peaks (which indicate heterozygosity), and authenticity of the COXI coding gene was
162	validated by checking for indels and premature stop codons. After this editing process, the
163	alignment of the mitochondrial gene fragments yielded 616-bp and 396-bp products for the
164	COX1 and 16S genes respectively, and the final 28S alignment was 2076 bp in length. The final
165	dataset contained 68 sequences for each of the mitochondrial genes and 27 sequences for the 285
166	locus (Table 1, [GenBank: KP176717-KP176786]). Shared haplotypes were identified and the
167	uncorrected pairwise genetic distances (%) were calculated using Geneious Pro v6.1 (Biomatters

171

172

173

174

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

Ltd). This simple distance measure was implemented to achieve reliable estimates of bothintraspecific and interspecific genetic variation.

Phylogenetic analysis and divergence time estimation

Phylogenetic reconstructions and divergence dates among lineages were calculated using unique haplotypes and Bayesian Inference (BI) methods implemented in BEAST v2.1.3 (Bouckaert et al., 2014). We used jModeltest v0.1.1 (Posada, 2008) to select the best-fit model of evolution, based on Akaike Information Criteria (AIC) (Akaike and Company, 1981) for each of the mitochondrial and nuclear genes (GTR + G in each case). Mitochondrial loci were combined for analysis due to their similar modes of evolution (GTR+R), as indicated by the incongruencelength difference (ILD) tests (Farris et al. 1995) implemented in PAUP 4.0b10 (Swofford 2002). In contrast, the nuclear gene (28S) was analyzed independently and was not combined with the mitochondrial dataset for phylogenetic genetic analysis due to inconsistencies in taxon sampling (Table 1). Operators were auto-optimized, and five independent Markov Chain Monte Carlo (MCMC) runs were performed using a Yule (speciation) tree-prior, each running for 5 x 10⁶ generations, sampling every 10,000 states. Log files were examined with Tracer v1.5 (Drummond and Rambaut, 2007) to ensure that runs were sampling from the same posterior distribution, to determine appropriate burn-in, and to ensure that effective sample sizes (ESSs) of parameters of interest were greater than 1000. Tree files of independent runs were then combined using LogCombiner v2.1.3 (Drummond et al., 2012), discarding the first 20% and re-sampling at a lower frequency of 15,000. The maximum clade credibility (MCC) tree was recovered from a sample of 10,000 posterior trees, and branch support was annotated using TreeAnnotator v2.1.3 (Drummond et al., 2012). Each analysis started with a random starting tree and seed with no root

191	specified. Sequence data from species of the same genus (U. manicatus and U. novaehollandiae)
192	were used to estimate the root of the mitochondrial gene tree.
193	The mitochondrial gene tree was time calibrated with divergence times of nodes inferred from
194	95% highest posterior density (HPD) intervals. Scorpion-specific mutation rates of 0.007
195	substitutions/site/million years for COXI (Gantenbein and Largiadèr, 2003) and 0.005
196	substitutions/site/million years for 16S (Gantenbein et al., 2005) were used to calibrate the tree.
197	These estimates are derived from Buthid scorpions and have been used to estimate divergence
198	times among various scorpion lineages including non-Buthid taxa (Graham et al., 2012; Bryson
199	et al., 2013a,b). Substitution rates were set in BEAUti v1.7.3 (Drummond et al., 2012) using
200	relaxed clock log normal priors. Tracer was then used to obtain parameter estimates for time to
201	most recent common ancestor (tMRCAs) for nodes within the gene tree.
202	Additional phylogenetic constructions were also performed using a truncated COXI alignment to
203	test the influence of missing data on the final tree topology. Because numerous museum
204	collections yielded short COXI gene products, we trimmed the alignment to 150-bp to exclude
205	regions of the alignment with high levels of missing data. This exercise demonstrated that the
206	inclusion/exclusion of missing data had little influence on the phylogenetic reconstructions.
207	Consequently, all results presented from this point reflect those from the non-truncated COXI
208	alignment.
209	
210	Species delineation based on molecular data
211	We implemented two DNA taxonomy approaches to evaluate the presence of cryptic species.
212	

214

215

216

217

218

219

220

221

222

223

Barraclough, 2013) was applied to an ultrametric tree (produced using BEAST) in R v2.15.3 (R Development Core Team 2008) with the Splits package (http://splits.r-forge.r-project.org). The GMYC model is a process-based approach that detects the threshold in a gene tree at which within-species processes (i.e. coalescence) shift to between-species processes (i.e. speciation and extinction). Second, we combined the Poisson Tree Processes model for species delimitation (PTP) and a Bayesian implementation of PTP (bPTP) to infer putative species boundaries on a given phylogenetic input tree (Zhang et al., 2013). The PTP/bPTP model, unlike the GMYC model, requires a bifurcated phylogenetic tree rather than an ultrametric tree. PTP/dPTP models speciation or branching events in terms of the number of substitutions. The following parameters were used: MCMC, 500,000 generations; thinning, 100; burn-in, 0.1; seed, 123, and assessed convergence in each case to ensure the reliability of the results.

224

225

226

227

229

230

231

232

233

234

235

Analysis of demographic history

The demographic history of *U. vaschenkoi* was estimated from the mitochondrial dataset using a Bayesian Markov-Chain Monte Carlo (MCMC) coalescent approach implemented in BEAST 228 v2.1.3 (Bouckaert et al., 2014). The Bayesian skyline plot uses MCMC sampling procedures to estimate a posterior distribution of effective population size through time from a sample of gene sequences, given a previously specified nucleotide substitution model (Drummond et al. 2005). The time dimension of the analyses was calibrated using substitution rates for the respective gene partitions described above. The prior on rate was set to follow a normal distribution allowing for uncertainty around the estimate. Analyses were run using a best-fit model of evolution (GTR+R) and 100 million MCMC generations sampled every 10000 generations and launched from a random starting tree. The analysis was repeated in triplicate and log files were examined using

236 Tracer ver. 1.5 (Drummond and Rambaut, 2007b) to determine the appropriate burn-in (10% of 237 chain length), to ensure that runs were returning samples from the same distribution, and to 238 ensure that the effective sample sizes for all demographic statistics were greater than 1000. Post-239 burn-in log and tree files from each independent run were combined using LogCombiner ver. 240 1.7.3 and the trees in the posterior sample were summarized by Bayesian skyline reconstruction 241 using a stepwise skyline variant. 242 243 Analyses of morphological traits 244 Traits related to body size and shape were assessed in 39 female adult specimens that were keyed 245 out as *U. yaschenkoi* (according to Koch, 1977) collected at 26 locations (Table 1, Fig. 1). 246 Gender was determined by examining the genital opercula of adult scorpions, with males having 247 a small finger-like projection known as the genital papilla. Because our collection contained only 248 three males, the analyses were done only with females. 249 The following traits were measured under a microscope using an ocular ruler with 1-mm 250 precision: carapace length (CL), metasoma segment V length (MVL), telson length (SL), 251 pedipalp length (PL), chela length (ChL), pecten length (PecL) and pecten width (PecW). Ratios 252 of traits (e.g. CL/MVL, SL/PL etc.) gave in total 21 variables scored in each individual 253 (Supplemental file 4). These variables were treated as predictors in the Linear Discriminant 254 Analysis (LDA) implemented in the R package "MASS" (Venables & Ripley 2002). LDA was 255 used to test whether the linear combination of 21 variables (ratios of morphological 256 measurements) can predict individual's membership to a mitochondrial lineage (putative 257 species). Strong predictive power of morphological variation on the observed molecular 258 divergence would provide additional support for a species complex in *U. yaschenkoi*.

260	Results
261	We identified 31 unique mitochondrial haplotypes with uncorrected distances between
262	haplotypes ranging from 0.3–7.6% (mean \pm standard deviation = 3.0% \pm 0.4%) and distances
263	from the outgroup taxa of 8.4–10.2% (mean \pm standard deviation = 9.4% \pm 1.4%) (Supplemental
264	File 1). A total of 13 nuclear 28S haplotypes were identified with uncorrected p-distances of 0.1–
265	0.5% (mean \pm standard deviation = $0.2\% \pm 0.1\%$) (Supplemental File 2). A list of haplotypes for
266	sample locations is provided in Supplemental File 3.
267	Phylogenetic analysis
268	Mitochondrial markers
269	Bayesian inference analysis of the mitochondrial dataset identified several genetically divergent
270	lineages (three major lineages represented as black, red and green clades in Fig. 2), with strong
271	statistical support for their respective monophylies (posterior probability >0.95). Figure 1 shows
272	that the lineages within the black clade are broadly distributed across Victoria, South Australia
273	and Western Australia, whereas the red and green clades are restricted to Western Australia.
274	From this point forward we will refer to the black, red and green clades as the south-central,
275	western and central-western lineages, respectively.
276	The south-central lineage showed significant geographic structure. The most divergent and basal
277	sub-lineage (haplotypes 16–17) was found in Western Australia, occurring in sympatry with the
278	central-western lineage (Fig. 1). A second well supported sub-lineage (haplotypes 1-14 and 18-
279	19) was found west of the Central Ranges, through to the Eyre Peninsula in South Australia,
280	while another (haplotypes 20–22, 25 and 28) had a distribution extending from the Central to Mt

281	Lofty Ranges in South Australia, and across to north-western Victoria. The remaining
282	monophyletic sub-lineage within the south-central grouping (haplotypes 23-24 and 26-27) had a
283	narrow north-south distribution in the central inland and coastal regions of South Australia (Fig.
284	1).
285	Mean uncorrected pairwise genetic distances between the three major clades (south-central,
286	western and central-western) ranged from 6.4 to 6.9% (overall mean \pm standard deviation = 6.6%
287	\pm 0.9%). The mean intra-clade distances ranged from 2.2% \pm 0.4% and 0.8% \pm 0.2%,
288	respectively (not calculated for the western clade due to only a single recorded haplotype). Mean
289	uncorrected distances between the three major clades and the outgroups ranged from 9.3 to
290	10.3% (mean \pm standard deviation = 9.4% \pm 1.4%).
291	Nuclear marker
292	Despite low level of variation in the 28S dataset, Bayesian analysis produced a nuclear gene
293	topology that was largely concordant with the mitochondrial gene tree. Three genetically
294	divergent clades were identified, corresponding to those from the mitochondrial dataset
295	(represented by the black, red and green branch colours in Fig. 3). In each case, strong statistical
296	support for the monophyly of each clade was found (posterior probability >0.95). Due to low
297	level of variation when compared to the mitochondrial dataset, the interrelationships among
298	lineages within each clade in the nuclear gene tree were unresolved, preventing any reliable
299	inferences of phylogeographic patterns.

Divergence dating

Our time calibrated mitochondrial phylogeny suggested that the split between the major *U. yaschenkoi* clades (south-central, western and central-western lineages) occurred during the late Miocene/early Pliocene (4–7 MYA) (Fig. 2). Lineage diversifications within the south-central lineages appear to have occurred during the Pliocene and early Pleistocene (1.8–4 MYA), while finer-scale phylogeographic patterning within the sub-lineages arose during the late Pleistocene (<1 MYA). Divergence time estimates should be interpreted with some caution, as the nucleotide substitution rate was derived from a different scorpion family (Buthidae) and there are large errors margins around 95% HPD estimates.

Molecular-based species delineation

Among the 31 unique mitochondrial haplotypes described above, the GMYC model identified nine entities and the PTP/bPTP approach identified seven, each representing putative species (Table 3). The assignment of haplotypes to putative species groups is shown in Fig. 2, where conspecifics share a common symbol (star, hollow circle, solid circle, triangle, diamond, cross, or square). Species assignments were highly consistent when comparing each of the methods, but we presented the PTP/bPTP results as they are more accurate when the evolutionary distances between lineages are small (Zhang et al., 2013). In summary the south-central, western and central-western clades were recognised as putative species groups, as were the sub-lineages within the south-central ancestral grouping (Fig. 1 and 2).

Analysis of demographic history

Bayesian skyline analyses were performed for the south-central ancestral lineage only, as the western and central-western lineages are represented by a limited number of haplotypes. We also performed analyses on two independent datasets consisting of individuals assigned to the two sub-lineages denoted by stars and circles within the south-central ancestral lineage in Fig. 2. This allowed us to determine if potential interspecific influences are biasing estimates of demographic history in the combined south-central lineage dataset. All analyses indicate that *U. yaschenkoi* south-central lineage has remained relatively stable over the last 1 to 2 million years (Fig. 4A-C). Although the plot of mean *Ne* indicates gradual growth through time to the present day for the sub-lineage in Fig. 4B, the 95 % highest posterior density intervals are large making it difficult to infer any notable growth. Each figure indicates a decline in *Ne* in the last 100,000 years, yet this pattern should be regarded with caution, as it may simply be an artefact of uncharacterised population structure (a common artefact where mixed gene pools are coanalysed; (Heller et al. 2013).

Discriminant power of morphological variation

None of the *U. yaschenkoi* specimens that were characterized at 21 morphological ratio variables were assigned to the western mitochondrial clade, hence the LDA was done on 39 females assigned to the south-central and the central-western clades. Individuals were categorized into four groups (putative species) based on the results of the PTP/bPTP molecular species delineation analysis: 18 females from the group designated with a star, 12 from the circle group, three from the triangle group, and six from the solid square group (Fig. 2). Because our dataset contained four groups, we could find a maximum of three discriminant functions that separate these groups.

The first discriminant function (LD1) achieved 93.7% of the separation, reflecting the morphological distinction of the central-western (green) clade from the south-central (black) clade (Fig. 5). Further separation of the three putative groups within the south-central clade was weak (LD2-3, Fig. 5). We then grouped samples into two putative species (central-western and south-central clade) and tested the accuracy of prediction using 100 jackknife resampling steps. The grouping into two molecular clades based on morphological variation was 100% accurate (33/33) for the south-central clade and 83.3% accurate (5/6) for the central-western clade. Therefore, our results indicate strong predictive power of morphological variation on the observed molecular divergence, and suggest the existence of at least two distinct taxa within *U. vaschenkoi*.

Discussion

Taxonomy of Urodacus yaschenkoi

Multiple lines of evidence indicate that *U. yaschenkoi* is a species complex. High statistical support for the monophyly of three highly divergent lineages at both mitochondrial and nuclear loci was observed. The extent of genetic divergence between the three lineages (6.4–6.9%) exceeds estimates of interspecific divergence previously reported for other scorpion and arthropod groups (Wysocka et al., 2011; Tourinho et al., 2012; Bryson et al., 2014). Collectively, these observations satisfy the requirements for species delineation based on the principles of the phylogenetic species concept (Wheeler, 1999; De Queiroz, 2007). Because genetic 'yardstick' approaches provide crude taxonomic measures and nucleotide substitution rates often vary considerably between taxonomic groups, some caution is needed when considering findings of these analyses alone. Alternative DNA-based species delineation approaches (GMYC and bPTP)

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

also provided significant statistical support for the recognition of the south-central, western and central-western *U. yaschenkoi* clades as distinct species, and potential further cryptic speciation within the south-central clade (Fig. 2). The GMYC method has been criticized for over-splitting species with a pronounced genetic structure (Satler et al., 2013), yet several recent studies have shown that it is highly robust (Fujisawa and Barraclough, 2013; Talayera, Dincă et al. 2013). Consistent results between the GMYC and bPTP methods strengthen the molecular evidence in favor of *U. yaschenkoi* being a species complex. We also demonstrated a strong association between the molecular divergence and morphological variation. Namely, ratios of several traits that approximate body shape had a strong predictive power (83-100%) in discriminating two major molecular lineages in *U. yaschenkoi*: the centralwestern clade and the south-central clade. Until now U. yaschenkoi has been described as a species with a wide geographic distribution and is distinguished from other congeneric species by its much smaller terminal prolateral tarsal ungues and by the production of large amounts of venom (Koch, 1977). Based on our results from a limited sample size, morphological variation in this scorpion warrants further investigation. Attention to pigmentation, granulation and burrowing behavior might provide additional diagnostic characters that could be used to describe the *U. yaschenkoi* species complex. Phylogeographic history of Urodacus yaschenkoi Our time-calibrated phylogeny indicates that the south-central, western and central-western U. vaschenkoi lineages (Fig. 2 and 3) diverged from a common ancestor during the Miocene/early Pliocene (approximately 5-9 MYA). This geological time was marked by a shift to a much drier climate, the significant contraction of rainforests and the expansion of arid habitats (Martin, 2006). Time calibrated phylogenies for diverse taxa from Australian arid habitats also indicate

390

391

392

393

394

395

396

397

398

399

400

401

402

403

404

405

406

407

408

409

410

411

that their deep divergences occurred during the mid-Miocene and the onset of aridification (Byrne et al., 2008). Further diversification within the major ancestral *U. yaschenkoi* lineages appears to have occurred throughout the Pliocene (3-5 MYA), which was a consistently dry period. This is followed by further lineage divergence during the mid and late Pleistocene when the climate was highly dynamic (< 1 MYA), with wetter and drier episodes corresponding to interglacial and glacial cycles (Martin, 2006). Koch (1977) suggested that the mechanisms underlying the distribution of extant Australian scorpions include a combination of allopatric diversification in refugia, range expansion and overlapping. The refugia concept has also been widely used to describe biogeographic patterning in a range of biota from Southern Australia, specifically relating to mid-Pleistocene climatic oscillations and increased aridity (Byrne, 2008). In *Urodacus*, the fragmentation of temperate forests in southern Australia during arid conditions of the late Cenozoic is likely to have driven the isolation and divergence between *U. novaehollandiae* (south-western species) and *U.* manicatus (south-eastern species) (Koch, 1977). In *U. yaschenkoi*, the contemporary distribution of lineages/putative species suggests some influence of the refugia described in Koch (1977), such as the expansion of the western lineages from the Hamersley refuge area, or the complex history of secondary contact between the south-central lineages expanding from Central Ranges, Eyre Peninsula / Mt Lofty, and Murray Darling River refugia (Fig. 1). However, a more comprehensive sampling is needed to further test these hypotheses. Implications of findings *Urodacus yaschenkoi* is a promising model organism in biomedical research, whose venom is increasingly used in toxinological studies (Luna-Ramírez et al. 2014; Luna-Ramírez et al. 2013).

Because large quantities of venom are needed for biochemical and molecular characterization,

112	venom from multiple individuals is commonly pooled for such analyses. If specimens from
113	divergent taxa are used for venom pooling, this would likely result in a spurious identification of
114	bioactive compounds that do not naturally occur in a single taxon. Our study provides the much
115	needed resource for selecting compatible genotypes for future toxinological research.
116	Our findings also have implications for the conservation of. <i>U. yaschenkoi</i> . While currently
117	considered as a species of least concern, our study reveals the complex evolutionary history of
118	this scorpion and highlights the importance of conserving populations from different Australian
119	arid zones in order to preserve patterns of endemism and evolutionary potential.
120	
121	Conclusions
122	Our study provides the first insight into the molecular phylogeny of the endemic Australian

422	Our study provides the first insight into the molecular phylogeny of the endemic Australian
423	scorpion Urodacus yaschenkoi. We found strong evidence for deep divergence and complex
424	phylogeographic patterns within this taxon. Concordance between the mitochondrial and nuclear
425	data, along with the morphological variation, all suggest that <i>U. yaschenkoi</i> is a species complex
426	These findings have implications for the future of biomedical research, such as venom
427	characterization for drug and insecticide development. Careful consideration of <i>U. yaschenkoi</i>
428	operational taxonomic units will be necessary to achieve sustainable toxinology and conservation
429	of Australian desert biodiversity.

431	
432	Competing interests
433	Authors declare no competing interests.
434	Authors' contribution
435	KLR conceived the study, collected the samples, performed the experimental work, processed
436	the data and contributed to the manuscript writing. GR and ADM analysed the data and led the
437	writing of the manuscript. All authors have read and approved the final manuscript.
438	
439	
440	
441	Acknowledgments
442	KLR would like to thank Dr Ken Walker and Dr Joanna Sumner from Museum Victoria for their
443	help and support during the experimental phase of this research project. KLR is grateful to Prof.
444	Mark Harvey at the Western Australian Museum and to Dr. Leslie Chisholm at the South
445	Australian Museum for agreeing to provide scorpion specimens for molecular and
446	morphological characterization. KLR was supported by scholarships from CONACyT and
447	from The Hugh Williamson Foundation, through Museum Victoria.
448	
170	

449 **References**

- 450 Akaike, H., Company, N.P., 1981. Likelihood of a model and information criteria. J. Econom.
- 451 16, 3–14. doi:10.1016/0304-4076(81)90071-3
- 452 Arabi, J., Judson, M.L.I., Deharveng, L., Lourenço, W.R., Cruaud, C., Hassanin, A., 2012.
- Nucleotide composition of CO1 sequences in Chelicerata (arthropoda): Detecting new
- 454 mitogenomic rearrangements. J. Mol. Evol. 74, 81–95. doi:10.1007/s00239-012-9490-7
- Bouckaert, R., Heled, J., Kühnert, D., Vaughan, T., Wu, C.H., Xie, D., Suchard, M.A., Rambaut,
- 456 A., Drummond, A.J., 2014. BEAST 2: A Software Platform for Bayesian Evolutionary
- 457 Analysis. PLoS Comput. Biol. 10. doi:10.1371/journal.pcbi.1003537
- Bryson, R.W., Prendini, L., Savary, W.E., Pearman, P.B., 2014. Caves as microrefugia:
- Pleistocene phylogeography of the troglophilic North American scorpion Pseudouroctonus
- 460 reddelli. BMC Evol. Biol. 14, 9. doi:10.1186/1471-2148-14-9
- Bryson, R.W., Riddle, B.R., Graham, M.R., Smith, B.T., Prendini, L., 2013a. As Old as the
- 462 Hills: Montane Scorpions in Southwestern North America Reveal Ancient Associations
- between Biotic Diversification and Landscape History. PLoS One 8.
- doi:10.1371/journal.pone.0052822
- Bryson, R.W., Savary, W.E., Prendini, L., 2013b. Biogeography of scorpions in the
- Pseudouroctonus minimus complex (Vaejovidae) from south-western North America:
- Implications of ecological specialization for pre-Quaternary diversification. J. Biogeogr. 40,
- 468 1850–1860. doi:10.1111/ibi.12134
- Byrne, M., 2008. Evidence for multiple refugia at different time scales during Pleistocene
- 470 climatic oscillations in southern Australia inferred from phylogeography. Quat. Sci. Rev.
- 471 27, 2576–2585. doi:10.1016/j.quascirev.2008.08.032
- Byrne, M., Yeates, D.K., Joseph, L., Kearney, M., Bowler, J., Williams, M.A.J., Cooper, S.,
- Donnellan, S.C., Keogh, J.S., Leys, R., Melville, J., Murphy, D.J., Porch, N., Wyrwoll,
- 474 K.H., 2008. Birth of a biome: Insights into the assembly and maintenance of the Australian
- 475 arid zone biota. Mol. Ecol. doi:10.1111/j.1365-294X.2008.03899.x
- 476 Cao, Z., Yu, Y., Wu, Y., Hao, P., Di, Z., He, Y., Chen, Z., Yang, W., Shen, Z., He, X., Sheng, J.,
- 477 Xu, X., Pan, B., Feng, J., Yang, X., Hong, W., Zhao, W., Li, Z., Huang, K., Li, T., Kong,
- 478 Y., Liu, H., Jiang, D., Zhang, B., Hu, J., Hu, Y., Wang, B., Dai, J., Yuan, B., Feng, Y.,
- Huang, W., Xing, X., Zhao, G., Li, X., Li, Y., Li, W., 2013. The genome of Mesobuthus
- martensii reveals a unique adaptation model of arthropods. Nat. Commun. 4, 2602.
- 481 doi:10.1038/ncomms3602
- 482 Chippaux, J.P., Goyffon, M., 2008. Epidemiology of scorpionism: A global appraisal. Acta Trop.
- 483 doi:10.1016/j.actatropica.2008.05.021

- 484 De Queiroz, K., 2007. Species concepts and species delimitation. Syst. Biol. 56, 879–886. 485 doi:10.1080/10635150701701083 486 Drummond, A., Rambaut, A., 2007. Tracer v1. 5. Available from http://beast.bio.ed.ac.uk/Tracer. Drummond, A.J., Suchard, M.A., Xie, D., Rambaut, A., 2012. Bayesian phylogenetics with 487 488 BEAUti and the BEAST 1.7. Mol. Biol. Evol. 29, 1969–1973. doi:10.1093/molbev/mss075 Dunlop, J.A., Tetlie, O.E., Prendini, L., 2008. Reinterpretation of the Silurian scorpion 489 490 Proscorpius osborni (Whitfield): Integrating data from Palaeozoic and recent scorpions. 491 Palaeontology 51, 303–320. doi:10.1111/j.1475-4983.2007.00749.x 492 Fet, V., Polis, G.A., Sissom, W.D., 1998. Life in sandy deserts: the scorpion model. J. Arid 493 Environ. doi:10.1006/jare.1997.0386 494 Fet, V., Soleglad, M.E., 2005. Contributions to Scorpion Systematics. I. On Recent Changes in 495 High-Level Taxonomy. Euscorpius. Occas. Publ. Scorpiology 1–13. 496 Fox, J., 2005. The R Commander: A Basic-Statistics Graphical User Interface to R. J. Stat. 497 Softw. 14. 1–42. doi:10.1234/12345678 498 Fujisawa, T., Barraclough, T.G., 2013. Delimiting species using single-locus data and the 499 generalized mixed yule coalescent approach: A revised method and evaluation on simulated 500 data sets. Syst. Biol. 62, 707-724. doi:10.1093/sysbio/syt033 501 Gantenbein, B., Fet, V., Gantenbein-Ritter, I.A., Balloux, F., 2005. Evidence for recombination
- in scorpion mitochondrial DNA (Scorpiones: Buthidae). Proc. Biol. Sci. 272, 697–704.
 doi:10.1098/rspb.2004.3017
 Gantenbein, B., Largiadèr, C.R., 2003. The phylogeographic importance of the Strait of Gibraltar as a gene flow barrier in terrestrial arthropods: A case study with the scorpion Buthus

occitanus as model organism. Mol. Phylogenet. Evol. 28, 119–130. doi:10.1016/S1055-7903(03)00031-9

Graham, M.M.R., Oláh-Hemmings, V., Fet, V., 2012. Phylogeography of co-distributed dune scorpions identifies the Amu Darya River as a long-standing component of Central Asian biogeography: (Scorpiones: Buthidae. Zool. Middle East 55, 95–110.

511 doi:10.1080/09397140.2012.10648924

Gurevitz, M., Karbat, I., Cohen, L., Ilan, N., Kahn, R., Turkov, M., Stankiewicz, M., Stühmer,
 W., Dong, K., Gordon, D., 2007. The insecticidal potential of scorpion β-toxins. Toxicon.

514 doi:10.1016/j.toxicon.2006.11.015

Hillis, D.M., Dixon, M.T., 1991. Ribosomal DNA: Molecular evolution and phylogenetic inference. Q. Rev. Biol. 66, 411–446. doi:10.1086/417338

517	Papuan scorpions. Rec. West. Aust. Museum 5, 79.
519 520	Lourenço, W.R., 2001. The scorpion families and their geographical distribution. J. Venom. Anim. Toxins. doi:10.1590/S0104-79302001000100002
521 522	Lourenço, W.R., Cuellar, O., 1995. Scorpions, scorpionism, life history strategies and parthenogenesis. J. Venom. Anim. Toxins. doi:10.1590/S0104-79301995000200002
523 524 525 526 527	Luna-Ramírez, K., Bartok, A., Restano-Cassulini, R., Quintero-Hernández, V., Coronas, F.I. V, Christensen, J., Wright, C.E., Panyi, G., Possani, L.D., 2014. Structure, molecular modeling, and function of the novel potassium channel blocker urotoxin isolated from the venom of the Australian scorpion Urodacus yaschenkoi. Mol. Pharmacol. 86, 28–41. doi:10.1124/mol.113.090183
528 529 530 531	Luna-Ramírez, K., Quintero-Hernández, V., Vargas-Jaimes, L., Batista, C.V.F., Winkel, K.D., Possani, L.D., 2013. Characterization of the venom from the Australian scorpion Urodacus yaschenkoi: Molecular mass analysis of components, cDNA sequences and peptides with antimicrobial activity. Toxicon 63, 44–54. doi:10.1016/j.toxicon.2012.11.017
532 533	Martin, H.A., 2006. Cenozoic climatic change and the development of the arid vegetation in Australia. J. Arid Environ. 66, 533–563. doi:10.1016/j.jaridenv.2006.01.009
534 535 536 537	Oukkache, N., El Jaoudi, R., Ghalim, N., Chgoury, F., Bouhaouala, B., El Mdaghri, N., Sabatier, J.M., 2014. Evaluation of the lethal potency of scorpion and snake venoms and comparison between intraperitoneal and intravenous injection routes. Toxins (Basel). 6, 1873–1881. doi:10.3390/toxins6061873
538 539 540 541	Pons, J., Barraclough, T.G., Gomez-Zurita, J., Cardoso, A., Duran, D.P., Hazell, S., Kamoun, S., Sumlin, W.D., Vogler, A.P., 2006. Sequence-based species delimitation for the DNA taxonomy of undescribed insects. Syst. Biol. 55, 595–609. doi:10.1080/10635150600852011
542 543	Posada, D., 2008. jModelTest: Phylogenetic model averaging. Mol. Biol. Evol. 25, 1253–1256. doi:10.1093/molbev/msn083
544 545 546	Possani, L.D., Merino, E., Corona, M., Bolivar, F., Becerril, B., 2000. Peptides and genes coding for scorpion toxins that affect ion-channels. Biochimie. doi:10.1016/S0300-9084(00)01167-6
547 548 549	Prendini, L., 2000. Phylogeny and Classification of the Superfamily Scorpionoidea Latreille 1802 (Chelicerata, Scorpiones): An Exemplar Approach. Society 78, 1–78. doi:10.1006/clad.1999.0127

550 551 552	Regier, J.C., Shultz, J.W., Zwick, A., Hussey, A., Ball, B., Wetzer, R., Martin, J.W., Cunningham, C.W., 2010. Arthropod relationships revealed by phylogenomic analysis of nuclear protein-coding sequences. Nature 463, 1079–1083. doi:10.1038/nature08742
553 554	Rodríguez de la Vega, R.C., Schwartz, E.F., Possani, L.D., 2010. Mining on scorpion venom biodiversity. Toxicon. doi:10.1016/j.toxicon.2009.11.010
555 556 557	Satler, J.D., Carstens, B.C., Hedin, M., 2013. Multilocus species delimitation in a complex of morphologically conserved trapdoor spiders (mygalomorphae, antrodiaetidae, Aliatypus). Syst. Biol. 62, 805–823. doi:10.1093/sysbio/syt041
558 559 560	Simon, C., Frati, F., Beckenbach, A., Crespi, B., Liu, H., Flook., P., 1994. Evolution, weighting, and phylogenetic utility of mitochondrial gene sequences and a compilation of conserved PCR primers. Ann. Entomol. Soc. Am. 87, 651–701.
561 562	Stachel, S.J., Stockwell, S.A., Van Vranken, D.L., 1999. The fluorescence of scorpions and cataractogenesis. Chem. Biol. 6, 531–539. doi:10.1016/S1074-5521(99)80085-4
563 564 565	Talavera, G., Dincă, V., Vila, R., 2013. Factors affecting species delimitations with the GMYC model: Insights from a butterfly survey. Methods Ecol. Evol. 4, 1101–1110. doi:10.1111/2041-210X.12107
566 567 568	Tamura, K., Dudley, J., Nei, M., Kumar, S., 2007. MEGA4: Molecular Evolutionary Genetics Analysis (MEGA) software version 4.0. Mol. Biol. Evol. 24, 1596–1599. doi:10.1093/molbev/msm092
569 570 571	Tanaka, H., Roubik, D.W., Kato, M., Liew, F., Gunsalam, G., 2001. Phylogenetic position of Apis nuluensis of northern Borneo and phylogeography of A. cerana as inferred from mitochondrial DNA sequences. Insectes Soc. doi:10.1007/PL00001744
572 573 574	Tourinho, J.L., Sole-Cava, A.M., Lazoski, C., 2012. Cryptic species within the commercially most important lobster in the tropical Atlantic, the spiny lobster Panulirus argus. Mar. Biol. 159, 1897–1906. doi:http://dx.doi.org/10.1007/s00227-012-1977-7
575 576	Volschenk, E.S., Harvey, M.S., Prendini, L., 2012. A new species of Urodacus (Scorpiones: Urodacidae) from Western Australia. Am. Museum Novitiates 1–18. doi:10.1206/3748.2
577 578 579	Volschenk, E.S., Mattoni, C.I., Prendini, L., 2008. Comparative anatomy of the mesosomal organs of scorpions (Chelicerata, Scorpiones), with implications for the phylogeny of the order. Zool. J. Linn. Soc. doi:10.1111/j.1096-3642.2008.00426.x
580 581 582	Volschenk, E.S., Prendini, L., 2008. Aops oncodactylus, gen. et sp. nov., the first troglobitic urodacid (Urodacidae:Scorpiones), with a re-assessment of cavernicolous, troglobitic and troglomorphic scorpions. Invertebr. Syst. 22, 235–257. doi:10.1071/IS06054

PeerJ

583 584	Wheeler, Q.D., 1999. Why the phylogenetic species concept?-Elementary. J. Nematol. 31, 134–141.
585 586 587 588	Wysocka, A., Krzysztofiak, L., Krzysztofiak, A., Zołnierkiewicz, O., Ojdowska, E., Sell, J., 2011. Low genetic diversity in Polish populations of sibling ant species: Lasius niger (L.) and Lasius platythorax Seifert (Hymenoptera, Formicidae). Insectes Soc. 58, 191–195. doi:10.1007/s00040-010-0135-9
589 590 591	Zhang, J., Kapli, P., Pavlidis, P., Stamatakis, A., 2013. A general species delimitation method with applications to phylogenetic placements. Bioinformatics 29, 2869–2876. doi:10.1093/bioinformatics/btt499
592	
593	Web references:
	Web references.
594 595 596	Department of the Environment, Water, Heritage and the Arts (12 February 2010). "Species Urodacus yaschenkoi (Birula, 1903)". <i>Australian Biological Resources Study: Australian Faunal Directory</i> . Commonwealth of Australia. Retrieved 20 July 2015.
595	Department of the Environment, Water, Heritage and the Arts (12 February 2010). "Species Urodacus yaschenkoi (Birula, 1903)". <i>Australian Biological Resources Study: Australian</i>
595 596	Department of the Environment, Water, Heritage and the Arts (12 February 2010). "Species Urodacus yaschenkoi (Birula, 1903)". <i>Australian Biological Resources Study: Australian Faunal Directory</i> . Commonwealth of Australia. Retrieved 20 July 2015.

Figure 1. Map depicting the sampling locations across the natural distribution of *Urodacus yaschenkoi*. Samples are coded based on the major mitochondrial lineage (red, green, black) and putative species (star, triangle, circle etc.). The extant distribution (yellow shading) and major Australian refugia (dashed line) are adopted from (Koch 1977).

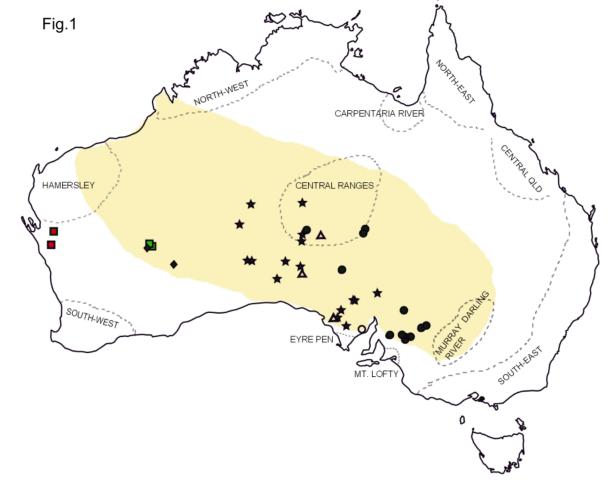


Figure 2. Bayesian Inference phylogeny based on the concatenated sequences from two mitochondrial genes (COXI and 16S). Nodes supported by Bayesian posterior probabilities greater than or equal to 0.95 are indicated by black circles with white fill. Blue shaded bars indicate the 95% highest posterior density (HPD) for node ages (scale bars represents time in millions of years from the present day). The assignment of haplotypes to putative species groups identified by PTP/bPTP is depicted with symbols (star, hollow circle, solid circle, triangle, diamond, cross, square).

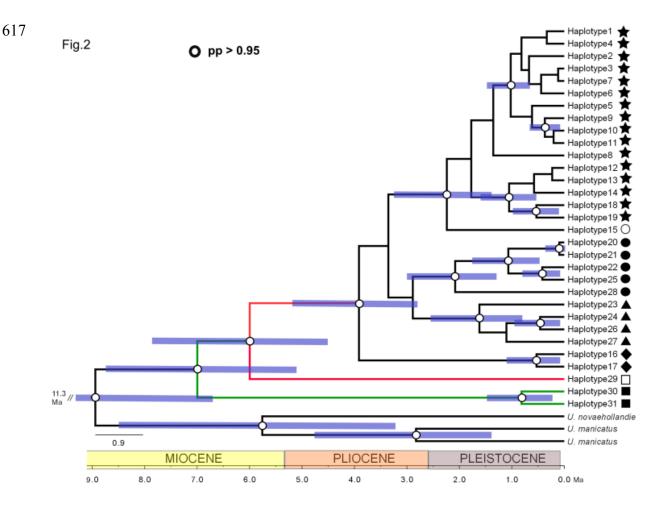
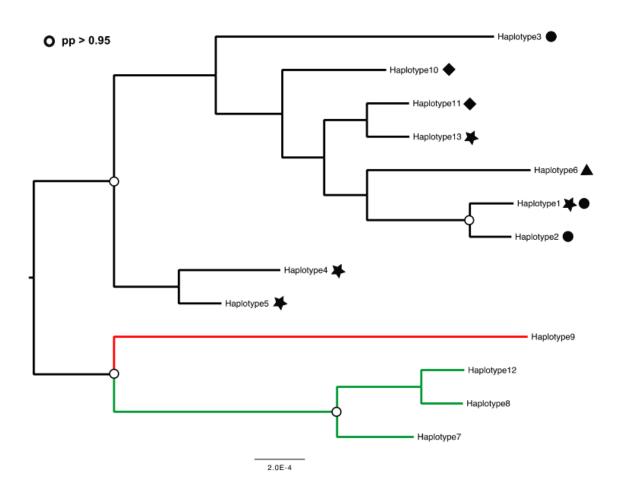


Figure 3. Bayesian Inference phylogeny based on nuclear 28SA data. Nodes supported by Bayesian posterior probabilities greater than or equal to 0.95 are indicated by black circles with white fill. Three major ancestral lineages are coded as green, red and black (corresponding to those identified in the mitochondrial phylogeny).

622


618

619

620

621

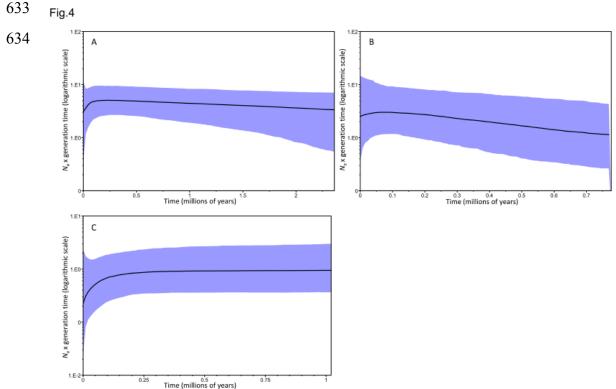

623 Fig.3

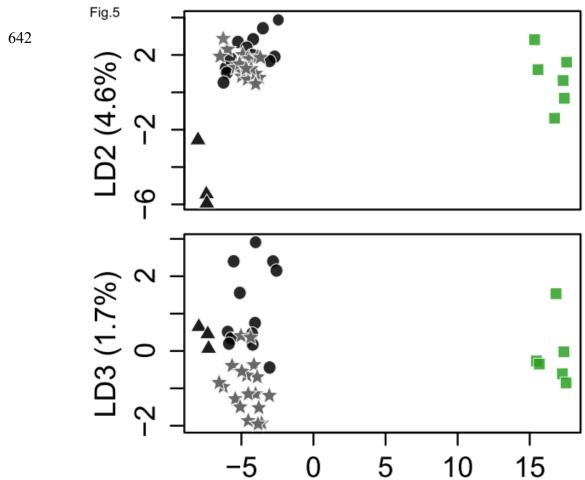
Figure 4. Demographic history of *U. yaschenkoi* **determined by Bayesian skyline analysis of mitochondrial data**. Reported are the plots of *Ne* (effective population size multiplied per generation time) against time in years from present. Mean *Ne* is shown as a solid black line and shaded blue areas enclose the 95 % highest posterior density interval. Figure 'A' represents the analysis of all haplotypes assigned to the south-central ancestral lineage, while figures 'B' and 'C' represent the analyses of haplotypes assigned to the 'star' and 'circle' sub-lineages within the south-central ancestral lineage.

*(*22

636

637

638


639

640

Figure 5. Linear Discriminant Analysis with ratios of morphological traits in *U. yaschenkoi*.

Separation of 39 adult females assigned to the four putative species (designated with the star, circle, triangle and square symbols) based on a linear combination of 21 variables. 93.7% separation between individuals belonging to the western-central (green) clade and all other individuals from the south-central (black) clade was achieved by the first discriminant function (LD1).

LD1 (93.7%)

Table 1. *Urodacus yaschenkoi* specimen location and analyses made. List of *Urodacus yaschenkoi* collected from the field as live specimens (Field) or obtained from the Australian museum collections (South Australian Museum - SA, Western Australian Museum - WA). Geographic position (lat/log) and the geographic region details are reported for each sample. List of molecular loci (*COXI*, 16S, 28S) scored in each individual. Seven morphological characters were scored in 39 specimens (♣).

Sample	Source	Latitude	Longitude	Geographic Region	Markers	Morpho	Museum ID/Reg.No.
BKA11	Field	-33.2283	141.3011	NSW	COXI, 16S, 28S		NA
BKA12	Field	-33.2283	141.3011	NSW	COXI, 16S, 28S		NA
BKB10	Field	-33.2199	141.3089	NSW	COXI, 16S, 28S		NA
BKB12	Field	-33.2242	141.3061	NSW	COXI, 16S, 28S		NA
BKB13	Field	-33.2283	141.3011	NSW	COXI, 16S, 28S		NA
MARR1	Field	-26.3400	133.2000	SA	COXI, 16S, 28S		NA
MARR2	Field	-26.3400	133.2000	SA	COXI, 16S, 28S		NA
PIM1	Field	-31.2509	136.5089	SA	COXI, 16S, 28S		NA
PIM2	Field	-31.2509	136.5089	SA	COXI, 16S, 28S		NA
PIM5	Field	-31.2509	136.5089	SA	COXI, 16S, 28S		NA
PIM6	Field	-31.2509	136.5089	SA	COXI, 16S, 28S		NA
PIM7	Field	-31.2509	136.5089	SA	COXI, 16S, 28S		NA
PIM8	Field	-31.2509	136.5089	SA	COXI, 16S, 28S		NA
POP1	Field	-33.0710	141.6372	NSW	COXI, 16S, 28S		NA
POP4	Field	-33.0710	141.6372	NSW	COXI, 16S, 28S		NA
POP5	Field	-33.0710	141.6372	NSW	COXI, 16S, 28S		NA
SAM1397	SAM	-30.7667	138.1767	SA	COXI, 16S	B	NS1397

SAM1399	SAM	-27.1192	132.8300	SA	COXI, 16S	B	NS1399
SAM1400	SAM	-27.1191	132.8300	SA	COXI, 16S	B	NS1400
SAM1403	SAM	-26.6453	132.8858	SA	COXI, 16S	B	NS1403
SAM1406	SAM	-31.2878	136.5831	SA	COXI, 16S	B	NS1406
SAM1412	SAM	-26.2747	137.3269	SA	COXI, 16S	B	NS1412
SAM1415	SAM	-33.8555	140.5361	SA	COXI, 16S	R	NS1415
SAM1416	SAM	-34.0583	140.1500	SA	COXI, 16S	R	NS1416
SAM1606	SAM	-26.6922	134.1722	SA	COXI, 16S		NS1606
SAM1607	SAM	-26.5767	137.1933	SA	COXI, 16S		NS1607
SAM1812	SAM	-33.3267	137.0931	SA	COXI, 16S	B	NS1812
SAM1823	SAM	-33.7511	140.2747	SA	COXI, 16S	B	NS1823
SAM1824	SAM	-33.7725	140.2117	SA	COXI, 16S	B	NS1824
SAM1825	SAM	-33.7230	140.1238	SA	COXI, 16S	B	NS1825
SAM1831	SAM	-33.7183	139.9300	SA	COXI, 16S	B	NS1831
SAM1834	SAM	-33.7236	139.0438	SA	COXI, 16S	B	NS1834
SAM1835	SAM	-33.7236	139.0438	SA	COXI, 16S	B	NS1835
SAM1837	SAM	-33.7400	139.0816	SA	COXI, 16S	B	NS1837
SAM1917	SAM	-32.6244	135.0322	SA	COXI, 16S	B	NS1917
SAM1939	SAM	-33.1233	136.0214	SA	COXI, 16S	B	NS1939
SAM2038	SAM	-33.1167	136.0000	SA	COXI, 16S	B	NS2038
SAM2053	SAM	-24.4036	132.8886	NT	COXI, 16S	B	NS2053
SAM2054	SAM	-28.4627	129.0102	SA	COXI, 16S	B	NS2054
SAM2055	SAM	-28.4627	129.0102	SA	COXI, 16S	B	NS2055
SAM2056	SAM	-28.4627	129.0102	SA	COXI, 16S	B	NS2056
SAM2060	SAM	-28.4977	129.3205	SA	COXI, 16S	P	NS2060

SAM2061	SAM	-28.4977	129.3205	SA	COXI, 16S	B	NS2061
SAM2062	SAM	-24.5060	129.2619	NT	COXI, 16S	B	NS2062
SAM2067	SAM	-32.0033	135.6558	SA	COXI, 16S		NS2067
SAM2070	SAM	-28.8969	132.7575	SA	COXI, 16S	B	NS2070
SAM2071	SAM	-28.8969	132.7575	SA	COXI, 16S	B	NS2071
SAM2073	SAM	-28.5319	131.6903	SA	COXI, 16S		NS2073
SAM2076	SAM	-29.7706	131.1081	SA	COXI, 16S		NS2076
SAM2120	SAM	-31.9972	140.0644	SA	COXI, 16S	B	NS2120
SAM2125	SAM	-29.1286	135.6997	SA	COXI, 16S	B	NS2125
SAM2126	SAM	-29.1286	135.6997	SA	COXI, 16S		NS2126
SAM2133	SAM	-32.4947	135.3644	SA	COXI, 16S	B	NS2133
SAM2140	SAM	-29.4053	132.8556	SA	COXI, 16S	B	NS2140
WAM20	WAM	-27.4867	122.3119	WA	COXI, 16S, 28S	B	85020
WAM31	WAM	-27.4867	122.3119	WA	COXI, 16S, 28S	B	85031
WAM32	WAM	-27.4867	122.3119	WA	COXI, 16S, 28S	B	85032
WAM36	WAM	-27.3893	115.1847	WA	COXI, 16S, 28S		78236
WAM37	WAM	-27.6145	121.9947	WA	COXI, 16S, 28S		112637
WAM38	WAM	-26.4408	115.3661	WA	COXI, 16S, 28S		78238
WAM46	WAM	-28.7333	123.8667	WA	COXI, 16S, 28S		80246
WAM55	WAM	-27.4867	122.3119	WA	COXI, 16S, 28S	B	83855
WAM56	WAM	-27.4867	122.3119	WA	COXI, 16S, 28S	B	83856
WAM75	WAM	-27.4867	122.3119	WA	COXI, 16S, 28S	B	83875
WAM88	WAM	-25.9307	128.4526	WA	COXI, 16S, 28S		95988
Um1814	SAM	-33.1997	138.2189	SA	COXI, 16S		NS0001814
Um2714	SAM	-33.1997	138.2189	SA	COXI, 16S		NS0002714

	Un2112	SAM	-31.6597	129.1083	SA	COXI, 16S	3	NS0002	112
649	NSW: N	ew South	n Wales; S	SA: South	Australia;	WA: Western	Australia; NT	: Northern T	Territory
650	NA: Not	applicat	ole.						
651									
652									

653 Table 2. List of primer sequences and corresponding amplicons sizes for the three

Urodacus yaschenkoi loci (*COXI*, 16S rRNA, 28S rRNA).

Marker	Primer	Primer sequence	Size (bp)	Reference
COXI	F C1-J-2183	5'-CAACATTTATTTTGATTTTTTGG - 3'	550-630	(Simon et al., 1994)
	R COXIKG-R2	5'- GATATTAATCCTAAAAAATGTTGAGG-3'		(Tanaka et al., 2001)
COXI	Nested F	5'-AGGAACCTTTTGGGGCTTT-3'	150	
COXI	Nested R	5'-AGGAACCTTTTGGGGCTTT-3'		
16S	F 16SF	5'- AACAAAACCCACAGCTCACA- 3'	422	(Gantenbein et al., 2005)
	R 16SR	5'- GTGCAAAGGTAGCATAATCA- 3'		
28S	R1	F R1S (5'-ACCCGCTGAATTTAAGCAT-3'),	1158	(Arabi et al., 2012)
		R R1AS (5'- GCTATCCTGAGGGAAACTTC-3')		
	R2	F R2S (5'-CGACCCGTCTTGAAACACGGA-3'),	1246	
		R R2AS (5'-CACCTTGGAGACCTGCTGCGGAT-3')		

Table 3. Species delineation analyses in *Urodacus yaschenkoi* based on 31 unique mitochondrial haplotypes.

Analysis type	# Entities	Statistics
GMYC	9	Likelihood null model: 32.7519; likelihood best model: 33.36569; likelihood ratio: 1.2255; P-value, 0.0001, confidence interval: 1-10
PTP/bPTP (ML and BL)	7	Acceptance rate: 0.50975; merge: 49942; split: 50058

665	Supplemental Information
666	The data sets supporting the results of this article are included within the article and its additional
667	files in Supplemental_Files_1-4.xlsx
668	
669	Supplemental File 1. Pairwise uncorrected p-distance between 31 unique U. yaschenkoi
570	haplotypes and three outgroup haplotypes (U . $novaehollandiae$ and two U . $manicatus$).
571	Haplotypes were generated from the concatenated partial sequences of COXI and 16S loci.
572	Supplemental File 2. Pairwise uncorrected p-distance between 13 unique U. yaschenkoi
573	haplotypes generated from the partial 28S sequence.
574	Supplemental File 3. List of haplotype numbers assigned to the <i>U. yaschenkoi</i> samples.
575	Supplemental File 4. Measures (in mm) of seven morphological traits in 39 <i>U. yaschenkoi</i> adult
676	females.