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Vegetation response to nutrient addition can vary across space, yet studies that explicitly
incorporate spatial pattern into experimental approaches are rare. To explore whether
there are unique spatial scales (grains) at which grass response to nutrients is best
expressed, we imposed a large (~3.75 ha) experiment in a South African coastal grassland
ecosystem. In two of six 60 x 60 m grassland plots, we imposed a scaled sampling design
in which fertilizer was added in replicated sub-plots (1 x 1 m, 2 x 2 m, and 4 x 4 m). The
remaining plots either received no additions, or were fertilized evenly across the entire
area. Three of the six plots were fenced to exclude herbivory. We calculated empirical
semivariograms for all plots one year following nutrient additions to determine whether
the scale of grass response (biomass and nutrient concentrations) corresponded to the
scale of the sub-plot additions and compared these results to reference plots (unfertilized
or unscaled). We compared empirical semivariogram parameters to parameters from
semivariograms derived from a set of simulated landscapes (neutral models). Empirical
semivariograms showed spatial structure in plots that received multi-scaled nutrient
additions, particularly at the 2 x 2 m grain. The level of biomass response was predicted by
foliar P concentration, and to a lesser extent, N, with the treatment effect of herbivory
having a minimal effect. Neutral models confirmed the length scale of the biomass
response and indicated few differences due to herbivory. Overall, we conclude that
interpretation of nutrient limitation in grasslands is dependent on the grain used to
measure grass response and that herbivory had a secondary effect.
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17 ABSTRACT 

18 Vegetation response to nutrient addition can vary across space, yet studies that explicitly 

19 incorporate spatial pattern into experimental approaches are rare. To explore whether there are 

20 unique spatial scales (grains) at which grass response to nutrients is best expressed, we imposed 

21 a large (~3.75 ha) experiment in a South African coastal grassland ecosystem.  In two of six 60 x 

22 60 m grassland plots, we imposed a scaled sampling design in which fertilizer was added in 

23 replicated sub-plots (1 x 1 m, 2 x 2 m, and 4 x 4 m).  The remaining plots either received no 

24 additions, or were fertilized evenly across the entire area. Three of the six plots were fenced to 

25 exclude herbivory. We calculated empirical semivariograms for all plots one year following 

26 nutrient additions to determine whether the scale of grass response (biomass and nutrient 

27 concentrations) corresponded to the scale of the sub-plot additions and compared these results to 

28 reference plots (unfertilized or unscaled). We compared empirical semivariogram parameters to 

29 parameters from semivariograms derived from a set of simulated landscapes (neutral models). 

30 Empirical semivariograms showed spatial structure in plots that received multi-scaled nutrient 

31 additions, particularly at the 2 x 2 m grain.  The level of biomass response was predicted by 

32 foliar P concentration, and to a lesser extent, N, with the treatment effect of herbivory having a 

33 minimal effect.  Neutral models confirmed the length scale of the biomass response and 

34 indicated few differences due to herbivory.  Overall, we conclude that interpretation of nutrient 

35 limitation in grasslands is dependent on the grain used to measure grass response and that 

36 herbivory had a secondary effect.   

37
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39 INTRODUCTION

40 Nutrient limitation is known to constrain ecosystem productivity (Vitousek and Howarth 

41 1991, LeBauer and Treseder 2008).  In general, temperate systems are expected to have greater 

42 levels of nitrogen (N) limitation on vegetation growth than sub-tropical or tropical systems, 

43 whereas phosphorus (P) may be more limiting due to highly weathered soils (Vitousek and 

44 Sanford 1986, Hedin 2004, Lambers et al. 2008, Domingues et al. 2010).  Ecological inference is 

45 dependent on observational scale, however, and our ability to infer ecosystem function from 

46 patterns in nutrient availability rests on the grain and extent of the measurement (Dungan et al. 

47 2002).   Indeed, the optimal grain (resolution) for diagnosing nutrient limitation, especially in 

48 grassland ecosystems, is not known and may vary at fine scales (Klaus et al. 2016).  Patchiness 

49 in nutrient availability can be governed by variability in soil properties or terrain, spatial 

50 variability in microbial community composition, or differential nutrient affinities across 

51 functional groups that have different spatial or temporal distributions (Reich et al. 2003, Ratnam 

52 et al. 2008).  Perhaps as a result of this spatial heterogeneity, N, P, and N+P limitations on 

53 vegetation productivity have all been documented in African savanna or grassland systems 

54 (Augustine et al. 2003, Craine et al. 2008, Okin et al. 2008, Ngatia et al. 2015).  This study asks 

55 whether new approaches that actively test (sensu McIntire and Fajardo 2009) the scale of grass 

56 response to nutrients and herbivory can aid understanding of nutrient limitation in grassland 

57 ecosystems. 

58 Herbivores influence nutrient availability and can further enhance or diminish spatial and 

59 temporal variability in nutrient limitation (Senft et al. 1987, Robertson et al. 1993, Augustine and 

60 Frank 2001, Okin et al. 2008, Liu et al. 2016). Herbivores affect spatial patterns of nutrient 

61 availability directly through deposition of nutrient-rich manure or urine, which can lead to 

62 heterogeneous patterns of primary productivity (Fuhlendorf and Smeins 1999).  As animals 
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63 move across an area and rest in new locations, variability can be further enhanced (Auerswald et 

64 al. 2010, Fu et al. 2013). On the other hand, consumption of nutrient-rich grasses may reduce 

65 overall variance by reducing differences in biomass amounts compared to ungrazed areas.  

66 Through model simulations, Gil et al. (2016) recently showed that herbivores may have a greater 

67 influence on controlling biomass at fine versus broad extents, suggesting scale-dependence in 

68 herbivore control of plant biomass.  In a field experiment, van der Waal et al. (2016) concluded 

69 that herbivore consumption of nutrient rich patterns eliminated the positive effects of fertilization 

70 on the plant community and that patchiness itself (independent of the patch size) can affect the 

71 outcome of trophic relationships in grassland and savanna ecosystems.  Taken together, 

72 understanding scale dependence (Sandel 2015), specifically the degree to which grass 

73 productivity is governed by the grain and extent nutrient availability and herbivore activity, is 

74 important for making inferences about ecosystem function in grasslands and requires new 

75 methodological approaches for its study.  

76 Incorporating spatial autocorrelation into ecological studies has augmented our 

77 understanding of how spatial structure of soils, plants, and climate can regulate ecosystem 

78 function, often at multiple, nested scales (Watt 1947, Turner et al. 2012).  Understanding the 

79 autocorrelation structure of key ecosystem properties is critical for determining optimal scales 

80 for studying ecological systems, interpreting change in ecological communities, and assessing 

81 landscape connectivity or ecosystem resilience.  However, for any given study, the scale of this 

82 autocorrelation structure and its implications for inferring ecological processes are not known in 

83 advance.  Select studies have employed experimental spatial designs a priori (Stohlgren et al. 

84 1995) or have used computational simulations to explore the influence of space on ecosystem 

85 properties (With and Crist 1995, Smithwick et al. 2003, Jenerette and Wu 2004).  Geostatistical 
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86 analysis is commonly used (Jackson and Caldwell 1993b, Robertson et al. 1993, Smithwick et al. 

87 2005, Jean et al. 2015) to describe the grain and extent of observed ecological patterns, while 

88 other approaches may be more useful for predictive modeling of ecological processes through 

89 space and time (Miller et al. 2007, Beale et al. 2010), though these, too, rest on an understanding 

90 of autocorrelation structures.  

91 Understanding these spatial structures is often elusive because ecological patterns 

92 develop from complex interactions among individuals across variable abiotic gradients (Jackson 

93 and Caldwell 1993a, Rietkerk et al. 2000, Ettema and Wardle 2002) and manifest at multiple 

94 spatial scales.  Disturbances further create structural patterns that may influence ecological 

95 processes at many scales (Turner et al. 2007, Schoennagel et al. 2008).  Resultant patchiness in 

96 ecological phenomena is common.  For example, Rietkerk et al. (2000) observed patchiness in 

97 soil moisture at three unique scales (0.5 m, 1.8 m and 2.8 m) in response to herbivore impacts.  

98 Following fire in the Greater Yellowstone Ecosystem (Wyoming, U.S.A.), Turner et al. (2011) 

99 observed variation in soil properties at the level of individual soil cores, and Smithwick et al. 

100 (2012) observed autocorrelation in post-fire soil microbial variables that ranged from 1.5 to 10.5 

101 m.  Patchiness in soil resources at the level of individual shrubs and trees has been demonstrated 

102 by several studies (Liski 1995, Pennanen et al. 1999, Hibbard et al. 2001, Lechmere-Oertel et al. 

103 2005, Dijkstra et al. 2006).   In savanna systems, multiple spatial scales are needed to explain 

104 complex grass-tree interactions (Mills et al. 2006, Okin et al. 2008, Wang et al. 2010, Pellegrini 

105 2016) and it is likely that these factors are nested hierarchically with spatial scale (Pickett et al. 

106 2003, Rogers 2003, Pellegrini 2016). 

107 In the absence of understanding the scale at which ecosystems are nutrient-limited, nor 

108 the causal mechanisms underlying this scale-dependence, the ability to extrapolate nutrient 
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109 limitations to broader areas is hindered. Here we report on a study in which we tested the grain-

110 dependence of grass biomass to nutrient additions using a novel experimental design.  Our 

111 objectives were to (1) quantify the grain size at which vegetation biomass and nutrient 

112 concentrations respond to nutrient additions in fenced and unfenced plots, (2) relate the level of 

113 biomass response to plant nutrient concentrations and herbivory and (3) assess the degree to 

114 which herbivory and nutrient treatments explained the spatial structure of grass productivity 

115 through comparison of empirical semivariograms and neutral models (simulated semivariogram 

116 models based on prescribed landscape patterns).

117 For Objective 1, we hypothesized that the grass response would differ between three 

118 subplots scales at which fertilizer was added (1 x 1 m, 2 x 2 m, and 4 x 4 m).  These scales were 

119 chosen to correspond to ecosystem processes that might govern nutrient uptake, including the 

120 spacing of individual plants, plant groupings, or plot-level topography, respectively, which have 

121 been identified as critical sources of variation in soil biogeochemistry (Jackson and Caldwell 

122 1993a, Rietkerk et al. 2000, Ettema and Wardle 2002). Half of the plots were fenced to exclude 

123 herbivory to determine whether there were differences the scale of the response due to animal 

124 activity.  We used a semivariogram model developed from empirical data and used model 

125 parameters to estimate the spatial structure of biomass and nutrient concentrations.  We thus 

126 expected that biomass and vegetation nutrient concentrations would have range parameters from 

127 empirical semivariograms that corresponded to the hypotenuse distances of the subplot scales 

128 (i.e., 1 m, 2.83 m, and 5.66 m hypotenuse distances for the 1 x 1 m, 2 x 2 m, and 4 x 4 m 

129 subplots, respectively).  We expected that patchiness would be highest. i.e., range scales would 

130 be smaller, for the unfenced, heterogeneously fertilized plot because these areas would have 
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131 received nutrient additions in the form of manure and urine from animal activity in addition to 

132 nutrient additions (Liu et al. 2016).

133 For Objective 2, we hypothesized that expressions of biomass responses to nutrient 

134 additions at the plot level would best explained by patterns in foliar N and P concentrations, 

135 given previous work indicating the importance of coupled nutrient limitation to grassland 

136 productivity (Craine et al. 2008, Craine and Jackson 2010, Ostertag 2010).  We expected that 

137 herbivory would have limited effects on biomass productivity relative to the influence of 

138 nutrients at the plot level.

139 To test the robustness of our empirical results against a broader set of prescribed 

140 landscape patterns (Objective 3), we compared the empirical semivariogram models with neutral 

141 semivariogram models, computer-simulated landscapes that mimic hypothesized patterns due to 

142 known ecological processes (Fajardo and McIntire 2007).  This approach allows us to compare 

143 empirical patterns across a set of null models in which the patterns are known and to avoid issues 

144 of pseudoreplication so that we could test a replicated set of artificial landscapes in which we 

145 imposed herbivory and nutrient patterns.  The null assumption is that ranges (autocorrelation 

146 distances, or length scales) calculated in the neutral models would be similar to the ranges 

147 calculated from empirical data.  Similarity of model parameters between empirical and neutral 

148 models would provide confidence that observed patterns reflect known ecological processes. We 

149 hypothesized that that there would be greater spatial structure in plots that received 

150 heterogeneous fertilizers compared to reference plots.  In homogenously fertilized plots or 

151 unfertilized plots, spatial structure would be observed at scales other than scales of the subplots 

152 (or not at all) and we would expect to see lower levels of spatial structure explained by the model 

153 relative to random processes (higher nugget:sill, described below).   
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154    

155 METHODS

156 Study area. This study was conducted in Mkambathi Nature Reserve, a 7720-ha protected area 

157 located at 31 13 27 S and 29 57 58 E along the Wild Coast region of the Eastern Cape 

158 Province, South Africa.  The Eastern Cape is at the confluence of four major vegetative 

159 groupings (Afromontane, Cape, Tongaland-Pondoland, and Karoo-Namib) reflecting 

160 biogeographically complex evolutionary histories.  It is located within the Maputaland-

161 Pondoland-Albany conservation area, which bridges the coastal forests of Eastern Africa to the 

162 north, and the Cape Floristic Region and Succulent Karoo to the south and west.  The 

163 Maputaland-Pondoland-Albany region is the second richest floristic region in Africa, with over 

164 8,100 species identified (23 % endemic), and 1,524 vascular plant genera (39 endemic) (CEPF 

165 2010).  Vegetation in Mkambathi is dominated by coastal sour grassveld ecosystems, which 

166 dominate about 80 % of the ecosystem (Shackleton et al. 1991, Kerley et al. 1995), with small 

167 pockets of forest along river gorges, wetland depressions, and coastal dunes.  Dominant grasses 

168 in the Mkambathi reserve include the coastal Themeda triandra – Centella asiatica grass 

169 community, the tall grass Cymbopogon validas – Digitaria natalensis community in drier 

170 locations, and the short-grass Tristachya leucothrix-Loudetia simplex community (Shackleton 

171 1990).  Grasslands in Mkambathi have high fire frequencies, and typically burn biennially.  Soils 

172 are generally derived from weathered Natal Group sandstone and are highly acidic and sandy 

173 with weak structure and soil moisture holding capacity (Shackleton et al. 1991).  

174 Annual precipitation in Mkambati Reserve averaged 1165 mm yr-1 between 1925 and 

175 2015 and 1159 mm yr-1 between 2006 and 2015.  June is typically the driest month (averaging 

176 30.8 mm 1996-2015) and March is typically the wettest month (averaging 147.6 mm 1996-
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177 2015).  For nearby Port Edward, where data was available, the maximum temperatures is highest 

178 in February (26.7 ºC), averaging 23.7 ºC annually, while minimum temperature is coolest in July 

179 (average 13.0 ºC, averaging 17.4 ºC annually).  During the years of this study (2010-2012), 

180 annual temperature averaged 17.4 ºC (min) to 23.7 ºC (max), well within the historical average.  

181 The year 2010 was one of the driest years on record (656.6 mm yr-1), whereas 2011 and 2012 

182 (1413.6 and 1766.3 mm yr-1 respectively) were wetter years than average, although within the 

183 historical range (652.8 – 2385.9 mm yr-1).  All climate data were obtained from the South 

184 African Weather Service.

185

186 Nutrient Addition Experiment. We established a large-scale experimental site that included six 

187 60 x 60 m plots arranged in a rectangular grid (Eastern Cape Parks and Tourism Agency Permit 

188 RA0081).  The site was surrounded by a fuel-removal fire-break and each plot was separated by 

189 at least 10 m for a total size of 3.75 ha for the entire site.  To account for grazing, a fence was 

190 constructed around three of these plots to exclude herbivores.  Nutrient additions were applied to 

191 four plots whereas two plots received no fertilizer additions; plot treatment was random.  Of the 

192 four plots that received fertilization, two received nutrients evenly across the entire 60 x 60 m 

193 plot (“homogenous plots”) and the other two fertilized plots received nutrient additions within 

194 smaller subplots in a heterogeneous design (“heterogeneous plots”).  Within heterogeneous plots, 

195 fertilizer was applied within subplots of three different sizes (1 x 1 m, 2 x 2 m, and 4 x 4 m) that 

196 were replicated randomly across each plot (Fig. 1). Location of individual subplots was 

197 determined prior to field work using a Latin Hypercube random generator that optimizes the 

198 variability of lag distances among sampling plots and is ideal for geostatistical analysis (Xu et al. 

199 2005).  There were a total of 126 subplots per plot that received fertilizer in the heterogeneous 
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200 plots.  All sampling locations were geo-referenced with a GPS (Trimble 2008 Series GeoXM; 1 

201 m precision) and flagged.  The number of sub-plot units at each scale was determined so as to 

202 equalize the total fertilized area at each sub-plot scale (i.e., six 4 x 4 m plots and 24, 2 x 2 m 

203 plots). To ensure aboveground grass biomass would respond to nutrient additions, we employed 

204 a dual (nitrogen (N) + phosphorus (P)) nutrient addition experiment.  Additional N was added as 

205 either ammonium nitrate (230 g kg-1 N) or urea (460 g kg-1) at a rate of 10 g m-2 yr-1 in a single 

206 application, following the protocols of Craine et al. (2008).  Additional P was added as 

207 superphosphate (105 g kg-1 P) at a rate of 5 g m-2 yr-1.  Dual addition (N+P) was chosen to 

208 increase the likelihood of treatment response and increase geostatistical power by reducing the 

209 number of treatments, thus increasing sample size.  Towards the end of the summer wet season 

210 (February), we applied fertilizer to subplots in the two heterogeneous plots and evenly across the 

211 two homogeneous plots. The amount of fertilizer received was equal on a per unit area basis 

212 among plots and subplots.  

213

214 Vegetation and Soil Sampling. One year following nutrient additions, a subset of subplots was 

215 sampled for soil and vegetation nutrient concentrations and biomass.  Subplots to be sampled 

216 were randomly selected prior to being in the field using the Latin Hypercube approach.  The 

217 approach allowed us to specify a balanced selection of subplots within each subplot size class 

218 (four 4 x 4 m, eight 2 x 2 m, and thirty-two 1 x 1 m). Within each subplot that was revisited, we 

219 randomly selected locations for biomass measurement and vegetation clippings: two locations 

220 were identified and flagged from within the 1 x 1 m subplots (center coordinate and a random 

221 location 0.5 m from center), four samples were identified and flagged from within the 2 x 2 m 

222 subplots, and eight samples were identified and flagged from within the 4 x 4 m subplots.  
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223 At each flagged location within sampled subplots, productivity was measured as grass 

224 biomass using a disc pasture meter (DPM) (Bransby and Tainton 1977) and grab samples of 

225 grass clippings were collected for foliar nutrient analysis, using shears and cutting to ground-

226 level.  Calibration of the DPM readings was determined using ten random 1 x 1 m subplots in 

227 each plot (n = 60 total) that were not used for vegetation or soil harvesting, in which the entire 

228 biomass was harvested to bare soil.  Linear regression was used to relate DPM estimates with 

229 harvested biomass at calibration subplots (R2 = 0.76, p < 0.0001; Supplementary Material, Fig 

230 S1) and the resulting equation was then used to estimate biomass at the remaining 606 locations.   

231 Soil samples from the top 0 – 10 cm soil profile depth were collected adjacent to 

232 vegetation samples.  Due to logistical and financial constraints, these samples were collected in 

233 fenced plots only.  The A horizon of the Mollisols was consistently thicker than 10 cm, so all 

234 samples collected were drawn from the A horizon.  Soil samples were shipped to BEMLab 

235 (Strand, South Africa) for nutrient analysis.

236

237 Laboratory Analysis. Biomass samples were separated into grasses and forbs, weighed, dried 

238 for 24 h at 60 °C, and reweighed.  Vegetation nutrient samples were dried, ground with a 40 mm 

239 grinding mesh, and then shipped to the Penn State Agricultural Analytical Laboratory 

240 (University Park, Pennsylvania; USDA Permit PDEP11-00029).  Grass P concentration was 

241 analyzed using a hot block acid digestion approach (Huang and Schulte 1985) and grass N 

242 concentration was measured with a Combustion-Elementar Vario Max method (Horneck and 

243 Miller 1998).  Soil N and C concentrations were determined on a LECO elemental analyzer 

244 (Leco Corporation, St. Joseph, MI).  Soil P was analyzed using acid extraction following the 
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245 method of Wolf and Beegle (1995).  Soil pH was estimated using KCl extraction following 

246 Eckert and Sims (1995).   

247

248 Empirical semivariograms. Semivariogram models were fit to empirical data and model 

249 parameters were used to test Objective 1.  The range parameter was used to estimate the scale of 

250 autocorrelation; the sill parameter was used to estimate overall variance; and the nugget 

251 parameter was used to represent variance not accounted for in the sampling design.  A maximum 

252 likelihood approach was used to quantify the model parameters.  This approach assumes that the 

253 data (Y1 … Yn) are realizations of an underlying spatial process, and that the distribution of the 

254 data follows a Gaussian multivariate distribution:

255     (1)𝑌 ~ 𝑁(𝜇1, 𝐶 Σ +  𝐶0𝐼)

256 where  is the mean of the data multiplied by an n-dimensional vector of 1’s, C is the partial sill 𝜇

257 (total sill = C0 + C),  is an n x n spatial covariance matrix, C0 is the nugget effect, and I is an n Σ

258 x n identity matrix.  The i,jth element of  is calculated with a spatial covariance function , Σ 𝜌(ℎ𝑖𝑗)

259 where   is the Euclidean distance between measurement points i and j.  An exponential ℎ𝑖𝑗

260 covariance model was chosen for its relative simplicity.  The full equation for summarizing the 

261 second order moment for an element i,j is:

262     (2)𝛾(ℎ𝑖𝑗) = 𝐶0 +  𝐶 [exp( ‒ ℎ𝑖𝑗

𝜙 )]
263 where is the modeled spatial covariance for measurements i and j,  is the range parameter, 𝛾(ℎ𝑖𝑗) 𝜙

264 and  is the range of spatial autocorrelation. The underlying spatial mean  may be held 3 ∗ 𝜙 𝜇

265 constant or estimated with a linear model across all locations and in this case we used the plot-

266 level mean of the data for  (Table 1).  𝜇
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267 The measured soil and plant variables exhibited varying degrees of non-normality in their 

268 distributions, which violated the assumption of Gaussian stationarity within the underlying 

269 spatial data generating process.  To uphold this assumption, we transformed variables at each 

270 plot using a box-cox transformation (Box and Cox 1964):  

271   if  (3)𝑌𝑖 = (𝑌𝜆
𝑖 ‒ 1)/𝜆 𝜆 ≠ 0

272                 if 𝑌𝑖 = log (𝑌𝑖)  𝜆 = 0

273 where  is an untransformed variable (e.g., biomass) at location i,  is the transformed variable, 𝑌𝑖 𝑌𝑖

274 and  is a transformation parameter.  We optimized the three spatial covariance model 𝜆

275 parameters and the transformation parameter (C0, C, ) with the maximum likelihood 𝜙, 𝜆

276 procedure. A numerical finite-difference approximation algorithm selected the set of parameters 

277 that maximized a normal multivariate log-likelihood function (Diggle et al. 2003). To 

278 approximate a sampling distribution of each parameter, a bootstrapping algorithm was used 

279 where a randomly sampled subset of data was input into the same maximum likelihood approach 

280 for 1000 iterations.  This provided a population of fitted parameters and models that was used to 

281 analyze the approximate distributions of each parameter for each plot.  The maximum likelihood 

282 optimization was cross-validated by removing a random sub-sample of measurements from the 

283 optimization and then using the optimized model to make predictions at locations where 

284 measurements were removed.  Observed vs. predicted values from the cross-validation procedure 

285 were then analyzed at each plot separately. 

286 We used ordinary kriging (Cressie 1988) with the optimized spatial covariance model 

287 from the maximum likelihood analysis to estimate biomass across all plots.  Ordinary kriging is 

288 useful in this case, because we detected spatial structure in the biomass data when considering all 
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289 biomass data at once (see Results).  The geoR package (Ribeiro Jr. and Diggle 2001) in the R 

290 statistical language (R Development Team, 2014) was used for all spatial modeling and kriging.

291

292 Mixed Model. To relate these patterns in biomass to vegetation nutrient concentrations 

293 (Objective 2), we used a linear mixed modeling approach.  Experimental factors such as 

294 herbivory, fertilizer type (i.e., heterogeneous, homogenous, and unfertilized), plot treatment, and 

295 subplot size were included as random effects to manage non-independence of data and avoid 

296 issues of  pseudoreplication (Millar and Anderson 2004).  Multiple combinations of random 

297 effects and fixed effects were tested, where foliar N and P represented fixed effects upon 

298 biomass, and model error was assumed to be Gaussian.  A normal likelihood function was 

299 minimized to estimate optimal regression coefficients for each mixed model formulation.  To 

300 identify a mixed model that estimated biomass closely to observations, while also having the 

301 fewest possible parameters, we used the Akaike’s Information Criterion (AIC) and Bayesian 

302 Information Criterion (BIC), which decrease with a negative log-likelihood function but increase 

303 with the number of parameters used in the model (Burnham and Anderson 2002).  The model 

304 with the lowest BIC was chosen as best representing the tradeoff of parsimony and prediction 

305 skill.  The BIC associated with all other models was subtracted into the lowest available BIC, 

306 and models with a difference in BIC > 2 were deemed significantly less favorable at estimating 

307 biomass and representing random effects than the model with the lowest BIC.  All mixed 

308 modeling was conducted with the R package lme4 (R Development Team, 2014).

309

310 Simulated semivariograms. The neutral semivariogram models were constructed for six 

311 simulated landscapes (Fig. 2) to represent alternative landscape structures in response to nutrient 

312 addition and grazing: (a) fenced-unfertilized (biomass was assumed to be randomly distributed 
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313 around the mean of the biomass from the fenced, unfertilized experimental plot), (b) fenced-

314 heterogeneous (biomass of (a) was doubled for selected subplots, following the same subplot 

315 structure that was used in the field experiments), (c) fenced-homogenous (biomass of (a) was 

316 doubled at every grid cell to mimic an evenly distributed fertilization response), (d) unfenced-

317 unfertilized (biomass of (a) was increased by 50 % in response to a combined effect of biomass 

318 loss by grazing and biomass gain by manure nutrient additions by herbivores; the increase 

319 occurred at a subset of sites to mimic random movement patterns of herbivores), (e) unfenced-

320 heterogeneous (biomass equaled biomass of herbivory only, fertilizer only, or herbivory + 

321 fertilizer), and (f) unfenced-homogenous (biomass of (d) was doubled at all grid cells to mimic 

322 the additive effects of herbivores and homogenous fertilizer additions).

323 The spatial structure of simulated landscapes was analyzed using the same maximum 

324 likelihood approach as described for empirical models and data was not transformed. The mean 

325 () was estimated using a constant trend estimate. Given that the magnitude of observed and 

326 simulated biomass can change the amount of spatial variance, we scaled the nugget and sill 

327 parameters by dividing these parameters by the maximum calculated spatial autocorrelation in 

328 the data according to the 'modulus' method (Cressie 1993). 

329  

330 RESULTS

331 Vegetation biomass varied by 50% across plots, with the highest biomass found for 

332 heterogeneously fertilized plots (Table 1).  Vegetation nutrient concentrations increased, and 

333 N:P ratios declined, following fertilization (Table 1). Vegetation N concentration averaged 0.60 

334 ± 0.01 % in unfertilized plots, 0.72 ± 0.02 % in heterogeneously fertilized plots, and 0.77 ± 0.02 

335 % in homogenously fertilized plots, an increase of 20 % and 28 %, respectively.  Vegetation P 
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336 concentration averaged 0.037 ± 0.001 mg g-1 in unfertilized plots, 0.056 ± 0.002 mg g-1 in 

337 heterogeneously fertilized, and 0.057 ± 0.002 mg g-1 in homogeneously fertilized plots, an 

338 increase of 34 and 35 %, respectively.  The vegetation N:P ratios ranged from a high of 17.9 in 

339 the fenced-unfertilized plot to 12.1 in the unfenced-homogenously fertilized plot.  Vegetation C 

340 content averaged 44.6 ± 0.13 % across all six plots.  Soil P and N were also higher following 

341 fertilization in the fenced plots, where these variables were measured (Supplementary Table 1).  

342 Soil C ranged from 2.49 ± 0.01 % to 2.55 ± 0.01 % across plots.  Soil pH was 4.27 in the 

343 unfertilized plot and 4.08 in fertilized plots.  Confirming reference conditions, pH measured in a 

344 single control plot in 2011 prior to fertilization was 4.21± 0.01. 

345 Empirical semivariogram models show that there was a statistically significant patch 

346 structure at scales corresponding to the scale of the subplots in the fenced and unfenced, 

347 heterogeneously fertilized plots (Objective 1; Fig. 3b,f).  Also confirming expectations, in 

348 unfertilized (reference) or homogenously fertilized plots the range scale was significantly longer 

349 or shorter (Fig. 3; Supplementary Table 2). The sampling distributions of the semivariogram 

350 range values for vegetation biomass determined from the maximum likelihood and bootstrapping 

351 analysis show that the range value most closely resembles that of the hypotenuse of the 2 x 2 m 

352 subplot, relative to the other subplots (Fig. 3d,h).  Higher spatial structure in the heterogeneous 

353 versus homogeneous or unfertilized plots can also be seen in the kriged plots of biomass (Fig. 4). 

354 These maps also highlight the higher mean levels of biomass in fertilized subplots relative to 

355 areas outside of subplots or relative to other plots. These hotspots contributed to the higher than 

356 average biomass values for heterogeneously fertilized plots as a whole. 

357 Normalized nugget/sill ratios represent the ratio of noise-to-structure in the 

358 semivariogram model, and thereby provide an estimate of the degree to which the overall 
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359 variation in the model is spatially random.  Nugget/sill ratios were highest in the unfenced, 

360 homogeneously fertilized plot (3.89), suggesting more random variation in the overall model 

361 variance, whereas ratios were lower (0-0.02) for heterogeneously fertilized or fenced treatments, 

362 suggesting that there was little contribution of spatially random processes in the overall model. 

363 These results support the expectation of strong spatial structure in biomass response to nutrient 

364 addition, especially at the 2 meter scale.

365 The semivariogram range values for vegetation % N and % P (Supplementary Table 3) 

366 were comparable to subplot scales of nutrient additions (% P, ~ 4.9 m, % N, ~ 5.8 m) in the 

367 fenced, heterogeneously fertilized plot, i.e., where herbivores were absent.  However, higher or 

368 lower range values were found for the other plots.  Similar to results for biomass, the nugget:sill 

369 ratio in semivariogram models of vegetation % N and % P was highest in the unfertilized plots, 

370 suggesting a larger degree of spatially random processes contributing to overall variance.  In 

371 turn, this indicates higher spatial structure captured in models of the fertilized treatments, relative 

372 to random processes. Semivariogram parameters of soil carbon and nutrients showed few 

373 differences among treatments where these were measured (fenced plots, only) (Supplementary 

374 Table 3).  

375 Mixed models used to predict biomass levels from N or P foliar concentrations, while 

376 treating plot and treatment as random effects, showed that biomass was best predicted by levels 

377 of foliar P, relative to foliar N alone or foliar N x P (Objective 2; Table 2).  Although foliar P 

378 alone did better than foliar N alone as a fixed effect, the difference was marginal (< 2 BIC).  The 

379 ‘best’ model used only plot treatment type as a random effect, which outperformed model 

380 formulations using herbivory or fertilizer type and those with nested structures incorporating 

381 subplot size as random effects.
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382 The spatial structure of heterogeneous plots was estimated to be similar between neutral 

383 and empirical semivariogram models and generally matched subplot scales (Objective 3; Fig. 5).  

384 Interestingly, the neutral models estimated higher range values (longer length scales) in fenced 

385 plots compared to unfenced plots, whereas empirical semivariogram models estimated longer 

386 length scales in unfenced plots.  

387

388 DISCUSSION

389 Although scale-dependence is known to be critical for inferring ecological processes 

390 from ecological pattern (Levin 1992, Dungan et al. 2002, Sandel 2015), and although nutrient 

391 limitation and herbivory are known to influence grassland productivity at multiple scales 

392 (Fuhlendorf and Smeins 1999, House et al. 2003, Pellegrini 2016, van der Waal et al. 2016), our 

393 study is the first to our knowledge to impose an experimental design that directly tests the scale 

394 at which grass responds to nutrient additions.  By imposing the scale of nutrient additions a 

395 priori we were able to discern, using semivariograms based on empirical data, greater biomass 

396 response at the 2 x 2 m grain compared to finer (1 x 1 m) or broader (4 x 4 m) grain sizes. 

397 Comparisons to neutral models based on simulated landscapes with known patterns, supported 

398 our expectations that herbivore activity and nutrient additions can contribute to the spatial 

399 structure found in our empirical results. Mixed model results further indicated that foliar nutrient 

400 concentrations accounted for the majority of observed patterns in the level of biomass response, 

401 with limited influence of herbivory.   Overall, these results yield data on the spatial scale of the 

402 nutrient-productivity relationship in a grassland coastal forest of the Eastern Cape, South Africa, 

403 and support the assertion that ecological processes are likely multi-scaled and hierarchical in 

404 response to nutrient additions.  
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405

406 Inferring the scale of grass response to nutrient additions

407 This study provided an opportunity experimentally test the scale at which nutrient 

408 limitation is most strongly expressed, providing an alternative to studies in which spatial 

409 autocorrelation is observed post-hoc. Detecting the autocorrelation structure of an ecological 

410 pattern is a critical but insufficient approach for inferring an ecological process.  A preferred 

411 approach, such as tested here, is to impose a pattern at a certain (set of) scale(s) and determine if 

412 that process responds at that scale(s).  The benefit to this approach is a closer union between 

413 observed responses (biomass) and ecological processes (nutrient limitation) and the ability to 

414 compare responses across scales.  Our results indicate that biomass responded to nutrient 

415 additions at all subplot scales, with spatial autocorrelation of the biomass response highest at the 

416 2 x 2 m scale.  Studies have found finer-grain spatial structure in grassland soil properties 

417 (Jackson and Caldwell 1993a, Rietkerk et al. 2000, Augustine and Frank 2001) while others have 

418 observed biomass responses to nutrient additions or herbivory at finer (Klaus et al. 2016) or 

419 broader (Lavado et al. 1995, Augustine and Frank 2001, Pellegrini 2016) scales, or a limited 

420 effect of scale altogether (van der Waal et al. 2016).   Indeed, we observed high nugget variance 

421 for soil nutrients and carbon under heterogeneous fertilization, implying variation below the 

422 scale of sampling. The response of biomass at the 2 x 2 m scale may thus reflect spatial patterns 

423 in species composition or plant groupings rather than soil characteristics, at least in fenced plots 

424 where soil nutrients were sampled.  

425 Although response was quantified to be stronger at the 2 x 2 m grain, all subplots in the 

426 heterogeneous plots responded strongly to nutrient additions, as observed in the kriged maps.  As 

427 a result, the heterogeneous plots had greater average biomass than plots which were fertilized 
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428 homogeneously, despite the fact that fertilizer was added equally on a per area basis for both 

429 treatments.  Several other studies have found higher biomass following heterogeneous nutrient 

430 applications.  For example, Day et al. (2003) observed that heterogeneous spatial patterns of 

431 nutrient supply in early stages of grassland development led to enhanced nutrient acquisition and 

432 biomass productivity.  Similarly, Du et al. (2012) observed increased plant biomass following 

433 heterogeneous nutrient fertilization in old-field communities in China.  Mechanisms for 

434 enhanced productivity following heterogeneous nutrient supply are not clear but may include 

435 shifts in root structure and function or shifts in species dominance, which were not analyzed 

436 here.  For example, roots may respond to patchiness in nutrient availability by modifying root 

437 lifespan, rooting structures and uptake rate to maximize nutrient supply (Robinson 1994, Hodge 

438 2004).  In turn, initial advantages afforded by plants in nutrient-rich locations may result in 

439 larger plants and advantages against competitive species, potentially via enhanced root growth 

440 (Casper et al. 2000).  

441

442 Implications for understanding nutrient limitations

443 The goal of our study was not to determine the nature and extent of nutrient limitation to 

444 grass productivity, as has been studied previously (Craine et al. 2008, Klaus et al. 2016), as much 

445 as it was to infer the scale of this response.  Yet, our results do convey some lessons about the 

446 role of nutrient limitations in these grasslands.  First, our study supports the notion of coupled N 

447 and P limitation in grasslands (Craine and Jackson 2010), including the subtropics (Klaus et al. 

448 2016).  Ostertag (2010) also showed that there was a preference for P uptake in a nutrient limited 

449 ecosystem in Hawaii and suggested that foliar P accumulation may be a strategy to cope with 

450 variability in P availability.  We found that P was the variable that explained most of the 
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451 variation in the level of biomass response across all plots, followed by N.  In addition, we saw a 

452 strong difference in N:P ratios between reference and fertilized plots.  Many studies have used 

453 stoichiometric relationships of N and P to infer nutrient limitation (Koerselman and Meuleman 

454 1996, Reich and Oleksyn 2004), although there are limits to this approach (Townsend et al. 

455 2007, Ostertag 2010).  Using this index, our N:P ratios of vegetation in reference plots would 

456 indicate co-limitation for N and P prior to fertilization (N:P > 16).  Addition of dual fertilizer 

457 appeared to alleviate P limitation more than N, with N:P ratios reduced one year following 

458 treatment, indicating N limitation or co-limitation with another element (N:P < 14).  Grazing 

459 may also preferentially increase grass P concentrations in semi-arid systems in South Africa 

460 (Mbatha and Ward 2010) and thus the cumulative impacts of preferential plant P uptake and P 

461 additions from manure may explain the high spatial structure observed in our grazed and 

462 fertilized plots.

463 Relating biomass response to nutrient limitation using in situ data is complicated by 

464 processes such as luxury consumption (Ostertag 2010), initial spatial patterns in soil fertility 

465 (Castrignano et al. 2000), root distribution, signaling and allocation (Aiken and Smucker 1996), 

466 species and functional group shifts (Reich et al. 2003, Ratnam et al. 2008), or species’ 

467 differences in uptake rates or resorption (Townsend et al. 2007, Reed et al. 2012).  Spatial 

468 patterns of finer-scale processes such as microbial community composition have also been 

469 explored and are known to influence rates of nutrient cycling (Ritz et al. 2004, Smithwick et al. 

470 2005).  In the case of heterogeneous nutrient supply, species competitive relationships across 

471 space may be enhanced (Du et al. 2012) and may result in increases in plant diversity (Fitter 

472 1982, Wijesinghe et al. 2005), although other studies have found little evidence to support this 

473 claim (Gundale et al. 2011). Together, these factors may explain any unexplained variance of 
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474 vegetation N and P concentrations that we observed. On the other hand, effects of species 

475 composition shifts on plant biomass were likely minimal in this study given the short-term nature 

476 of the study (one year), but patchiness in biomass responses indicate size differences that are 

477 likely to modify competitive relationships in the future.  Unfortunately, the site burned one year 

478 following the experiment, precluding additional tests of these relationships.  

479

480 Herbivory-Nutrient interactions

481 Our study indicates a strong scalar influence of nutrient additions relative to nutrient-herbivore 

482 interactions.  First, we found that the significant length scale was similar between unfenced and 

483 fenced plots, indicating that herbivory did not alter the grain of biomass response to nutrient 

484 limitation.  In addition, herbivory was not significant in final mixed effects models, relative to 

485 the inclusion of foliar nutrient variables, suggesting that nutrients had a greater influence on the 

486 level of biomass response.  However, our study was not designed to unravel the multivariate 

487 influence of herbivores on grasslands, which may influence vegetation biomass through biomass 

488 removal, movement activity, and manure additions (Milchunas and Lauenroth 1993, Adler et al. 

489 2001, van der Waal et al. 2016).  Interestingly, our empirical semivariogram model indicates 

490 longer range scales where herbivores were present compared to simulated semivariogram 

491 models, which may reflect homogenization of biomass through grazing and thus a greater top-

492 down approach of herbivory on ecosystem productivity than previously appreciated (van der 

493 Waal et al. 2016), or other complex interactions between grazing and fertilization not accounted 

494 for in the current study.  

495

496 Uncertainties
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497 There are several key uncertainties and caveats in applying our methodological approach 

498 more broadly.  First, the experimental design described herein was labor-intensive, requiring 

499 both precision mapping of locations for nutrient additions and post-treatment vegetation 

500 sampling, as well as extensive replication of treatments that would respond to broader ecological 

501 patterns, i.e., grazing.  This necessitated a trade-off between sampling effort across scales 

502 (subplots, plots).  Important processes at scales above and below the extent and grain of 

503 sampling used here were likely important but were not included.  Second, our neutral models 

504 assumed additive effects of herbivore activity and fertilization; in contrast, empirical results 

505 likely reflect complex, potentially non-additive, interactions between grazing and fertilization.  

506 Third, recent work has suggested that both nutrient patchiness and the form of nutrient limitation 

507 (e.g., N vs. P) may change seasonally (Klaus et al. 2016), which was not assessed here.  

508 Moreover, annual variation in precipitation, in our case a dry year followed by a wet year, may 

509 have influenced the level of biomass response to nutrient additions.

510

511 CONCLUSIONS

512 Understanding the factors that regulate ecosystem productivity, and the scales at which 

513 they operate, is critical for guiding ecosystem management activities aimed at maintaining 

514 landscape sustainability. New approaches are needed to characterize how ecosystems are 

515 spatially structured and to determine whether there are specific scale or scales of response that 

516 are most relevant. In South Africa, grasslands cover nearly one-third of the country and maintain 

517 the second-highest levels of biodiversity but are expected to undergo significant losses in 

518 biodiversity in coming decades due to increasing pressure from agricultural development and 

519 direct changes in climate (Biggs et al. 2008, Huntley and Barnard 2012).  We employed a neutral 
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520 model approach to test for ecological process, an approach that has been advocated for decades 

521 (Turner 1989) but which is rarely imposed (but see With 1997, Fajardo and McIntire 2007).  We 

522 conclude that these grasslands express nutrient limitation at intermediate scales (2 x 2 m) and 

523 exhibit relatively strong nutrient limitations for both N and P, with a more limited influence of 

524 herbivory.  By extending this approach to other areas and other processes, specifically by 

525 imposing experimental studies to test for the influence of scale on other ecological processes, it 

526 may be possible to reduce bias in empirical studies, minimize the potential for scale mismatches, 

527 and deepen insights into ecological pattern-process interactions.

528
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Table 1(on next page)

Plot-level biomass and vegetation nutrient concentrations.

Mean (± 1 standard error (SE)) biomass, vegetation N concentration, vegetation P

concentration, and N:P ratios across experimental plots in Mkambathi Nature Reserve, one

year following nutrient fertilization.
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1

Treatment
Average Biomass 
± 1 SE (g m-2)

Average N 
± 1 SE (%)

Average P 
± 1 SE (%) N:P n

Fenced
   Unfertilized 411.9 ± 9.75 0.646 ± 0.024 0.036 ± 0.001 17.9 134

   Heterogeneous 542.4 ± 15.05 0.747 ± 0.041 0.048 ± 0.002 15.6 120
   Homogeneous 456.2 ± 8.28 0.710 ± 0.014 0.054 ± 0.002 13.2 117

Unfenced
   Unfertilized

483.6 ± 13.70 0.576 ± 0.011 0.038 ± 0.001 15.2 132

   Heterogeneous 562.6 ± 18.60 0.775 ± 0.015 0.064 ± 0.002 12.1 128
   Homogeneous 375.4 ± 5.96 0.722 ± 0.017 0.059 ± 0.002 12.2 124

2

PeerJ reviewing PDF | (2016:05:10837:1:0:NEW 21 Sep 2016)

Manuscript to be reviewed



Table 2(on next page)

Mixed model results comparing biomass to foliar nutrients.

Results of the mixed model relating biomass to foliar nutrients, where herbivory, fertilizer

type, plot treatment, and subplot size were all tested as random effects; foliar N and P

represented fixed effects upon biomass, and model error was assumed to be Gaussian. A

normal likelihood function was minimized to estimate optimal regression coefficients for each

mixed model formulation. Both Akaike’s Information Criterion (AIC) and Bayesian Information

criterion (BIC) were used to compare different models. Delta (∆) represents differences in BIC

between the current model and the model with the lowest BIC.
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1
2

3 Model DF AIC BIC ∆
Random Effects
Plot 5 1092.4 1114.2 0.0
Herbivore 5 1190.1 1211.9 97.7
Fertilizer 5 1100.7 1122.5 8.3
Plot | Sub-Plot 6 1090.4 1116.5 2.3
Herbivore | Sub-Plot 6 1188.6 1214.7 100.5
Fertilizer | Sub-Plot 6 1102.7 1128.8 14.6
Fixed Effects
N + P 5 1090.3 1112.1 5.3
P 4 1089.8 1107.3 0.4
N 4 1090.7 1108.2 1.3
N : P 6 1092.3 1118.5 11.6
N + P + Sub-Plot 6 1092.3 1118.5 11.6
N + P : Sub-Plot 8 1095.6 1130.5 23.6
P + N2 5 1091.6 1113.4 6.6
N + P2 5 1089.7 1111.5 4.7
N2 + P2 5 1091.1 1113.0 6.1
N2 4 1093.3 1110.8 3.9
P2 4 1089.4 1106.9 0.0
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Figure 1
Experimental design

Overview of experimental design based on Latin Hypercube sampling used to identify subplot

locations to receive fertilizer in the heterogeneous plots.
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Figure 2
Spatial maps of neutral models

Spatial maps of neutral models used to simulate vegetation biomass for the following

conditions: (a) unfenced, unfertilized, (b) Unfenced, heterogeneously fertilized, (c) Unfenced-

homogeneously fertilized, (d) Fenced, unfertilized, (e) Fenced, heterogeneously fertilized, (f)

Fenced, homogeneously fertilized.
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Figure 3
Empirical semivariograms

Empirical semi-variograms of vegetation biomass for each plot: (A) Unfenced, unfertilized, (B)

Unfenced, Heterogeneously Fertilized, (C) Unfenced, homogeneously fertilized, (E) Fenced,

unfertilized, (f) Fenced, heterogeneously fertilized, (G) Fenced, homogeneously fertilized.

Shaded lines represent semi-variogram models fitted during the bootstrapping procedure.

Dashed vertical line represents the range value. Also shown: the sampling distribution of the

range parameter for heterogeneously fertilized plots that were either (D) Unfenced, or (H)

Fenced. The distribution was calculated with a bootstrapping approach with maximum

likelihood optimization. Dashed vertical lines represent the hypotenuses of the 1x1 m (1.4),

2x2 (2.8), and 4x4 (5.7) sub-plots.
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Figure 4
Kriged biomass map.

Kriged map of biomass using ordinary kriging with a spatial covariance model optimized by a

maximum likelihood analysis: (A) Unfenced, unfertilized, (B) Unfenced, heterogeneously

fertilized, (C) Unfenced, homogeneously fertilized, (D) Fenced, unfertilized, (E) Fenced-

heterogeneously fertilized, (F) Fenced, homogeneously fertilized.
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Figure 5
Semivariograms from neutral models.

Simulated semivariograms of vegetation biomass for each plot from neutral landscape

models: (A) Unfenced, unfertilized, (B) Unfenced, heterogeneously fertilized, (C) Unfenced,

homogeneously fertilized, (D) Fenced, unfertilized, (E) Fenced, heterogeneously fertilized, (F)

Fenced, homogeneously fertilized. Shaded lines represent semi-variogram models fitted

during the bootstrapping procedure. Dashed vertical line represents the optimal range value.

Also shown: the sampling distribution of the range parameter for heterogeneously fertilized

plots that were either (D) Unfenced, or (H) Fenced. The distribution was calculated with a

bootstrapping approach with maximum likelihood optimization.
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