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ABSTRACT

The effective management of invasive species requires detailed understanding of the
invader’s life history. This information is essential for modeling population growth
and predicting rates of expansion, quantifying ecological impacts and assessing the
efficacy of removal and control strategies. Indo-Pacific lionfish (Pterois volitans/miles)
have rapidly invaded the western Atlantic, Gulf of Mexico and Caribbean Sea with
documented negative impacts on native ecosystems. To better understand the life
history of this species, we developed and validated a length-based, age-structured
model to investigate age, growth and population structure in northeast Florida. The
main findings of this study were: (1) lionfish exhibited rapid growth with seasonal
variation in growth rates; (2) distinct cohorts were clearly identifiable in the length-
frequency data, suggesting that lionfish are recruiting during a relatively short period
in summer; and (3) the majority of lionfish were less than two years old with no
lionfish older than three years of age, which may be the result of culling efforts as well
as ontogenetic habitat shifts to deeper water.

Subjects Aquaculture, Fisheries and Fish Science, Conservation Biology, Ecology, Marine Biology
Keywords Lionfish, Invasive species, Growth, Length-based modeling, Pterois volitans

INTRODUCTION

Invasive species are organisms that have been introduced to areas where they do not
naturally occur, and whose establishment adversely affect native biotas and ecosystems.
The establishment of an invasive species can have far reaching effects on invaded
ecosystems through predation (Race, 1982), competition for prey or habitat (Mills et
al., 1993; Byers, 2009), or by introducing novel pathogens or parasites (Crowl! et al.,
2008). Ultimately, invasives can lead to declines in the abundance and diversity or

even extinction of native organisms (Grosholz et al., 2000) with cascading effects on
ecosystem structure and function (Vitousek, 1990). Historically, research on biological
invasions has focused heavily on terrestrial plant species (Lowry et al., 2013), yet invasions
in marine ecosystems have received increasing attention (Verling et al., 2005; Rilov ¢
Crooks, 2009). Recent interest in marine systems has been driven in part by high profile
marine invasions (e.g., Carcinus maenus (Carlton ¢ Cohen, 2003), Caleurpa taxifola
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(Meinesz, 1999), Didemnum vexillum (Lambert, 2009)) and because the principal vectors
of marine introductions (e.g., commercial shipping, aquaculture, aquarium trade) have
increased dramatically in magnitude (Minchin et al., 2009).

A marine invasive species of particular concern is the lionfish (Pterois volitans/miles),
now established throughout the western Atlantic, Gulf of Mexico, and Caribbean Sea
(Schofield, 2009; Morris Jr, 20125 Dahl ¢ Patterson, 2014). Lionfish have long venomous
spines that deter predation, exhibit rapid growth (Barbour et al., 2011; Edwards, Frazer
& Jacoby, 2014; Pusack et al., 2016), mature early and reproduce year-round (Morris Jr,
2009), and are capable of long distance dispersal during egg and larval stages (Ahrenholz
& Morris, 20105 Johnston ¢ Purkis, 2011). This combination of life history characteristics
has allowed this species to establish and spread rapidly (see Cété, Green ¢ Hixon, 2013
and references therein for review); lionfish are now among the most abundant predatory
fishes in many areas of the invaded range (Whitfield et al., 2007; Dahl ¢ Patterson, 2014).
Lionfish prey on an array of reef fishes (Morris Jr ¢» Akins, 2009) and are capable of
reducing native fish recruitment by nearly 80% (Albins ¢» Hixon, 2008) and overall fish
biomass by 65% (Green et al., 2012) with potential cascading impacts on ecosystem
structure and function, including extirpations (Albins, 2015; Ingeman, 2016). Current
evidence suggests that biotic resistance is not likely to present a significant barrier to the
lionfish invasion (Albins, 2013; Hackerott et al., 2013; Valdivia et al., 2014) prompting
human intervention to help control this species. Harvest is now actively promoted by
management agencies throughout the western Atlantic Ocean and Caribbean Sea and has
shown promise in reducing densities of this invasive species at local scales (Frazer et al.,
2012; Albins ¢ Hixon, 2013; de Leén et al., 2013; Green et al., 2014).

Previous empirical and modeling studies suggest high levels of sustained removal effort
will be required to reduce lionfish biomass and minimize impacts (Barbour et al., 2011;
Morris Jr, Shertzer ¢ Rice, 20115 Johnston & Purkis, 2015). Many of these studies employ
population modeling approaches that rely on key estimates of life history (e.g., growth,
mortality, fecundity) with considerable uncertainty that may also vary in space or over
time (Fogg et al., 2015). Moreover, these models, which typically evaluate the effects of
varying control and harvest strategies on lionfish population density or biomass (Barbour
et al., 2011; Johnston & Purkis, 2015) and the response of native fish communities (Green
et al., 2014), can be highly sensitive to changes in life history inputs (Morris Jr, Shertzer
¢ Rice, 2011). Consequently, considerable effort has been directed at estimating vital
rates for lionfish in the invaded range. In particular, growth has been the focus of
numerous studies (Potts, Berrane ¢ Morris Jr, 2010; Barbour et al., 20115 Jud ¢ Layman,
2012; Benkwitt, 2013; Akins, Morris Jr ¢ Green, 2014; Edwards, Frazer ¢ Jacoby, 2014;
Fogg et al., 2015; Rodriguez-Cortés, Aguilar-Perera & Bonilla-Gomez, 2015; Pusack et al.,
2016). Growth is critically important since body size strongly influences predator—prey
interactions (Rice et al., 1993; Sogard, 1997; Lorenzen, 2006), winter mortality in temperate
species (Henderson, Holmes ¢» Bamber, 1988; Hurst, 2007) and is a key determinant of
reproductive output in fishes (Hixon, Johnson ¢ Sogard, 2013).

Current estimates of lionfish growth are available from the temperate Atlantic (Potts,
Berrane ¢ Morris Jr, 20105 Barbour et al., 2011), Gulf of Mexico (Fogg et al., 2015
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Rodriguez-Cortés, Aguilar-Perera ¢ Bonilla-Gdémez, 2015) and Caribbean Sea (Edwards,
Frazer ¢ Jacoby, 2014; Pusack et al., 2016), but are unavailable in many regions including
the southern South Atlantic Bight which was one of the first areas to be colonized after
introduction (Schofield, 2009). Because growth can vary with ecological factors (e.g., pop-
ulation density, food availability) and the abiotic environment (e.g., temperature),
spatially-explicit estimates are often required to describe growth accurately. Previous age
and growth estimates for lionfish have typically been generated from analyses of otoliths
(Potts, Berrane & Morris Jr, 2010; Barbour et al., 2011; Edwards, Frazer ¢ Jacoby, 2014;
Fogg et al., 2015) or tagging (Jud & Layman, 2012; Akins, Morris Jr ¢ Green, 2014; Pusack
et al., 2016); both being effective but time consuming and effort intensive methodologies.
Estimating growth from length-frequency data has a long history in fisheries management
and can be an effective alternative approach, particularly when age data are sparse

or not available (Pauly ¢ David, 1981; Pauly ¢» Morgan, 1987; Fournier et al., 1990);

and has recently been applied to lionfish (Rodriguez-Cortés, Aguilar-Perera ¢ Bonilla-
Gomez, 2015). Herein, we describe a flexible length-based, age-structured model to
provide insight into the life history of lionfish in northeast Florida. The purpose of this
study was to (1) construct a statistical length-based model for estimating age, growth
and population structure of lionfish, (2) evaluate the performance of our model using
validation from otolith analysis and external length-frequency data, and (3) provide
estimates of vital rates and population structure of lionfish in northeast Florida where
such information is not currently available.

METHODS

Ethics statement

All lionfish used in this study were handled in strict accordance with a UNF IACUC
protocol (IACUC#13-004) and tissues of opportunity waivers approved by the University
of North Florida. UNF IACUC defines tissues of opportunity as samples collected: (1)
during the course of another project with an approved IACUC protocol from another
institution; (2) during normal veterinary care by appropriately permitted facilities; or

(3) from free-ranging animals by appropriately permitted facilities. Lionfish removals are
encouraged by the State of Florida and sample collection locations did not require any
specific permissions. No endangered or protected species were harmed during the course
of this study.

Sample collections

Lionfish were collected from locations offshore of northeast Florida by trained spearfish-
ermen (Fig. 1). Sampling occurred primarily during several large-scale public removal
events in 2013, 2014 and 2015 (April and August) and during opportunistic sampling

by recreational spearfishermen in 2014 (July, September, October, November) and early
2015 (January). All lionfish were captured offshore (>15 km) on hardbottom and artificial
reef habitats in approximately 20-35 m of depth. Lionfish were measured in the field

for standard (SL) and total length (TL) to the nearest 1 mm. A subset of lionfish from
each tournament, and all lionfish from the opportunistic samples, were transported to
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Figure 1 Lionfish collection region (shaded oval) off the coast of northeast Florida.

the University of North Florida for further processing. In the laboratory, lionfish were
measured (SL and TL), weighed to the nearest 0.1 g and sexed. Some small lionfish were
difficult to accurately sex and were considered immature (Morris Jr, 2009). A subset of
lionfish (n = 100) had their sagittal otoliths removed, which were used to determine
lionfish age directly and in model validation.

Length-based, age-structured model

Lionfish TL data from 2014 were used to construct length-frequency histograms for the
observed data from 0 to 450 mm (TL) using 10 mm increments (46 length bins) for each
collection month separately (Fig. 2). Length-frequency data from 2013 and 2015 were not
used in model fitting because of low temporal resolution; however these data were used
to assess model performance (see Model validation). Because sex was not determined for
many lionfish, length-frequency data were pooled. Growth and population age structure
were estimated by fitting a length-based, age-structured model to the observed length-
frequency data.

The model uses length as a proxy for age and estimates the proportion of fish of a
given size in each age class using a maximum likelihood approach by fitting a predicted
length frequency distribution to the observed data (Pauly ¢ David, 1981; Johnson, 2004).
To generate the predicted length-frequency distribution, the mean size-at-age was first
estimated using either the traditional (von Bertalanffy, 1938; Beverton ¢ Holt, 1957) or
seasonalized (Somers, 1988; Garcia-Berthou et al., 2012) formulation of the von Bertalanfty
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Figure 2 Observed length frequency histograms of lionfish collected from northeast Florida used in
model parameterization. Length-frequency of lionfish collected in (A) April 2014, (B) July 2014, (C) Au-
gust 2014, (D) October 2014, (E) November 2014, and (F) January 2015 (grey bars). The black curve in
each panel symbolizes the predicted length frequency distribution of lionfish from the best fit candidate
model (Model 1, see Table 1).

growth function (VBGF) which expresses fish length as a function of age. The traditional
formulation of the VBGF is given below (Eq. 1):

Ly=Lo[1—e KU=0D] (1)

where L, is the length of a fish at age t, L is the asymptotic maximum length, K is the
Brody growth coefficient, and ¢ is the theoretical time at which a fish was length 0. The
seasonalized VBGF (Eq. 2) extends the traditional VBGF to allow the growth rate to
vary seasonally, and may better reflect the growth of fishes in temperate regions which
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Table 1 Summary of model diagnostics and fit for four candidate population models. Model diagnos-
tics (—In (L), number of parameters (K ), Akaike Information Criteria (AIC), corrected AIC (AIC,), and
model weights) for the four candidate models. Seasonal indicates whether a seasonalized (Yes) or tradi-
tional (No) von Bertalanffy growth function was fit to the data. Variance at age indicates whether variance
in size-at-age was held constant across ages (Fixed) or allowed to vary among ages (Variable).

Model Seasonal o’ atage —In(L) K AIC AIC, AAIC, ®;

1 Yes Variable 648.92 32 1361.84 1370.53 0.00 1.00
2 Yes Fixed 659.09 29 1376.18 1383.26 12.72 0.00
3 No Variable 667.38 30 1394.76 1402.35 31.82 0.00
4 No Fixed 672.25 27 1398.51 1404.60 34.07 0.00

experience pronounced seasonal temperature fluctuations. The seasonalized VBGF
(Somers, 1988) is given in the series of equations below (Eqs. 2—4):

L = Lo [1 — e~ KO- =S®+50)) (2)
CK\ .

S(t) = (—)smn(t —t) (3)
2
CK) .

S(ty) = (—)smn(tg —t,) (4)
2w

where L, Lo, K, ty are the same as previously defined (Eq. 1), t; sets the timing of
seasonal growth oscillations relative to # (¢;+ 0.5 = winter point (¢, ); the time of slowest
growth), and C is the intensity of seasonal growth oscillation (0 < C < 1). A value of

C = 0 indicates no seasonality in growth, while C = 1 indicates extreme seasonality and
complete cessation of growth at £,,. Because the VBGF only estimates the mean size-at-age
over time; variation in the size of individual fish within each age class was estimated by
including variance in size-at-age (o) as a model parameter. The proportion of lionfish in
each age class during each sampling month and year was also estimated within the model
(Pa.1). The expected number of individuals of age a in size class 7 in month ¢ (n,; ;) was
then calculated:

Mg it =N ’Pa,t -P (Llower <L;< Lupper | N(Za,tso'j)) (5)

where N; is the total number of individuals captured in month ¢, P, , is the probability

of a fish captured in month ¢ being age a, Ligwer and Lypper are the lower and upper
bounds of a predicted 10 mm size bin (e.g., 230 and 240 mm), and N (L, ;,0,) defines a
normal probability density function with the mean length L, ; of fish of age a in month ¢
estimated from the VBGF (Egs. 1 or 2—4), and model estimated standard deviation at age,
0 4. Because size distributions overlap across ages, the total number of expected fish of
size i in month ¢ was then calculated by summing the expected contributions to size class i
from each age:

3
N;;= Z”i,a,t- (6)
a=0
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Table 2 Parameter estimates from a length-based, age structured population model. (Top) Model pa-
rameter estimates (von Bertalanffy growth parameters, estimated date of birth and variation in size-at-age)
for lionfish from northeast Florida estimated from four candidate models (see Table 1). (Bottom) Results
of sensitivity runs using the best fit model (Model 1); parameter values were fixed at —10%/+10% of best
fit estimates to examine the effect on remaining model parameters. As in the best fit model base run, L,
was also fixed in most sensitivity runs to ensure biologically realistic parameter values.

Candidate models VBGF parameters DOB o (size at age)

Seasonal oZatage L K C t ty Age0 Agel Age2  Age3
Yes Variable 448 047 061 021 0.42 2629  27.48 2413  40.30
Yes Fixed 448 0.46 0.63 0.24 0.40 26.47 26.47 26.47 26.47
No Variable 448 047 nla n/a 0.36 28.41 27.24 2521 37.21
No Fixed 448 0.46 n/a n/a 0.34 26.87 26.87 26.87 26.87
Sensitivityruns L, K C t t Age0 Agel Age2 Age3
Ly (—10%) 403.2' 0.59 0.54 0.14 0.49 26.45 27.27 24.21 29.29
Lo (+10%) 492.8 0.39 0.66 0.27 0.35 26.19 27.57 24.12 48.03
K (—10%) 472.6 0.42° 0.58 0.23 0.38 26.37 27.51 24.07 45.08
K (+10%) 429.5 0.52° 0.58 0.17 0.45 26.38 27.46 24.17 37.50
C (—10%) 448 0.47 0.55 0.20 0.42 26.30 27.48 24.13 40.33
C (+10%) 448 0.47 0.67 0.21 0.42 26.28 27.48 24.13 40.28
t; (—10%) 448’ 0.47 0.34 0.13 0.40 26.30 27.52 24.12 40.75
t; (+10%) 448 0.46 0.68 0.28 0.38 26.97 27.13 24.29 35.48
t, (—10%) 448 0.46 0.31 0.14 0.38° 26.42 27.41 24.08 38.33
ty, (+10%) 448 0.47 1.00 0.20 0.46 26.26 27.57 24.22 42.39

Notes.

*Parameter value was fixed to ensure biologically realistic values (see text for details).

Four different candidate models were compared based on all combinations of two
possible model structures (1) seasonal versus non-seasonal growth and (2) fixed versus
variable variance in size-at-age (Table 2). Model fit was assessed by varying model
parameters to minimize the log-likelihood between observed and predicted (Eq. 6)
monthly length-frequency data using the SOLVER optimization routine in Microsoft
Excel (MS Excel 2013, Microsoft, Inc. Seattle, WA, USA). Akaike’s Information Criterion
corrected for sample size (AICc) was used to select the best model from the candidate set
and quantify the relative support of each model given the data (w;).

The key assumptions of all candidate models were as follows: (1) predicted length-
at-age follows a normal distribution with mean L, and standard deviation o, (2) there
are only four age classes present in the observed length-frequency samples (age 0, 1, 2,
and 3; this assumption was verified by aging of sagittal otoliths from a subset of lionfish
(n =100) which found that only 8% of individuals were age three (despite non-random
sampling that was biased to select larger individuals), and no individuals were age four or
older (see Model Validation), and (3) lionfish recruitment is assumed to occur at a single
point during the year and was estimated in the model by the parameter, f;, the estimated
birth date of an annual cohort. This simplifying assumption is surely violated to some
degree (every fish is not born on the same day), yet model outputs are not significantly
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affected because t;, in essence represents the average birth date with the variance in size-
at -age (o) reflecting a combination of variation in birth dates confounded with the
variability in growth rates among individual fish. We further assumed that (4) because
diver effort varied across time and the pattern of selectivity for lionfish of varying ages is
unknown, the proportion of lionfish in each age class may not accurately reflect overall
population structure. While this assumption does not directly impact our estimates of
model parameters, it does limit the some of the conclusions that can be drawn from the
data. As a result, no attempt is made to make quantitative inferences regarding relative
changes in abundance of cohorts between years or over time (e.g., recruitment strength,
natural mortality).

Model performance and sensitivity

Two types of analyses were conducted to examine the robustness of our model and
associated parameter estimates: (1) a randomized grid search designed to evaluate the
ability of the model to converge on a consistent solution from randomly generated

sets of initial parameter values (£25% best fit values) and (2) the sensitivity of model
outputs was assessed by fixing individual model parameters at 10% of their best fit
values, allowing the model to converge on a new constrained solution, and examining the
resulting effect on model fit and parameter estimates.

Model validation

Direct aging of a 100 fish subsample using sagittal otolith analysis was performed to
verify ages and provide external validation for model outputs. Otoliths were extracted

by first making a transverse cut into the skull, and removing the otoliths from under the
brain cavity. Otoliths were rinsed and stored dry in envelopes until processing. Aging
analysis was conducted by the Florida Fish and Wildlife Research Institute (FWRI)
following the procedures outlined in VanderKooy ¢ Guindon-Tisdel (2003 ). Briefly,

a singular otolith from each fish was embedded in casting resin and 500 pm sections

were cut using a Buehler low-speed Isomet saw. Sections were then mounted on glass
slides with histomount and viewed under reflected light with a dissecting microscope at
32x magnification. Marginal increment analysis was conducted and the distance from the
most recent annulus to the otolith margin was scored 1-4. Two readers aged the otoliths
independently. If the ages did not agree, the otolith was removed from further analysis
(n=17). Otolith ages were then reconciled with the model chronology using Eq. (7) which
generates the actual age (A,) at the time of the first annulus formation in years (time
elapsed from the estimated date of birth (#;,) to deposition of the first annulus):

A,=t,+1—1t (7)

where A, is the actual fractional age in years, t,, is the winter point from the seasonal
VBGEF, and tj, is the model estimated birth date. This adjustment is valid assuming that
annuli deposition is coincident with the winter point (¢, ) when growth is slowest. To
generate ages for older fish (14) we simply added a year for each additional annulus
present. To evaluate model performance, the VBGF from the best fit model was plotted
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against observed size-at-age from otolith analysis to examine the level of agreement in the
two independent measures of growth.

As a further evaluation of model performance, we fit the best model to three sets of
observed lionfish length-frequency data from northeast Florida that were not used in
parameter estimation and thus external to the model (Fig. 3). These were not used in
model fitting because available samples in those years (2013, 2015) lacked sufficient
temporal resolution to evaluate seasonal growth models.

RESULTS

General

The total lengths of lionfish sampled (n = 2,137) ranged from 41 to 448 mm in northeast
Florida over the study period. Maximum length (448 mm) and minimum length (41
mm) were both recorded in August of 2014. Some fish were not sexed and some fish were
immature, but of the fish that were sexed there were 466 females present and 727 males.

Model selection

There was almost complete support for model 1 as the best fit model (w; & 1), which
assumed seasonal variability in growth and age dependent variance in size-at-age

(Table 1). Models that did not assume seasonal variability in growth or had fixed variance
in size-at-age fit the data poorly and had essentially no support (w; & 0). The best model
fit observed length-frequency distributions well (Fig. 2), particularly in months with large
sample sizes. The best model converged on biologically realistic values for life history
parameters (Table 2) with the exception of Ly, (see below). A grid search using randomly
generated initial parameter values consistently converged on the same set of parameter
values indicating a global minimum and robust solution were reached. Sensitivity analyses
revealed that parameter estimates were generally robust with the exception of L, and k
which were inversely correlated (Table 2).

Growth

The best fit model allowed for seasonal growth (Tables 1 and 2; Figs. 2 and 4); traditional
VBGF formulations generated poor fits to the data (Table 1). The estimated seasonalized
VBGEF from the model was:

(8)

L, — 448 mm |:1 3 e—0.47(t—0)+[7(0'612;0‘47) sinﬂ(t—0.71):|—[70'612’7‘f‘47 sinn(0.71)]:| .

All growth parameters were freely estimated with the exception of Lo, which was
fixed at the maximum observed size of 448 mm TL, a common convention (Sani-
mons & Maceina, 2009). Constraining L., was required because relatively few old
fish were captured and the length data contained little information about maximum
size. Consequently, the model produced biologically unrealistic estimates of L, in
excess of 800 mm TL when this parameter was not constrained. This is a commonly
reported problem since K and Ly, are negatively correlated and adequate fits can
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Figure 3 Observed length frequency histograms of lionfish collected from northeast Florida used

in model validation. Length-frequency of lionfish collected in (A) April 2013, (B) April 2015, (C) Au-
gust 2015 (grey bars). The black curve in each panel symbolizes the predicted length frequency distribu-
tion of lionfish from the best fit candidate model (Model 1, see Table 1). Observed data were not used in
model fit.
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Figure 4 Estimated growth of lionfish using two growth models. Traditional (dotted line) and season-
alized (solid line) von Bertalanffy growth functions predicting size-at-age generated from the best fit tradi-
tional (Model 3) and seasonal (Model 1) models (see Table 1). The estimated ages of lionfish from sagittal

otolith analysis are plotted as solid circles.

be achieved over a broad range of parameter values (Shepherd, 1987). We also effec-
tively fixed #; at 0 by removing it from the model; this nuisance parameter was not
required since the time of birth (#,) was independently estimated within the model

(Gulland & Rosenberg, 1992; Taylor, Walters & Martell, 2005). The estimated value for C
was 0.61 indicating relatively strong seasonality in growth with slowest growth occurring
on February 13th (t,, + t, = 0.12). The seasonal VBGF for lionfish predicted patterns in
external (not used in model fitting) observed length-frequency data collected in 2013 and

2015 well, although some evidence for interannual variation in growth is apparent (Fig. 3)

and were in close agreement with size-at-age determined from otolith analysis (Fig. 4).

Recruitment

Annual lionfish recruitment was estimated to occur as a single event in early summer

(tp = 0.41 = June 2nd). The distinct bimodal distribution of total lengths among early

ages in all years is consistent with a brief period of annual recruitment (Figs. 2 and 3)
and also with results from otolith aging where 94% and 75% of otoliths from lionfish

collected in April and August, respectively, had the same marginal increment. Moreover,

the observed marginal increment relative to annuli deposition was consistent with a birth

date in summer.
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Table 3 Age structure of the lionfish population from northeast Florida. The estimated proportion

of the population in each age class (P.g) in each sampling month from April 2014 to January 2015 esti-
mated from the best fit model (Table 1). Mean proportions (X) from monthly model estimates were cal-
culated as a weighted average () (P, , *n)/N, where N is the total number of fish captured in all months
(N =2,137).

P,
Model 0 1 2 3 n
April 0.37 0.62 0.00 0.02 850
July 0.00 0.63 0.37 0.00 33
August 0.01 0.50 0.40 0.10 1,102
October 0.20 0.67 0.10 0.02 53
November 0.09 0.49 0.37 0.04 41
January 0.00 1.00 0.00 0.00 58
x 0.16 0.56 0.22 0.06
Otoliths 0.09 0.69 0.14 0.09

Population age structure

The lionfish population in northeast Florida was relatively young. Aged otoliths ranged
from age 0 to age 3 (Fig. 4) with age 0, 1, 2, 3 fish comprising 9%, 69%, 14% and 9% of
the population, respectively (Table 3). Otolith analysis identified no fish greater than 3
years of age supporting the model assumption of only four age classes in the population
(Figs. 2 and 4). Older lionfish are probably more common than suggested by our data
since the primary goal of otolith analysis was model validation and the largest fish aged
in this study was smaller (342 mm TL) than the maximum size captured (448 mm

TL). However, this bias is likely small since very few lionfish were larger than 342 mm
TL (6.1%) and only 0.8% were greater than 400 mm TL. Model estimated population
age structure generally agreed with the results from otolith aging (Table 3, Fig. 4), but
direct quantitative comparisons between otolith samples and model outputs are not
possible because we selectively aged larger fish, for which age is more uncertain, for model
validation. For all months, the highest proportions of fish were age 1 and age 2 (Table 3).
The highest proportion of age 0 fish occurred in April just prior to the cohorts estimated
first birthday (A, = 0.91) on June 2nd (¢, = 0.41; see above) when these fish, although
not fully recruited to the fishery, were large enough (TL = 151 mm) to be effectively
targeted by divers (Barbour et al., 2011; Edwards, Frazer ¢ Jacoby, 2014). Newly recruited
age 0 fish were largely absent during July and August, likely because fish at this age are
translucent and cryptic and too small (TL = 32-59 mm) to be captured by spearfishers.
Model predicted proportions at age indicate that older fish were rare in all months with
Age 3 fish comprising only 6% of the population on average (Table 3).

DISCUSSION

This study developed and validated a length-based, age-structured model to estimate age,
growth and population structure of lionfish from length-frequency data in northeast
Florida. The results of the model provide some key insights: (1) lionfish in this region
grow rapidly, (2) lionfish exhibit seasonal growth, (3) peak recruitment of lionfish to
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northeast Florida occurs during a short window in early summer, (4) the population of
lionfish in northeast Florida is young with older fish virtually absent, likely reflecting the
removal of older lionfish by spearfishers in combination with the movement of lionfish
to deeper water with age. These findings add to our growing understanding of lionfish
biology and provide the first estimates of lionfish vital rates in the region.

Lionfish grew exceptionally fast, much faster than in their native range (Pusack et al.,
2016), mirroring the findings of many other studies (Potts, Berrane ¢ Morris Jr, 2010;
Barbour et al., 2011; Jud & Layman, 2012; Albins, 2013; Benkwitt, 2013; Akins, Morris Jr &
Green, 2014; Edwards, Frazer ¢ Jacoby, 2014; Fogg et al., 2015; Rodriguez-Cortés, Aguilar-
Perera ¢ Bonilla-Gémez, 2015; Pusack et al., 2016). Rapid growth is a trait positively
correlated with invasibility and coupled with other life history information (Morris Jr,
2009; Ahrenholz ¢ Morris, 2010; Coté et al., 2013) may help to explain the successful es-
tablishment and rapid invasion and of the species and is concerning for potential lionfish
impacts in this region through both competition and predation. Other fish in the region
that are competing on the same trophic level as lionfish (Layman & Allgeier, 2012) such as
black sea bass (Centropristis striatus) and vermillion snapper (Rhomboplites aurorubens),
take a longer time to grow to reproductive size (Hood, Godcharles ¢» Barco, 1994; Zhao,
McGovern & Harris, 1997). With both a low size at maturity and fast growth rates, lionfish
have the potential to reach a large size and reproduce well before their native competitors.

Our reported values for Ly, and K are broadly consistent with previous studies
(Table 4), although some variability exists across locations which may reflect differences
in collection methods and sampling intensity, elapsed time since colonization, or regional
differences in environmental or ecological factors. However, comparisons of individual
growth parameters in isolation across regions can be problematic because Lo, K, and f
are typically strongly correlated (Shepherd, 1987) and actual realized growth rates (size-
at-age) are a combination of all three values (Gwinn, Allen & Rogers, 20105 Pardo, Cooper
& Dulvy, 2013). To compare growth across regions directly, we used reported VBGF
parameters from previous studies to calculate mean size-at-age for lionfish at age 1, 2
and 3 (L, L,, Ls; Table 4). In particular, while K was variable across studies (x = 0.64;
Coefficient of Variation (CV) = sd/x = 52%); these differences were reduced when com-
paring mean size-at-age from the VBGF (CV = 14, 9, and 8% for L, L, Ls, respectively
across all studies; Table 4). Two exceptions were studies in the southern Gulf of Mexico
(Rodriguez-Cortés, Aguilar-Perera ¢ Bonilla-Gémez, 2015) where lionfish grew faster than
other locations and in the Cayman Islands (Edwards, Frazer ¢ Jacoby, 2014) where growth
was much slower. Rapid growth in the first study (Rodriguez-Cortés, Aguilar-Perera &
Bonilla-Gémez, 2015) may be driven by the warmer temperatures in the southern Gulf
of Mexico compared to where our study was conducted in northeast Florida (Table 4).
Growth rates from northeast Florida were most similar to those in North Carolina (Potts,
Berrane & Morris Jr, 2010; Barbour et al., 2011) and the northern Gulf of Mexico (Fogg et
al., 2015) providing additional support for temperature as an important factor underlying
variation in growth in this species (Table 4). Such a relationship would not be unusual;
temperature is well known to strongly influence growth rates in fishes (Pauly, 1980;
Gislason et al., 2010) and the seasonal growth observed in this study clearly demonstrates
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Table 4 Summary of available growth estimates for lionfish in the invaded range. Von Bertalanffy growth parameters (L, k, t;), estimated size at age at 1, 2 and 3
years (L,,L,,Ls), observed maximum size (L) and age (L,), and method of estimation for available studies of lionfish growth in the invaded and native range.

Location Sex L K t L, L, Ls Lo Anax Method Temp (°C)* Reference

Atlantic Ocean

North Combined 455 0.32 —1.22 231 293 337 464 8.0 Otoliths 22.1 Potts, Berrane ¢ Morris Jr (2010)

Carolina

North Combined 425 0.47 —0.50" 169 265 325 464 8.0 Otoliths 22.1 Barbour et al. (2011)°

Carolina

Northeast Combined 448 0.47 0.00" 168 273 339 448 3.3 Length- 21.4 Present study

Florida based

Gulf of Mexico

Northeast Combined! 393 0.54 —0.08 174 265 319 434° 4.5 Otoliths 21.8 Fogg et al. (2015)

West Combined! 389 0.54 —0.34 200 279 325 434¢ 4.0 Otoliths 21.7 Fogg et al. (2015)

Southeast Combined! 429 0.57 —0.16 208 304 358 434¢ 4.5 Otoliths 25.1 Fogg et al. (2015)

Yucatan Combined 420 0.88 0.11 228 340 387 389 n/a Length- 29.3 Rodriguez-Cortés, Aguilar-Perera
based & Bonilla-Gomez (2015)

Florida Keys

Key Largo Combined 411 0.70 0.00" 207 310 361 452 n/a Length- 26.3 Swenarton, Johnson & Akins
based (2014)

Caribbean Sea

Little Female 286 0.57 —1.01° 195 235 257 333 3.0 Otoliths 30.0 Edwards, Frazer & Jacoby (2014)

Cayman

Little Male 382 0.38 —1.01" 204 260 299 391 5.0 Otoliths 30.0 Edwards, Frazer & Jacoby (2014)

Cayman

Little Combined’ 349 0.42 —1.01° 199 250 284 391 5.0 Otoliths 30.0 Edwards, Frazer & Jacoby (2014)

Cayman

Caymans/ Combined 322 1.48 —0.07" 256 307 319 n/a n/a Tagging 29.7/28.7 Pusack et al. (2016)

Bahamas

(continued on next page)
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Table 4 (continued)

Location Sex Lo K to L L, L Lax Anax Method Temp (°C)* Reference
Indo-Pacific
Philippines/ Combined 225 1.62  —0.07° 175 215 223 n/a n/a Tagging  30.2/28.1 Pusack et al. (2016)
Marianas

x° 404.1 0.64 —0.33 204.0 288.6 335.4 429.7 4.9

42.2 0.33 0.45 28.9 27.2 28.4 32.2 1.6
cvV 10.4 52.2 138.7 14.1 9.4 8.5 7.5 33.4

Notes.

2 Average temperatures represent regional long-term annual averages and do not reflect conditions at study locations at the time they were conducted.

YParameter value was fixed during growth curve fitting.
“Re-analysis of data obtained from Potts, Berrane ¢ Morris Jr (2010).
dMaximum age adjusted for interval between estimated birth date and first annulus.

¢Lmax Was not reported on a site-specific basis in Fogg et al. (2015) and represents combined data for all regions.

fThe estimates reflect combined data from both sexes from Edwards, Frazer ¢ Jacoby (2014).

8Values include combined data from the invaded range and only independent estimates (e.g., Amax from Potts, Berrane ¢ Morris Jr, 2010 and Barbour et al., 2011 is only included once because they use the

same data set).
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the effect of temperature on growth for lionfish. Conversely, the slower growth of lionfish
in one study in the Cayman Islands (Edwards, Frazer ¢» Jacoby, 2014) cannot be explained
by temperature. Slow growth in this study may be explained by other environmental or
ecological factors (although Pusack et al. (2016) demonstrate faster growth in this region),
be an artifact of curve fitting procedures or result from the recency of colonization as
discussed by the authors (Edwards, Frazer & Jacoby, 2014). Further studies of lionfish
growth in the wider Caribbean will help to more clearly identify the various mechanisms
underlying regional differences in growth rates.

We constrained Lo, to 448 mm TL, the largest fish observed in our data set (n=2,137)
because unconstrained fits produced biologically unrealistic values (Ls > 800 mm TL). In
practice, this approach is often required when data contain few old fish and consequently
little information about Ly, (Shepherd, 1987). In such cases, fixing Lo, to the maximum
observed size (Lyax) is a common convention (Sammons ¢ Maceina, 2009). Our value
of Lg is similar to those predicted from empirically derived relationships between L
and size at maturity (190 mm TL; Gardner et al., 2015) and L.y (448 mm TL; this study)
which are 421 and 450 mm TL, respectively (Froese & Biholan, 2000) and is also consistent
with previously reported estimates of L, (Table 4) and with maximum reported lengths
in the catch from the invaded range (476 mm TL; Morris Jr, 2012).

One key finding from our model was the strong support for seasonal growth rates
(C = 0.61) which were correlated with seasonal fluctuations in bottom water temper-
atures (Table 1, Fig. 4). Temperature has a large effect on growth in fishes, resulting
in seasonal cycles in growth rates in temperate areas and more uniform growth in
tropical regions (Pauly, 1980). Our model estimated the winter point to be 0.12 which
corresponds to a calendar date of February 13th. This is in strong agreement with known
climatology for waters of the southeastern continental shelf of the US where bottom
temperatures are typically coldest in late winter (Atkinson et al., 1983). Seasonal growth
resulted in substantial changes in intra-annual size-at-age for young fish relative to the
traditional VBGF; but not in overall annual estimates of growth (K = 0.47 for both
seasonal and traditional VBGFs; Table 2, Fig. 4). The greatest difference was observed
for age 0 fish which were estimated to be 38% larger than predicted by the traditional
VBGEF by late summer in their first year (111 mm vs 80 mm TL; Fig. 4). Seasonal growth
could have important implications for predator—prey dynamics between lionfish and
native fishes. Predation risk in marine fishes is typically inversely related to body size
(Rice et al., 1993; Lorenzen, 1996) and this relationship can be particularly strong for
the prey of gape-limited predators. However, seasonal growth is probably not likely
to substantially impact predation on lionfish. While many of the native predators
documented to consume lionfish are gape-limited, suction feeders (Nassau grouper,
Epinephelus striatus (Maljkovic, Van Leeuwen ¢» Cove, 2008; Diller, Frazer & Jacoby,

2014); tiger grouper, Mycteroperca tigris (Maljkovic, Van Leeuwen & Cove, 2008), and
nurse sharks (Ginglyostoma cirratum, Diller, Frazer ¢ Jacoby, 2014); direct observations
of predation on lionfish are scarce and most evidence indicates that native predators
are not effective at controlling lionfish populations (Hackerott et al., 2013; Valdivia

et al., 2014). Conversely, seasonal growth in temperate regions, may allow gape-limited
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lionfish (Mufioz, Currin & Whitfield, 2011; Green et al., 2012) access to larger prey earlier
in their life history than previously thought. While this finding does not significantly alter
our understanding of lionfish trophic dynamics because this effect is inherent in field
observations of prey consumption, abundance and size-structure (Albins ¢» Hixon, 2008;
Green et al., 2012); seasonal growth should be considered in predictive models which

use the VBGF to ensure accurate estimates of lionfish growth in temperate regions. For
example, the predictions from bioenergetic (Cerino et al., 2013), removal efficacy (Barbour
et al., 2011) and prey consumption models (Green et al., 2014) all rely on biological and
ecological relationships that scale with lionfish body size (e.g., maximum prey size) or
mass (e.g., consumption rates, metabolism) which are underestimated when assuming
non-seasonal growth.

Although not important for tropical areas of the invaded range, seasonal growth may
lower the risk of winter mortality for juvenile lionfish in temperate regions where winter
water temperatures approach thermal minima for lionfish. Overwinter mortality in fishes
can be substantial in coastal systems and is often size-selective with larger individuals
more resistant to mortality from both thermal stress (Lankford ¢» Targett, 2001) and
starvation (Henderson, Holmes ¢ Bamber, 1988; Hurst, 2007). Lionfish are a tropical
species and generally intolerant of cold temperatures (Kimball et al., 2004). Thus, larger
size at the onset of winter may at least partially mitigate the negative effects of low water
temperatures in temperate regions.

Lastly, as fisheries for lionfish develop and intensify in the invaded range, resource
managers may begin to apply various population and stock assessment models (i.e., catch
curves, yield-per-recruit) to this species. Seasonal growth must be considered in many
of these models, which generate biased outputs (e.g., natural mortality) and associated
management reference points when assuming a traditional VBGF (Sparre, 1990; Pauly,
1990; Hufnagl, Huebert & Temming, 2013).

Distinct annual cohorts are clearly identifiable in our length-frequency data, par-
ticularly in months with large sample sizes (Figs. 2A, 2C and 3). Several non-mutually
exclusive hypotheses could explain this observed pattern. One explanation is that peak
spawning of lionfish in regions that contribute to recruitment in northeast Florida varies
seasonally. Further, to coincide with the predicted timing of lionfish recruitment in
our region, peak spawning in source populations would be need to occur in summer.
Although lionfish are capable of spawning throughout the year (Morris Jr, 2009), most
studies do provide support for increased reproductive activity in summer. Gardner
et al. (2015) reported two peak spawning periods for lionfish in the Cayman Islands
occurring in spring and late summer, and spawning activity also peaks in summer in
the eastern Gulf of Mexico (Fogg, Brown-Peterson ¢ Peterson, 2013), North Carolina
and The Bahamas (Morris Jr, 2009). Source populations for larvae settling in northeast
Florida are not definitively known, but evidence from population genetics (Freshwater
et al., 2009; Butterfield et al., 2015), biophysical modeling (Cowen, Paris ¢ Srinivasan,
20065 Johnston & Purkis, 20115 Johnston & Purkis, 2015) and chronology of invasion
history (Schofield, 2009) suggest a combination of self-recruitment and subsidies from
upstream locations such as southern Florida and northern Cuba. Unfortunately, little is
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known about reproductive biology of lionfish in these regions. Alternatively, recruitment
of lionfish in summer may be enhanced by seasonal physical oceanographic conditions
promoting the delivery and/or retention of larvae to the region or by seasonal differences
in post-settlement survival, or a combination of these processes. Although the causative
factors driving this recruitment cannot be determined from this study, identifying

factors that may limit lionfish larval supply or survival is inherently important to lionfish
management and control efforts (Johnston & Purkis, 2011; Johnston ¢ Purkis, 2015; Morris
Jr, Shertzer ¢ Rice, 2011).

Both the observed otolith ages and model predicted age structure indicate that a
majority of the sampled population in northeast Florida is three years of age or younger, a
recurring pattern in numerous studies with lionfish (Barbour et al., 2011; Edwards, Frazer
& Jacoby, 2014; Fogg et al., 2015). Lionfish live for decades in aquaria (Potts, Berrane ¢
Morris Jr, 2010) and older fish are reported from North Carolina (Barbour et al., 2011)
and the more recently invaded Caribbean (Edwards, Frazer ¢» Jacoby, 2014), so this finding
is unexpected given that lionfish have been established in northeast Florida for almost two
decades (Schofield, 2009). The absence of older cohorts is unlikely to be explained by high
natural mortality given their large size and a lack of evidence for substantial predation
on lionfish by native fishes (Valdivia et al., 2014). The observed age-structure in our
study is likely explained by a combination of non-mutually exclusive factors: (1) local
culling activities that target larger lionfish; (2) ontogenetic movement of lionfish to deeper
water over time; and (3) limitations our otolith analysis which was primarily designed
to validate the growth model (although this effect is likely small relative to the others).
Repeated culling may reduce the number of older, larger fish over time as is commonly
observed in fishery species (Worm et al., 2009); shifts towards smaller size of lionfish at
fished relative to unfished locations have been reported in several studies (De Ledn et
al., 2011; Frazer et al., 2012). Although lionfish removal efforts in northeast Florida have
intensified in recent years, lionfish are not easily accessible (>15 km offshore) and overall
directed effort for this species in this region is still low. Thus, regional fishing pressure
certainly contributes to the truncated population age-structure but is not likely to be the
sole driver. The absence of older lionfish in our study may also be partially explained by
ecological factors. For example, the observed population age structure is consistent with
an ontogenetic shift of older lionfish to deeper waters likely occurring in winter (older fish
(2+) are common during summer and fall but almost completely absent in collections
from January and April; Table 3). Ontogenetic shifts are well documented for many
marine fishes (Eggleston, Dahlgren & Johnson, 2004; Eggleston, Grover & Lipcius, 1998;
Johnson, 2004), and have been hypothesized to explain the presence of larger lionfish at
depth (Barbour et al., 2011; Claydon, Calosso ¢ Traiger, 2012; Swenarton, 2016). Surveys
employing other gear types (e.g., ROVs, otter trawls) report that lionfish are abundant at
depth in both the Gulf of Mexico (Nuttall et al., 2014; Switzer, Tremain ¢ Keenan, 2015,
Aguilar-Perera, Quijano-Puerto & Herndndez-Landa, 2016) and western Atlantic Ocean
(Meister et al., 2005), although none of the studies report lionfish size distributions. The
presence of deep water refuges is a major concern for lionfish management and control,
since lionfish residing at depth are inaccessible to spearfishers (currently the primary
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method of removal), and culling efforts in shallow depths may be replenished by larval
export from lionfish at depth (Morris Jr, 2009; Green et al., 2014). If lionfish are moving to
deeper waters as they grow, a major unresolved question is determining the proportion of
deep water lionfish that are immigrants from shallow water relative to the proportion that
initially settled at depth. Thus, further studies using traditional tagging, acoustic telemetry
or biogeochemical approaches will be needed to address this question and should be
prioritized.

Overall, our model generated biologically realistic parameters, provided good fits to
observed length-frequency data, and was in close agreement with the results from otolith
aging analysis (Fig. 4) and when fit to length-frequency data external to model (Fig. 3).
The length-based approach described here may offer a more practical alternative to aging
by otoliths alone which is time and labor intensive and can be particularly difficult for
fishes in tropical regions which often lack defined annuli (Edwards, Frazer ¢ Jacoby,
2014). Moreover, this approach requires only length data which are easily collected and
widely available. Thus this approach could be applied to existing data from lionfish
populations throughout the invaded range. Such spatially-explicit information on lionfish
biology would aid management agencies seeking to develop effective localized removal
and harvest strategies.
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