
System Wide Analyses have Underestimated Protein 
Abundances and the Importance of Transcription in 
Mammals

Large scale surveys in mammalian tissue culture cells suggest that the protein expressed at 

the median abundance is present at 8,000 - 16,000 molecules per cell and that differences in 

mRNA expression between genes explain only 10-40% of the differences in protein levels. 

We find, however, that these surveys have significantly underestimated protein abundances 

and the relative importance of transcription. Using individual measurements for 61 

housekeeping proteins to rescale whole proteome data from Schwanhausser et al., we find 

that the median protein detected is expressed at 170,000 molecules per cell and that our 

corrected protein abundance estimates show a higher correlation with mRNA abundances 

than do the uncorrected protein data. In addition, we estimated the impact of further errors in 

mRNA and protein abundances using direct experimental measurements of these errors. The 

resulting analysis suggests that mRNA levels explain at least 56% of the differences in 

protein abundance for the 4,212 genes detected by Schwanhausser et al., though because 

one major source of error could not be estimated the true percent contribution could be 

higher. We also employed a second, independent strategy to determine the contribution of 

mRNA levels to protein expression. We show that the variance in translation rates directly 

measured by ribosome profiling is only 12% of that inferred by Schwanhausser et al. and that 

the measured and inferred translation rates correlate only poorly (R2=0.13). Based on this, 

our second strategy suggests that mRNA levels explain ~81% of the variance in protein 

levels. We also determine the percent contributions of transcription, RNA degradation, 

translation and protein degradation to the variance in protein abundances using both of our 

strategies. While the magnitudes of the two estimates vary, they both suggest that 

transcription plays a more important role than the earlier studies implied and translation a 

much smaller role. Finally, the above estimates only apply to those genes whose mRNA and 

protein expression was detected. Based on a detailed analysis by Hebenstreit et al., we 
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estimate that approximately 40% of genes in a given cell within a population express no 

mRNA. Since there can be no translation in the absence of mRNA, we argue that differences 

in translation rates can play no role in determining the expression levels for the ~40% of 

genes that are non-expressed.
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INTRODUCTION 17	
  
The protein products of genes are expressed at very different levels from each other in a 18	
  
mammalian cell. Thousands of genes are not detectably expressed. Of those that are, their 19	
  
proteins are present at levels that differ by five orders of magnitude. Cytoplasmic actin, for 20	
  
example, is expressed at 1.5 x 108 molecules per cell (Kislauskis et al. 1997), whereas some 21	
  
transcription factors are expressed at only 4 x 103 molecules per cell (Biggin 2011). There are 22	
  
four major steps that determine differences in protein expression: the rates at which genes are 23	
  
transcribed, mRNAs are degraded, proteins are translated, and proteins are degraded (Fig. 1). 24	
  
The combined effect of transcription and mRNA degradation together determines mRNA 25	
  
abundances (Fig. 1). The joint effect of protein translation and protein degradation controls the 26	
  
relative differences between mRNA and protein concentrations (Fig. 1). 27	
  

Transcription has long been regarded as a dominant step and is controlled by sequence 28	
  
specific transcription factors that differentially interact with cis-regulatory DNA regions. The 29	
  
rates of the other three steps, however, vary significantly between genes as well (Boisvert et al. 30	
  
2012; Cambridge et al. 2011; Cheadle et al. 2005; de Sousa Abreu et al. 2009; Eden et al. 31	
  
2011; Guo et al. 2010; Han et al. 2013; Hentze & Kuhn 1996; Hsieh et al. 2012; Ingolia et al. 32	
  
2011; Kristensen et al. 2013; Loriaux & Hoffmann 2013; Rabani et al. 2011; Schwanhausser et 33	
  
al. 2011; Sharova et al. 2009; Yang et al. 2003). MicroRNAs, for example, differentially interact 34	
  
with mRNAs to alter rates of RNA degradation and protein translation (Ambros 2011; Baek et 35	
  
al. 2008; Elmen et al. 2008; Gennarino et al. 2012; Guo et al. 2010; Hobert 2008; Krutzfeldt et 36	
  
al. 2005; Pillai et al. 2007; Rajewsky 2011; Selbach et al. 2008; Subtelny et al. 2013; Xiao et al. 37	
  
2007). 38	
  

To quantify the relative importance of each of the four steps, label free mass spectrometry 39	
  
methods have been developed that measure the absolute number of protein molecules 40	
  
expressed per cell for thousands of genes (Bantscheff et al. 2012; Beck et al. 2011; Maier et al. 41	
  
2009; Schwanhausser et al. 2011; Vogel et al. 2010; Vogel & Marcotte 2012). By comparing 42	
  
these data to mRNA abundance data, the relative importance of transcription and mRNA 43	
  
degradation versus protein translation and protein degradation can be determined (Maier et al. 44	
  
2009; Schwanhausser et al. 2011; Vogel & Marcotte 2012) (Fig. 1). By measuring mRNA 45	
  
degradation and protein degradation rates as well, the rates of transcription and translation can 46	
  
be additionally inferred indirectly. Using this approach to study mouse NIH3T3 fibroblasts, 47	
  
Schwanhausser et al. concluded that mRNA levels explain ~40% of the variability in protein 48	
  
levels; that the cellular abundance of proteins is predominantly controlled at the level of 49	
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translation; that transcription is the second largest determinant; and that the degradation of 50	
  
mRNAs and proteins play a significant but lesser role (Schwanhausser et al. 2011).  51	
  

The above work has provided critically important datasets and an initial framework for analysis. 52	
  
We noticed, however, that Schwanhausser et al.’s protein abundance estimates are mostly 53	
  
lower than established values for individual proteins in the literature and that statistical methods 54	
  
to quantitate the impact of experimental error had not been employed. We therefore set out to 55	
  
explore if we could refine the analysis of these datasets and to compare our results to those of 56	
  
Schwanhausser et al. and other system wide studies. 57	
  
 58	
  
RESULTS AND DISCUSSION 59	
  
A non-linear underestimation of protein abundances 60	
  
Our starting point was a set of published abundances of 53 mammalian housekeeping proteins, 61	
  
most of which are based on SILAC mass spectrometry or western blot data (Biggin 2011; Brosi 62	
  
et al. 1993; Gregory et al. 2002; Hanamura et al. 1998; Kimura et al. 1999; Kislauskis et al. 63	
  
1997; Princiotta et al. 2003; Wollfe 1998; Wong et al. 2011; Zeiler et al. 2012). On average 64	
  
these established estimates are 16 fold higher than those from Schwanhausser et al.’s original 65	
  
label free mass spectrometry data (Dataset S1). Once we brought this discrepancy to the 66	
  
authors’ attention, they upwardly revised their abundance estimates for all 5,028 detected 67	
  
proteins and provided western blot or Selected Reaction Monitoring (SRM) mass spectrometry 68	
  
measurements for eight polypeptides in NIH3T3 cells (see Corrigendum (Schwanhausser et al. 69	
  
2011)). However, Schwanhausser et al.’s second whole proteome abundance estimates are 70	
  
still lower than individual measurements for proteins expressed below 106 molecules per cell, 71	
  
with the lowest abundance proteins showing the largest discrepancy (Fig. 2a; Dataset S1). 72	
  

Western blot and SILAC mass spectrometry measurements show the same discrepancy versus 73	
  
the label free whole proteome data (Dataset S1). For example, for proteins expressed below 1 74	
  
million molecules per cell, the 26 SILAC measurements are a median of 2.95 fold higher than 75	
  
Schwanhausser et al.’s second estimates, and the 19 western blot measurements are 3.10 fold 76	
  
higher. This suggests that the discrepancy is not due to error in the individual measurements 77	
  
as a similar bias in two independent methods is unlikely.  78	
  

Of the 61 individual measurements of protein abundance available to us, 15 were made in 79	
  
NIH3T3 cells and 42 were made in HeLa cells. The discrepancy between Schwanhausser et 80	
  
al.’s second whole proteome abundances and these individual measurements is not due to 81	
  
differences in expression levels between HeLa and NIH3T3 cells for the following reasons. 82	
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One, it is unlikely that such a difference would only occur for lower abundance proteins. Two, 83	
  
five of the individual measurements for lower abundance proteins (Orc2, Orc4, HDAC3, NFkB1, 84	
  
and NFkB2) were made in NIH3T3 cells and are on average 3.7 fold higher than the second 85	
  
whole proteome estimates in this same cell line (Dataset S1). Three, later in the paper we show 86	
  
that collectively the 61 individual proteins measured have on average the same relationship in 87	
  
expression values versus all other cellular proteins in both NIH3T3 and HeLa cells. In addition, 88	
  
as further evidence we note that Schwanhausser et al.’s second estimates for RNA polymerase 89	
  
II and general transcription factors such as TFIIB and TFIIE are only 1.6 fold higher than those 90	
  
in yeast (Borggrefe et al. 2001) and are 7.1 times less than those in HeLa cells (Kimura et al. 91	
  
1999). Yeast cells have 1/40th the volume, 1/200th the amount of DNA and ¼ the number of 92	
  
genes of NIH3T3 and HeLa cells (Milo et al. 2010). Two fold reductions in the concentrations of 93	
  
a single general transcription factor have, in some cases, phenotypic consequence (Aoyagi & 94	
  
Wassarman 2001; Deutschbauer et al. 2005; Eissenberg et al. 2002; Kim et al. 2010). Thus, it 95	
  
is unlikely that a rapidly dividing mammalian cell could function with much larger reductions in 96	
  
the amounts of all of these essential regulators to levels close to those found in yeast.  97	
  

Correcting the non-linear bias 98	
  
Schwanhausser et al. calibrated protein abundances by spiking known amounts of protein 99	
  
standards into a crude protein extract from NIH3T3 cells and then measuring the abundances 100	
  
of several thousand proteins in the mixture by label free mass spectrometry. The 20 “spiked in” 101	
  
protein standards detected in this experiment, however, were present at the equivalent > 8.0 x 102	
  
105 molecules per cell, a level that represents only the most highly expressed 11% of the 103	
  
proteins detected (Fig. 3a) (M. Selbach, personal communication (Schwanhausser et al. 104	
  
2011)). To convert mass spectrometry signals to protein abundances, Schwanhausser et al. 105	
  
assumed that a linear relationship defined using the 20 “spiked in” standards holds true for 106	
  
proteins at all abundances (Fig. 3a). The discrepancy between the resulting estimates and 107	
  
individual protein measurements, however, suggests that this assumption is not valid. We 108	
  
therefore employed the 61 individual protein measurements from the literature as they span a 109	
  
much wider abundance range. In a plot of these data vs Schwanhausser et al.’s second whole 110	
  
proteome estimates, we found that a two-part linear regression gave a statistically better fit 111	
  
over a single regression (Fig. 3b and c) (p-value=0.002, Materials and Methods). We then used 112	
  
this two-part regression to derive new abundance estimates for all 5,028 proteins in 113	
  
Schwanhausser et al.’s dataset (Dataset S1). As Figure 2b shows, the correction removes the 114	
  
non-linear bias. 115	
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In our rescaled data, the median abundance protein is present at 170,000 molecules per cell 116	
  
(Fig. 2b), considerably higher than Schwanhausser et al.’s original estimate of 16,000 117	
  
molecules per cell and significantly above their second estimate of 50,000 molecules per cell. 118	
  
For low abundance proteins the effect is larger. In our corrected data, the median sequence 119	
  
specific transcription factor is present at 71,000 molecules per cell versus Schwanhausser et 120	
  
al.’s estimates of first 3,500 then 9,300 molecules per cell (Dataset S1). Our correction reduces 121	
  
the range of detected abundances by ~50 fold (unlogged) compared to Schwanhausser et al.’s 122	
  
second estimates (Dataset S1) and the variance in protein levels from 0.97 (log10) to 0.36 123	
  
(log10).  124	
  

Corrected protein abundances show an increased correlation with mRNA abundances 125	
  
As an independent check on the accuracy of our corrected abundances, we compared them to 126	
  
Schwanhausser et al.’s RNA-Seq mRNA expression data. Our corrected protein abundances 127	
  
correlate more highly with mRNA abundances than do Schwanhausser et al.’s second whole 128	
  
proteome estimates (compare Fig. 4a and b). The increase in correlation coefficient is highly 129	
  
significant (p-value<10-29) (Materials and Methods), arguing that our non-linear correction to the 130	
  
whole proteome abundances has increased the accuracy of these estimates. The most 131	
  
dramatic change is that the scatter about the line of best fit is reduced and shows a stronger 132	
  
linear relationship. The 50% prediction band shows that prior to correction the half of proteins 133	
  
whose abundances are best predicted by mRNA levels are expressed over an 11 fold range 134	
  
(unlogged), but after correction they are expressed over a narrower, 4 fold range (Fig. 4a and 135	
  
b). The correction reduces the width of the 95% prediction band even further, by 18 fold.  136	
  

For our corrected data, the median number of proteins translated per mRNA is 9,800 compared 137	
  
to Schwanhausser et al.’s original estimate of 900 and their second estimate of 2,800. In yeast, 138	
  
the ratio of protein molecules translated per mRNA is 4,200 - 5,600 (Ghaemmaghami et al. 139	
  
2003; Lu et al. 2007). Given that mammalian cells have a higher protein copy number than 140	
  
yeast (Milo et al. 2010), it is not unreasonable that the ratio in mammalian cells would be the 141	
  
higher. 142	
  

 143	
  
Estimating the impact of molecule specific measurement error 144	
  
In addition to the above general error in scaling protein abundances, there are additional 145	
  
sources of experimental error that uniquely affect data for each protein and mRNA differently. 146	
  
As a result of these molecule specific measurement errors, the coefficient of determination 147	
  
between measured mRNA and measured protein levels—i.e. R2 shown in Fig. 4b—is lower 148	
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than the actual value between true protein and true mRNA levels. With an accurate estimate of 149	
  
the errors, it is possible to calculate the increased correlation expected between true protein 150	
  
and true mRNA abundances. Because the variance in the residuals in Fig. 4b (i.e. the 151	
  
displacement along the y axis of data points about the line of best fit) is composed of both 152	
  
experimental error and the genuine differences in the rates of translation and protein 153	
  
degradation between genes, once the experimental error has been estimated, it is also 154	
  
possible to infer the combined true effects of translation and protein degradation. 155	
  

There are two classes of molecule specific experimental error: stochastic and systematic. 156	
  
Stochastic error, or imprecision, is the variation between replica experiments and is estimated 157	
  
from this variation. Systematic error, or inaccuracy, is the reproducible under or over estimation 158	
  
of each data point, and is estimated by comparing the results obtained with the assay being 159	
  
used to those from gold standard measurements obtained with the most accurate method 160	
  
available.  161	
  

Schwanhausser et al. limited their estimation of experimental error to stochastic errors. 162	
  
Because our correction of the whole proteome abundances reduces the total variance in 163	
  
measured protein expression levels, we first reestimated the proportion of the variance in the 164	
  
residuals in Fig. 4b that is due to stochastic measurement error using replica datasets 165	
  
(Materials and Methods). We find that 7% of this variance results from stochastic protein error 166	
  
and 0.8% from stochastic mRNA error. 167	
  

Schwanhausser et al., however, also noted a significant variance between their whole genome 168	
  
RNA-Seq data and NanoString measurements for 79 genes (R2=0.79 in Fig. S8A in 169	
  
(Schwanhausser et al. 2011)), though they did not take this into account subsequently. RNA-170	
  
Seq is well known to suffer reproducible several fold biases in the number of DNA sequence 171	
  
reads obtained for different GC content genomic regions (Cheung et al. 2011; Dohm et al. 172	
  
2008). In contrast, NanoString gives an accurate measure of nucleic acid abundance as 173	
  
correlation coefficients of R2=0.99 are obtained when NanoString data are compared to known 174	
  
concentrations of nucleic acid standards (Geiss et al. 2008). Thus, it is reasonable to consider 175	
  
NanoString as a gold standard that can be used to assess the systematic error in the RNA-seq 176	
  
data by assuming that the variance between the two methods is due mostly to systematic error 177	
  
in RNA-seq. Using Analysis of Variance (ANOVA), the variance in Schwanhausser et al.’s 178	
  
NanoString/RNA-Seq comparison can be shown to be equivalent to 23.3% of the variation in 179	
  
the residuals in Fig. 4b, 29 fold larger than the stochastic component of mRNA error (see 180	
  
Materials and Methods for a discussion of the assumptions used in this analysis). 181	
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It is also important to assess the systematic error in the whole proteome abundances as label 182	
  
free mass spectrometry includes such biases (Bantscheff et al. 2012; Kuntumalla et al. 2009; 183	
  
Lu et al. 2007; Peng et al. 2012). In principle the “spiked in” protein standards in 184	
  
Schwanhausser et al.’s calibration experiment (i.e. the data in Fig. 3a) should provide gold 185	
  
standard data. In practice, however, the variance in mass spectrometry estimates for protein 186	
  
standards present at supposedly the same amounts is too high (i.e. the scatter along the x axis 187	
  
in Fig. 3a). This variance would contribute 61% to the variance in the residuals in Fig. 4b, yet 188	
  
the variance of the residuals between the corrected whole proteome estimates and the 61 189	
  
individual protein measurements (i.e. the scatter along the x axis about the solid red line in Fig. 190	
  
3b) would contribute only 44%. Since the western blot and SILAC methods used to make the 191	
  
61 individual protein measurements introduce some experimental error, it seems likely that the 192	
  
commercial protein standards used by Schwanhauser at al. were not as accurately prepared at 193	
  
the correct protein concentrations as one would expect. Since no other suitable gold standard 194	
  
is available, we are thus unable to estimate the systematic protein error, though it is likely to be 195	
  
less 44% of variance in the residuals in Fig. 4b. 196	
  

Taking the stochastic protein error as a minimum estimate of protein error and the variance 197	
  
from the NanoString/RNA-Seq comparison as an estimate of all RNA errors, it can be shown 198	
  
that true mRNA levels explain at least 56% of true protein levels, and by extension protein 199	
  
degradation and translation combined explain no more than 44% (see Materials and Methods).  200	
  

Estimating the relative importance of transcription, mRNA degradation, translation and 201	
  
protein degradation 202	
  
In addition to determining protein and mRNA abundances, Schwanhausser et al. also directly 203	
  
measured mRNA and protein degradation rates and calculated the percentage that each 204	
  
contributed to the variance in protein abundances. Using this information, it is possible to 205	
  
determine the relative importance of transcription, RNA degradation, translation and protein 206	
  
degradation for different scenarios (Table 1, see Materials and Methods). For the 4,212 genes 207	
  
whose protein and mRNA expression was detected, our analysis suggests that transcription 208	
  
explains ~38% of the variance in true protein levels, RNA degradation explains ~18%, 209	
  
translation ~30%, and protein degradation ~14% (Table 1). Clearly these estimates are 210	
  
tentative and depend on the particular assumptions we have made. We believe, though, that 211	
  
they will prove more accurate than Schwanhausser et al.’s suggestion that translation is the 212	
  
predominant determinant of protein expression and that mRNA levels explain around 40% of 213	
  
the variability in protein levels (Schwanhausser et al. 2011) (Table 1).  214	
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 215	
  
Direct measurements of translation rates support our analysis 216	
  
Direct measurements of system wide translation rates using ribosome profiling (Guo et al. 217	
  
2010; Ingolia et al. 2011; Subtelny et al. 2013) provide independent evidence that translation 218	
  
rates vary less than Schwanhausser et al. suggest. The distributions of the rates of translation 219	
  
rates measured in mouse embryonic stem cells, mouse neutrophils, mouse NIH3T3 cells and 220	
  
human HeLa cells are all significantly narrower than Schwanhausser et al. inferred for mouse 221	
  
NIH3T3 cells (Fig. 5a; Table S1). For NIH3T3 cells the translation rates measured by ribosome 222	
  
profiling for 95% of the genes detected vary only 5.8 fold, but the rates inferred for 95% of 223	
  
genes by Schwanhausser et al. vary 115 fold (Fig. 5a). Because each of these datasets contain 224	
  
differing numbers of genes (Table S1), to provide a more direct comparison we took the 225	
  
intersection of genes detected by Schwanhausser et al. and by ribosome profiling in NIH3T3 226	
  
cells (Fig. 5b). The variance in measured translation rates for the genes in the intersection is 227	
  
only 12% of the variance in rates inferred by Schwanhausser et al. for these same genes (Fig. 228	
  
5b; Table S1). 229	
  

Having direct measurements of the variance in translation rates opens up a second strategy to 230	
  
estimate the relative importance of each step in gene expression (Materials and Methods). In 231	
  
our first strategy—the measured protein error strategy—protein degradation rates and errors in 232	
  
protein and mRNA abundances were determined from direct experimental data; and the 233	
  
variance in true protein levels explained by translation was inferred as that part of the variance 234	
  
in the residuals in Fig. 4b that is not explained by the three experimentally measured terms. In 235	
  
our second strategy—the measured translation strategy—translation rates, protein degradation 236	
  
rates and mRNA errors are determined from direct experimental data; and the variance in 237	
  
measured protein levels explained by protein error is inferred as that part of the variance in the 238	
  
residuals in Fig. 4a that is not explained by the sum of variances of the three experimentally 239	
  
measured components (Materials and Methods). This measured translation strategy is thus 240	
  
independent of our rescaling of Schwanhausser et al.’s second protein abundance estimates 241	
  
and of our estimate of stochastic protein measurement error. 242	
  

According to our second strategy, for NIH3T3 cells the variance in true protein levels is 63% of 243	
  
the variance in Schwanhausser et al.’s measured protein abundances; mRNA levels contribute 244	
  
81% to the variance in true protein expression; transcription 71%; RNA degradation 10%; 245	
  
translation 11%; and protein degradation 8% (Table 1). Despite the significant differences in 246	
  
the underlying data and assumption used, these results agree broadly with those of our first 247	
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strategy (Table 1). Both strategies suggest that the variance in Schwanhausser et al.’s second 248	
  
protein abundance estimates is too high. Both suggest that translation contributes less to 249	
  
protein levels and that transcription contributes more that Schwanhausser et al. claimed. In 250	
  
effect, the measured rates of translation provide independent support for our rescaling of 251	
  
Schwanhausser et al.’s protein abundances and our estimates of stochastic protein error, and 252	
  
visa versa.  253	
  

Our second strategy, though, does estimate that mRNA levels and transcription explain a 254	
  
higher percent of protein expression than the first (Table 1), but this is not entirely unexpected. 255	
  
In our first strategy, we were not able to take account of systematic, molecule specific errors in 256	
  
protein abundances because appropriate control measurements were not available. Thus, this 257	
  
first strategy could well have underestimated error. In contrast, our second strategy estimates 258	
  
all types of protein abundance errors in a single term and thus has the potential to be the more 259	
  
accurate if the error in the ribosome profiling and protein degradation data is not too large.  260	
  

To further explore the relationship between our two strategies, we compared the correlation 261	
  
between translation rates inferred by Schwanhausser et al. and those measured by ribosome 262	
  
profiling in NIH3T3 cells (Fig. 6). The coefficient of determination is small (R2= 0.13), indicating 263	
  
that the ribosome profiling data explain only 13% of the variance in Schwanhausser et al.’s 264	
  
inferred rates. Considered in isolation this result does not establish if the poor correlation is due 265	
  
to errors in either or both datasets. However, our measured protein error strategy shows that 266	
  
the variance in true translation rates contributes no more than 19% to the variance in 267	
  
Schwanhausser et al.’s inferred translation rates, with the remaining 81% of the variance being 268	
  
due to experimental error (Table 1; 0.19 = (0.34x0.30)/(0.97x0.55)). The close agreement of 269	
  
this estimate with the actual correlation between measured and inferred translation rates 270	
  
(R2<=0.19 vs R2= 0.13) suggests that the poor correlation is almost entirely due to error in 271	
  
Schwanhausser et al.’s inferred rates. In addition, this result provides further evidence that our 272	
  
two strategies broadly agree, with the measured protein error strategy potentially 273	
  
underestimating the degree of error in Schwanhausser et al.’s data.  274	
  

Ribosome profiling has also shown that translation rates change only several fold upon cellular 275	
  
differentiation and, with the exception of the translation machinery, the change affects all 276	
  
expressed genes to a similar degree (Ingolia et al. 2011). Other system wide studies, including 277	
  
a separate analysis by Schwanhausser et al., also suggest that the differential regulation of 278	
  
translation may be limited to modest changes at a subset of genes (Baek et al. 2008; Hsieh et 279	
  
al. 2012; Kristensen et al. 2013; Schwanhausser et al. 2011; Selbach et al. 2008). This work 280	
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seems consistent with our analysis and suggests that translation may be used chiefly to fine 281	
  
tune protein expression levels. 282	
  

Estimating the number of non-transcribed genes 283	
  
Both Schwanhausser et al.’s and all of our analyses presented above consider only those 284	
  
genes whose protein and mRNA expression was detected. There are many thousands of other 285	
  
genes, however, which express no mRNA and as a result cannot be translated. To estimate the 286	
  
proportion of such genes in a typical cell, we made use of a detailed analysis by Hebenstreit et 287	
  
al, who showed that there is a trimodal distribution of mRNA expression when the data is 288	
  
derived as an average for a population of cells of a single cell type (Hebenstreit et al. 2012; 289	
  
Hebenstreit et al. 2011) (Fig. S1). The first mode contains Highly Expressed (HE) genes, 290	
  
present at one or more molecules per cell; the second mode is comprised of Low Expressed 291	
  
(LE) genes, which are not expressed in most cells but—as shown by single molecule 292	
  
fluorescent in situ hybridization—are present at one to several molecules per cell in a small 293	
  
percent of cells; and the third mode contains genes that are not detectably expressed (NE 294	
  
genes) and thus, given the assays sensitivity, are present at less than one mRNA molecule per 295	
  
100 cells. LE genes tend to be closer to HE genes on the chromosome than are NE genes, and 296	
  
it has been suggested that this proximity may allow escape from repressive chromatin 297	
  
structures in a few cells, explaining the stochastic bursts of rare transcription observed 298	
  
(Hebenstreit et al. 2012; Hebenstreit et al. 2011). 299	
  

To account for variation in the expression of individual genes between cells, which all LE genes 300	
  
at a minimum must suffer, we assume that the general distribution of mRNA expression levels 301	
  
does not vary from cell to cell even when the expression of individual genes does. The mRNA 302	
  
expression of each LE gene was divided into a component representing expression of one 303	
  
mRNA molecule in some cells and a second component representing the remaining cells that 304	
  
express no mRNA (Materials and Methods). This yields 8,763 NE and LE gene equivalents that 305	
  
are not expressed and 12,546 LE and HE gene equivalents that are expressed. For the 8,763 306	
  
non-expressed gene equivalents, the complete absence of their mRNAs from the cell means 307	
  
that they are not being translated in these cells. Therefore, there can be no variation in the 308	
  
rates at which they are translated. Instead, we assume that the absence of transcription is 309	
  
overwhelmingly the reason why these genes express no protein. 310	
  
 311	
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Implication for other system wide studies 312	
  
Two other system wide estimates of protein abundance in mammalian cells are, like 313	
  
Schwanhausser et al.’s, lower than ours. These two reports suggest that the median 314	
  
abundance protein detected is present at 8,000 (Vogel et al. 2010) or 9,700 (Beck et al. 2011) 315	
  
molecules per cell vs our estimate of 170,000 molecules per cell. Since these lower estimates 316	
  
provide less than 1/10th of the number of histones needed to cover the diploid genome with 317	
  
nucleosomes and are lower than published estimates for a wide array of other housekeeping 318	
  
proteins, it is unlikely that they are accurate. 319	
  

Another study by Wisniewski et al. provided protein abundance estimates for HeLa cells that 320	
  
are generally higher than ours and spread over a broader range (Wisniewski et al. 2012) (Fig. 321	
  
7a). These estimates are 240% higher on average than the set of individual protein 322	
  
measurements from the literature (Dataset S3, Fig. 7b). Since over 80% of these individual 323	
  
measurements were made for proteins in HeLa cells, Wisniewski et al.’s estimates must be 324	
  
incorrectly scaled. Using our two part linear regression strategy, we therefore corrected 325	
  
Wisniewski et al.’s whole proteome data (Materials and Methods, Fig. S2; Dataset S3), bringing 326	
  
the average variation between the whole proteome estimates and individual protein 327	
  
measurements to within 6% of each other (Fig. 7b; Dataset S3). Interestingly, the correction 328	
  
dramatically increases the similarity between the distributions of protein abundances in HeLa 329	
  
and NIH3T3 cells for all orthologous proteins (Fig. 7a). This establishes the important point, 330	
  
mentioned at the beginning of the Results, that in aggregate the 60+ housekeeping proteins 331	
  
show a similar relationship to the expression values of all other cellular proteins in both cell 332	
  
lines, and thus the discrepancies with the uncorrected whole proteome data are not due to 333	
  
differences in expression levels in HeLa versus NIH3T3 cells. The correction also increases the 334	
  
correlation between HeLa cell protein and HeLa mRNA abundances to a statistically significant 335	
  
extent (p-value, 6 x 10-20) and reduces the 50% and 95% confidence bounds for this 336	
  
relationship by 1.7 fold and 4.6 fold respectively. Wisniewski et al. scaled their protein 337	
  
abundances using the total cellular protein content and the sum of the mass spectrometry 338	
  
signals for all detected polypeptides. They assumed that mass spectrometry signals are 339	
  
proportional to protein abundance. In contrast, our scaling strategy makes no such assumption 340	
  
and instead uses many individual measurements of housekeeping proteins to estimate a 341	
  
multipart (spline) function. The increased correlations obtained with individual protein 342	
  
measurements and with mRNA abundances for two cell lines suggests that our scalings are the 343	
  
more accurate. 344	
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Other estimates for the contribution of mRNA levels in determining protein expression in 345	
  
mammals are lower than ours, suggesting that mRNA levels contribute 10%-40% (Maier et al. 346	
  
2009; Vogel & Marcotte 2012). In comparison, we estimate that mRNA abundance explains 347	
  
56% - 81% for a set of 4,212 detected proteins. We also have suggested that for the 40% of 348	
  
genes in a given cell that express no mRNA, translation rates likely play no role in determining 349	
  
protein expression levels. The other groups’ neither took systematic experimental errors into 350	
  
account or made use of direct measures of translation rates and generally do not discuss non-351	
  
transcribed genes. For this reason, we suspect their analyses underestimate the contribution of 352	
  
transcription. 353	
  

CONCLUSIONS 354	
  
Quantitative whole proteome analyses can offer profound insights into the control of gene 355	
  
expression and provide baseline parameters for much of systems biology. As these important 356	
  
new technologies continue to be refined, it is critical that the data be correctly scaled, that 357	
  
experimental errors be measured and accounted for as much as possible, that all genes be 358	
  
considered, and that direct measurements of each step in gene expression be made. Additional 359	
  
measurements and controls will be needed to derive a more assured system wide 360	
  
understanding of protein and mRNA abundances and the relative importance of each of the 361	
  
four steps in gene expression. 362	
  
 363	
  
 364	
  
MATERIALS AND METHODS 365	
  
Correcting protein abundance 366	
  
For NIH3T3 cells, all credible individual protein abundance measurements available to us for 367	
  
housekeeping proteins (a total of 61 proteins, Dataset S1) were log10 transformed along with 368	
  
the corresponding estimates from Schwanhausser et al.’s second whole proteome dataset. 369	
  
Model selection of different regressive models by leave-one-out cross-validation was used to fit 370	
  
the training data (Bickel & Doksum 2001). This showed that a plausible two-part linear 371	
  
regression with a change point at 106 molecules per cell (line<1x106…slope=0.56, 372	
  
intercept=2.64; line>1x106…slope=1.06, intercept=-0.41) fit the data far better than by chance 373	
  
(likelihood ratio test bootstrap p-value=0.002 (Bickel & Doksum 2001); Fig. 3b and c). The 374	
  
resulting two-part linear model was used to correct all 5,028 protein abundance estimates (Fig. 375	
  
2b, Dataset S1). 376	
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The null hypothesis that the correlation coefficient of the uncorrected Schwanhausser et al. 377	
  
protein abundance estimates vs mRNA estimates (R1=0.626) is equal to that of our corrected 378	
  
protein estimates vs mRNA estimates (R2=0.642) was tested. The method for comparing 379	
  
dependent correlation coefficients (Olkin & Finn 1990) was employed because both 380	
  
correlations involve the same mRNA-seq data and it is reasonable to assume that the 381	
  
uncorrected and corrected protein abundance estimates and the mRNA estimates have a 382	
  
multivariate Gaussian distribution. The resulting two-sided p-value < 10-29 shows that R2 is 383	
  
significantly larger than R1. 384	
  

To correct protein abundance estimates for HeLa cells (Wisniewski et al. 2012), the same 385	
  
strategy used for NIH3T3 cells was used. A two-part linear regression with a change point at 386	
  
106.8 molecules per cell fit the data far better than by accident (likelihood ratio test bootstrap p-387	
  
value=0.001) (Fig. S2). The resulting two-part linear model was used to correct all HeLa cell 388	
  
protein abundance estimates (Fig. 7; Dataset S3). The correlation of HeLa cell protein 389	
  
abundance estimates with mRNA abundances was determined using the mean values of 390	
  
replica HeLa cell RNA-Seq datasets from the ENCODE consortium (Consortium 2011) (GEO 391	
  
Accession ID "GSM765402"). The hypothesis that our corrected protein abundances correlate 392	
  
more highly with these HeLa mRNA abundances than the uncorrected estimates was tested as 393	
  
above, resulting in a two sided p-value of 6 x 10-20. 394	
  

The contribution of mRNA to protein levels: measured protein error strategy 395	
  
The variance term in a linear model between measured protein abundance (MP) (response) 396	
  
and measured mRNA levels (MR) (predictor) is decomposed in a standard way (ANOVA 397	
  
(Bickel & Doksum 2001)) into three components (Fig. 8). These components of the variance in 398	
  
the residuals represent mRNA measurement error (

! 

eR ), protein measurement error (

! 

eP ), and 399	
  

the variance in a linear model between true protein abundance (TP) and true mRNA levels (TR) 400	
  
that results from the centered genuine differences in the rates of protein degradation and 401	
  
translation (PDT). The measured protein abundances considered in this case are our rescaled 402	
  
estimates.  403	
  

Statistically, we can write three linear models from Figure 8. 404	
  

    (1) 405	
  

    (2) 406	
  

    (3) 407	
   ! 

TR = bRMR + cR + eR

! 

TP = bTR + c + PDT

! 

MP = TP + cP + eP
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where TR, MR, TP, MP are abundance values on a log10 scale; the three sources of variation (408	
  

! 

eR ,

! 

eP  and PDT) are assumed to be independent random variables with mean 0; the amount of 409	
  

protein degradation and translation (PDT) is taken to be independent of true mRNA levels (TR) 410	
  
on the basis of partial evidence: the variance in the residuals in Figure 4b is similar for different 411	
  
mRNA abundances; the reversal of the causal relationship between TR and MR in model (1) 412	
  
assumes that TR and MR have an approximately joint Gaussian distribution; the slope of TP in 413	
  
model (3) is assumed to be 1 because the ratios between the 61 protein published abundance 414	
  
measurements and our corrected estimates are close to 1 (Fig. 2b); and finally we note that 415	
  
implicit in the analysis of variance is the assumption that the various datasets employed can 416	
  
thought of as originating from a relatively homogeneous superpopulation. Combining (1)-(3), 417	
  
we write the linear model between measured protein abundance and measured mRNA levels 418	
  

as        (4) 419	
  

Based on model (4) 420	
  

i. We first estimated 

! 

var(beR + PDT + eP ) as 

! 

"all
2

  and 

! 

bbR   as  

! 

ˆ b all   from fitting the above 421	
  

model with the 8,424 corrected mass spec and RNA-Seq data points pooled from the two 422	
  
replicates (Dataset S1).  By independence, we have  423	
  

 424	
  

ii. We next estimated var(

! 

eR )  as  

! 

ˆ " R
2   and 

! 

bR  as  

! 

ˆ b R  from fitting model (1) with the 77 425	
  

NanoString (“TR”) vs RNA-Seq (“MR”) data points, after removing two outliers (Dataset S2). 426	
  

iii. We could not estimate var(

! 

eP ) from directly fitting model (3), as TP data is not available.  As 427	
  

a surrogate, we estimated var(

! 

eP ) as 

! 

ˆ " P
2  from the following linear model that quantifies the 428	
  

stochastic error in mass spec replicate data:  429	
  

   ,
 
j=1,2    (5), 430	
  

where 

! 

MPij  is the corrected mass spec data for the ith protein in the jth replicate in 431	
  

Schwanhausser et al., and 

! 

avgMPi   is the average of our corrected protein data for the ith 432	
  

protein, i = 1, …, 4,212 (Dataset S1). Please note that 

! 

ˆ " P
2  is potentially an underestimate of 433	
  

the protein error as we only consider the stochastic error, not the systematic error. 434	
  

iv. From the estimates 

! 

"all
2

 , 

! 

ˆ b all  , 

! 

ˆ " R
2
 , 

! 

ˆ b R  and 

! 

ˆ " P
2
  above, we estimate var(PDT) as 435	
  

! 

MP = bbRMR + bcR + c + cP + beR + PDT + eP

! 

var(beR + PDT + eP ) = b2 var(eR ) + var(PDT) + var(eP )

! 

MPij = avgMPi + (eP )ij
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  436	
  

Hence, we have successfully decomposed the variance estimate , i.e. the estimated 437	
  

variance of residuals between measured protein levels and measured mRNA levels, into 3 438	
  
components: 439	
  

• 

! 

ˆ " R
2 —RNA error (23.3% of 

! 

"all
2 ) 440	
  

• 

! 

ˆ " P
2 —protein error (7% of 

! 

"all
2 ) 441	
  

• 

! 

ˆ " PDT
2 —protein degradation & translation (69.6% of 

! 

"all
2 ) 442	
  

From the diagram and the above calculation, we also derived the percentage of variability in 443	
  
the unobserved true protein levels explained by the unobserved true mRNA levels. 444	
  

   445	
  

where 

! 

ˆ " MP
2  is the variance of the corrected measured protein levels. 446	
  

We separately estimated the stochastic mRNA error from the replicate RNA-Seq 447	
  
measurements of the 4,212 genes (Dataset S1). The stochastic mRNA error contributes 0.8% 448	
  

of 

! 

"all
2 .  449	
  

 450	
  
The contributions of transcription, translation and protein and mRNA degradation: 451	
  
measured  error strategy 452	
  
To determine the relative contributions of measured RNA degradation (RD) and measured 453	
  
protein degradation (PD) to the variance in true protein expression (TP), we estimated their 454	
  
variances, var(RD) and var(PD). We took Schwanhausser et al.’s calculated percentages for 455	
  
the contribution of RD and PD to explain the variance of their uncorrected mass whole 456	
  
proteome abundances (Schwanhausser et al. 2011) (6.4% for RD and 4.9% PD, Matthias 457	
  
Selbach personal communication). Since the variance of the 8,424 uncorrected mass spec 458	
  
data points from the two replicates is 0.97, we thus calculated var(RD) and var(PD) as 0.062 459	
  
and 0.048 respectively. The relative contributions of var(RD) and var(PD) to var(TP) (estimated 460	
  
as 

! 

ˆ " MP
2 # ˆ " P

2 ) was calculated (Table 1). We also determined the contribution of transcription 461	
  

(var(TXN)) to var(TP) as (var(TR)-var(true RD))/var(TP), where var(TR) was estimated as  462	
  

! 

ˆ " PDT
2 = ˆ " all

2 #
ˆ b all
ˆ b R

$ 

% 
& 

' 

( 
) 

2

ˆ " R
2 # ˆ " P

2

! 

ˆ " all
2

! 

ˆ " MP
2 # ˆ " P

2 # ˆ " PDT
2

ˆ " MP
2 # ˆ " P

2 = 55.9%
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! 

ˆ " MP
2 # ˆ " P

2 # ˆ " PDT
2 , and the contribution of translation as (var(TP)-var(TR)-var(true PD))/var(TP) 463	
  

(Table 1).   464	
  

The contributions of each step of gene expression to protein levels: measured 465	
  
translation strategy 466	
  
We calculated the relative contributions of each of the four steps in gene expression by an 467	
  
independent, second approach that does not rely either on our rescaling of Schwanhausser et 468	
  
al.’s protein abundance estimates or on our estimate of stochastic protein errors. Instead, our 469	
  
second approach infers true protein abundance based on Subtelny et al.’s direct 470	
  
measurements of translation rates in NIH3T3 cells by ribosome profiling (Subtelny et al. 2013) 471	
  
and on our estimate of RNA measurement error. The measured protein abundances 472	
  
considered are thus Schwanhausser et al.’s second estimates, not our rescaling of these 473	
  
estimates. A central assumption is that since the variance in Subtelny et al.’s measured 474	
  
translation rates is 12% of the variance in the rates of translation inferred by Schwanhausser et 475	
  
al., then the contribution of translation to the variance in true protein levels is 12% of the value 476	
  
provided by Schwanhausser et al. 477	
  

The variance term in a linear model between measured protein abundance (MP) and measured 478	
  
mRNA levels (MR) was decomposed as before (Fig. 8) except that the variance in the linear 479	
  
model between true protein abundance (TP) and true mRNA levels (TR) that results from the 480	
  
variance in the rates of protein degradation (PD) and protein translation (PT) were considered 481	
  
separately as cPD and dPT respectively. Similar to our measured error strategy, we can write 482	
  
three linear models using the same assumptions. 483	
  

! 

TR = bRMR + cR + eR    (1) 484	
  

! 

TP = bTR + cPD+ dPT + f  (2) 485	
  

! 

MP = TP + cP + eP    (3) 486	
  

Thus, we can write the linear model between measured protein abundance (MP) and measured 487	
  
mRNA levels (MR) for the measured translation strategy as 488	
  

! 

MP = bbRMR + bcR + f + cP + beR + cPD+ dPT + ep     (4) 489	
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Based on this revised model (4) 490	
  

i. We first estimated

! 

var(beR + cPD+ cPT + eP )  as 

! 

ˆ " all
2  and 

! 

bbR  as 

! 

ˆ b all  from fitting the above 491	
  

model with the 8,424 mass spec and RNA-Seq data points pooled from the two replicates 492	
  
using Schwanhausser’s second estimates (Dataset S1).  By independence, we thus have 493	
  

! 

var(beR + cPD+ cPT + eP ) =

! 

b2 var(eR ) + var(cPD) + var(dPT) + var(eP ) 494	
  

ii. The values of 

! 

var(eR )  and 

! 

bR  are the same as those derived previously by our measured 495	
  

error strategy. Thus, we can estimate 

! 

ˆ b = ˆ b all
ˆ b R  496	
  

iii. We used the estimate of 

! 

var(cPD) from Schwanhausser et al., i.e., 0.97 x 5% = 0.0475. 497	
  

iv. From Schwanhausser et al.’s results, we have 

! 

var(dPT) = d2 var(PT) estimated as 0.97 x 498	
  
55% = 0.54. From Schwanhausser et al.’s estimates for each of 3,633 genes (Dataset S1, 499	
  
second tab, column AG) 

! 

var(PT) has an estimate of 0.29.  Hence, the estimate of 

! 

d2 is 500	
  
1.86.  From Subtelny et al., we have a separate, directly measured estimate of 

! 

var(PT) as 501	
  
0.03533, which we obtained by slightly increasing the variance of their data for the 3,126 502	
  
genes in the intersected dataset (Fig. 5B; Table S1) by the ratio of the variances for 503	
  
Schwanhusser et al.’s inferred rates for the 3,633 genes and the 3,126 genes (Table S1). 504	
  
Using this value to replace that of Schwanhausser et al., we obtained a new estimate of 505	
  

! 

var(dPT) = d2 var(PT) as 1.86 x 0.03533 = 0.06593132. 506	
  

v. Now we can estimate 

! 

var(eP )  as 

! 

ˆ " P
2 = ˆ " all

2 # ˆ b ˆ " R
2 # ˆ " cPD

2 # ˆ " dPT
2

 were 

! 

ˆ " cPD
2  is an estimate of 507	
  

var(cPD) and 

! 

ˆ " dPT
2

 an estimate of var(dPT).  508	
  

vi.   Given Schwanhausser et al.’s second 8,424 uncorrected mass spec data, we can also 509	
  

estimate var(TP) as 

! 

ˆ " TP
2 = ˆ " MP

2 # ˆ " P
2
 , where 

! 

ˆ " MP
2  is an estimate of var(MP).  510	
  

Given the estimates 

! 

ˆ " cPD
2  and 

! 

ˆ " dPT
2  and Schwanhausser et al.’s estimate of the contribution of 511	
  

the variance in RNA degradation (defined as 

! 

ˆ " gRD
2 ), we can decompose 

! 

ˆ " TP
2  as: 512	
  

• variance explained by PD: 

! 

ˆ " cPD
2 / ˆ " TP

2   513	
  

• variance explained by PT: 

! 

ˆ " dPT
2 / ˆ " TP

2  514	
  

• variance explained by TR: 

! 

1" ˆ # cPD
2

ˆ # TP
2 " ˆ # dPT

2

ˆ # TP
2  515	
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• variance explained by RD: 

! 

ˆ " gRD
2 / ˆ " TP

2  516	
  

• variance explained by TXN: 

! 

1" ˆ # cPD
2

ˆ # TP
2 " ˆ # dPT

2

ˆ # TP
2 "

ˆ # gRD
2

ˆ # TP
2  517	
  

The number of genes not transcribed in a typical cell within a population.  518	
  
To estimate the number of genes not transcribed in a typical cell within a population, we 519	
  
employed a deep RNA-Seq dataset that detected polyA+ mRNA for 15,325 protein coding 520	
  
genes in mouse Th2 cells (Hebenstreit et al. 2011). To place these abundance estimates on 521	
  
the same scale as those of Schwanhausser et al.’s data the 3,841 mRNAs expressed above 1 522	
  
RPKM (reads per kilobase of exon per million mapped reads) in common between the two 523	
  
datasets were identified. The Th2 cell data were then scaled to have the same median and 524	
  
variance for these common genes in numbers of mRNA molecules per cell (Fig. S3). Following 525	
  
Hebenstreit et al., we divided the expressed genes into 11,301 Highly Expressed (HE) genes, 526	
  
present at one or more mRNA molecule per cell, and 4,024 Low Expressed (LE) genes, 527	
  
expressed below one molecule per cell. The remaining 5,984 genes whose expression was not 528	
  
detected were designated Not Expressed (NE) genes. We then divided each LE gene into two: 529	
  
a fraction of a gene expressed at 1 molecule per cell with a weight w and a fraction of a gene 530	
  
that is not expressed in any cells with a weight 1-w. The 4,024 LE genes were thus 531	
  
decomposed into 1,245 gene equivalents expressed at 1 molecules per cell and 2,779 gene 532	
  
equivalents that are not expressed. Combining these with the 11,301 HE genes and 5,984 NE 533	
  
genes, we obtained 12,546 HE and LE expressed gene equivalents and 8,763 NE and LE non-534	
  
expressed gene equivalents. 535	
  
 536	
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Table 1(on next page)

The contribution of different steps in gene expression to the variance in protein 

abundances between genes.

* In this column, the value given for Schwanhausser et al.’s 2nd data is the variance in their 

measured protein abundances; the remaining values are our estimate for the variance in true 

protein levels for different scenarios. 

a Estimates from Schwanhausser et al. based on the 4,212 genes for which NIH3T3 cell 

protein and mRNA abundance data are available. 

b Our estimates for same the 4,212 genes studied by Schwanhausser et al. after correcting 

the overall scaling of the NIH3T3 cell protein abundance data and taking molecule specific 

stochastic and systematic experimental error into account. 

c Our estimates for same the 4,212 genes studied by Schwanhausser et al. derived using 

measured translation rates from Subtelny et al.
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Table 1. The contribution of different steps in gene expression to the variance in protein 
abundances between genes 
 

 

 Percent contribution to variance in protein levels 
 

variance in 
protein 

levels(log10)* 
 

mRNA 
 

Transcription 
RNA 

degradation 
 

Translation 
Protein 

degradation 

Schwanhausser 2nd dataa 0.97 40% 34% 6% 55% 5% 

Measured protein error strategyb 0.34 56% 38% 18% 30% 14% 

Measured translation strategyc 0.61 81% 71% 10% 11% 8% 
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Figure 1

The steps regulating protein expression.

The steady state abundances of proteins and mRNAs are each determined by their relative 

rates of production (i.e. transcription or translation) and their rates of degradation.
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Figure 2

A non-linear bias in protein abundance estimates and its correction.

a, The y axis shows the ratios of 61 individually derived protein abundance estimates divided 

by the abundance estimates from Schwanhausser et al.’s second whole proteome dataset. 

The x axis shows Schwanhausser et al.’s second whole proteome abundance estimates. The 

red line indicates the locally weighted line of best fit (Lowess parameter f=1.0), and the 

vertical dotted grey lines show the locations of the 1st quartile, median and 3rd quartile of the 

abundance distribution of the 5,028 proteins detected in the whole proteome analysis. b, The 

same as panel a. except that the whole proteome estimates of Schwanhausser et al. have 

been corrected using a two-part linear model and the abundances from the 61 individual 

protein measurements, see Fig 4b.
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Figure 3

Calibrating absolute protein abundances.

a, The relationship between iBAC mass spectrometry signal (x axis) and the amounts of the 

20 “spiked in” protein standards (y axis) used by Schwanhausser et al. to calibrate their 

whole proteome abundances (data kindly provided by Matthias Selbach, Dataset S2). The 

line of best fit is shown (red). b, The relationship between individually derived estimates for 

61 housekeeping proteins (y axis) and Schwanhausser et al.’s second whole proteome 

estimates (x axis). The two part line of best fit used to correct the second whole proteome 

estimates is shown (solid red line) as is the single linear regression (dashed red line). c, The 

fit of different regression models for the data in panel b. The y axis shows the leave-one-out 

cross validation root mean square error for each model. The x axis shows the protein 

abundance used to separate the data for two part linear regressions. The red curve shows 

the optimum change point for a two part linear model is at an abundance of ~106 molecules 

per cell. The dashed red horizontal line shows the root mean square error for the single linear 

regression.
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Figure 4

Protein abundance estimates versus mRNA abundances.

a, The relationship between Schwanhausser et al.’s second protein abundance estimates vs 

mRNA levels for 4,212 genes in NIH3T3 cells. The linear regression of the data is shown in 

red, the 50% prediction band by dashed green lines, and the 95% prediction band by dashed 

blue lines. b, The relationship between our corrected estimates of protein abundance vs 

mRNA levels. The linear regression and prediction bands are labeled as in panel a.
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Figure 5

Measured versus inferred translation rates.

a. The relative density of ribosomes per mRNA for each gene directly measured by ribosome 

profiling (Guo et al. 2010; Ingolia et al. 2011; Subtelny et al. 2013) (colored lines) compared 

to the translation rates for each gene inferred by Schwanhausser et al. (Schwanhausser et al. 

2011) (black lines). The distribution of values from the ribosome profiling experiments was 

scaled proportionally to have the same median as that of the Schwanhausser et al. values, 

and the gene frequencies of the each distribution was normalized to have the same total. The 

locations of the 2.5 and 97.5 percentiles of the two distributions for NIH3T3 cells are shown 

as dashed lines. b. As panel a. except that the data for all genes in the Schwanhausser et al. 

dataset are shown in the solid black line and data for the genes in the intersection of the 

Schwanhausser et al. and Subtelny et al.’s datasets are shown in dashed lines. The 

variances and numbers of genes for each dataset are given in Table S1.
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Figure 6

Correlation between measured versus inferred translation rates.

The relationship between the measured rates of translation determined by Subtelny et al. 

using ribosome footprinting vs the inferred rates of translation determined by Schwanhausser 

et al for the same set of 3,126 genes in NIH3T3 cells, see Table S1 for further details. The 

units shown are those provided in the original datasets. The linear regression is shown.
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Figure 7

Comparison of corrected and uncorrected whole proteome abundance estimates.

a. The distributions of protein abundance estimates for 4,680 orthologous proteins in NIH3T3 

cells (black lines) or HeLa cells (red lines). The values from Schwanhausser et al.’s second 

estimates and Wisniewski et al.’s estimates are shown as dashed lines. The values for our 

corrected abundance estimates are shown as solid lines. b. The ratios of HeLa cell whole 

proteome abundance estimates divided by individual measurements from the literature for 66 

proteins. Results for the original data from Wisniewski et al. (dashed line) and after these 

values have been corrected (solid line) are plotted. The green dashed vertical line indicates a 

ratio of 1.
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Figure 8

The relationship between true and measured protein and mRNA levels.
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