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Understanding the distribution of taxa and associated traits across different environments
is one of the central questions in microbial ecology. High-throughput sequencing (HTS)
studies are presently generating huge volumes of data to address this biogeographical
topic. However, these studies are often focused on specific environment types or
processes leading to the production of individual, unconnected datasets. The large
amounts of legacy sequence data with associated metadata that exist can be harnessed to
better place the genetic information found in these surveys into a wider environmental
context. Here we introduce a software program, seqenv, to carry out precisely such a task.
It automatically performs similarity searches of short sequences against the "nt"
nucleotide database provided by NCBI and, out of every hit, extracts - if it is available - the
textual metadata field. After collecting all the isolation sources from all the search results,
we run a text mining algorithm to identify and parse words that are associated with the
Environmental Ontology (EnvO) controlled vocabulary. This, in turn, enables us to
determine both in which environments individual sequences or taxa have previously been
observed and, by weighted summation of those results, to summarize complete samples.
We present two demonstrative applications of seqenv to a survey of ammonia oxidizing
archaea as well as to a plankton paleome dataset from the Black Sea. These demonstrate
the ability of the tool to reveal novel patterns in HTS and its utility in the fields of
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Abstract

Understanding the distribution of taxa and associated traits across different environments is one of the
central questions in microbial ecology. High-throughput sequencing (HTS) studies are presently gen-
erating huge volumes of data to address this biogeographical topic. However, these studies are often
focused on specific environment types or processes leading to the production of individual, unconnected
datasets. The large amounts of legacy sequence data with associated metadata that exist can be harnessed
to better place the genetic information found in these surveys into a wider environmental context. Here
we introduce a software program, S€QenyVv, to carry out precisely such a task. It automatically performs
similarity searches of short sequences against the “nt” nucleotide database provided by NCBI and, out
of every hit, extracts — if it is available — the <isolation source> textual metadata field. After collecting
all the isolation sources from all the search results, we run a text mining algorithm to identify and parse
words that are associated with the Environmental Ontology (EnvO) controlled vocabulary. This, in turn,
enables us to determine both in which environments individual sequences or taxa have previously been
observed and, by weighted summation of those results, to summarize complete samples. We present two
demonstrative applications of SegqenvV to a survey of ammonia oxidizing archaea as well as to a plankton
paleome dataset from the Black Sea. These demonstrate the ability of the tool to reveal novel patterns in
HTS and its utility in the fields of environmental source tracking, paleontology, and studies of microbial

biogeography. @s‘[all, goto: https://github.com/xapple/seqgenv.

Introduction

The annotation of DNA sequences, i.e. attaching meaningful labels to them, is key to the interpretation of
genomics data. In essence, this process gives context to a sequence. For instance, annotation reveals the

taxon from which the sequence was derived [1] and/or gene families potential functions [2]. However,
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one type of annotation for which no automated bioinformatics pipeline currently exists is the annotation
to the environmental source. In other words, determining the types of environment in which a given
sequence has previously been found. We introduce a new program titled “seqenv” which addresses
this gap, automatically labeling sequences to the Environmental Ontology (EnvO) [3]. We apply this
bioinformatics pipeline to two datasets of environmental marker genes derived from terrestrial archaeal
ammonia oxidizers (AOA) [4] and the Black Sea plankton paleome [5]. This method reveals, ho,
unknown patterns in AOA diversity, and adds to our understanding of the geological history of the Black
Sea.

Annotating sequences to environments has become increasingly relevant as a result of the growing
application of environmental genomics to microbiology. In environmental genomics, microbial DNA
is extracted directly from an environment and then sequenced, possibly following PCR amplification
of target marker genes such as the 16S rRNA gene [6]. The result is a catalog of the microorganisms
present in a particular sample. One of the first interrogations concerning such samples is to know what
other environments have these organisms been foundE The answer can reveal ecologically relevant
insight about those organisms and may provide evidence for contamination from other environments.
There exists a wealth of information in available databases (most notably the ones provided by NCBI)
which can be used to gain a detailed overview of the biogeography of a particular sequence varieties.
The strategy adopted in segenv is to take input sequences and match them against the NCBI’s database
using the time-tested BLAST search algorit@ﬂ.

All hits within a level of identity approximating to species are kept and either the text field “iso-
lation source” extracted or the PubMed abstracts associated with the submission obtained. In general,
we have found the isolation source metadata to be the most dependable source of environmental infor-
mation and the results presented here are restricted to that field. A custom named entity recognition
(NER) system based on [8] is then used to label the resulting text with terms from the EnvO ontology
[3]. An ontology is a formal specifications of the terms in a particular knowledge domain and the rela-
tions among them. Ontologies are often represented as an acyclic directed graph. The Environmental

Ontology (http://environmentontology.org/) (or EnvO) provides an ontology for this concise, controlled
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vocabulary for the description of environments. EnvO also has the appeal of having been adopted by the
Genomics Standards Consortium for metadata associated with environmental sequence submission [9].
The terms found associated with each sequence are then collated together to provide its environmental
context.

We can apply this environmental annotation scheme to any type of sequence, protein coding or ri-
bosomal rRNA. The sequences can be derived from a particular taxonomic grouping but they can also
correspond to operational taxonomic units (OTUs) used as proxies for taxa in environmental sequencing
studies [10].

In either case, the nature and diversity of environments associated with a particular microorganism can
elucidate and bring light to its ecology. Additionally, if OTUs are used, SegenV can also incorporate their
abundances across samples. This furnishes a sample-level description of the EnvO terms produced by
simply summing the terms associated with each OTU weighted by their relative abundance in the sample.
'I'Ecientist can then use these tables as a basis for multivariate statistics that contrast communities in
terms of the environmental terms associated with their constituent organisms. This novel approach is a
powerful means for exploring sample level differences in the origin of community constituents.

Recently, a method has been developed for automatically associating geographic longitude and lati-
tude coordinates to Genbank records through rule based text mining of associated PubMed Central articles
[11]. Our approach is distinguished from this in two ways. Firstly, we start from sequences rather than
records, allowing us examine the distribution of environmental contexts within a certain level of sequence
similarity, secondly we associate to EnvO terms rather than geographic coordinates. This makes seqenv
more relevant to exploring the ecology of microbes, determining the distribution of OTUs across envi-
ronment types, as opposed to tracking viral outbreaks which was the focus in [11]. The information that
segenv automatically generates can answer similar questions to those addressed in [12], where they
examined co-occurrence of OTUs across sampling sites, and classified isolation sources to EnvO terms
through text matching. We provide this functionality in a single coherent software pipeline and promote
user-friendliness.

To illustrate the usefulness of our pipeline, we apply it to two different datasets. The first is a previ-
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ously published study of AOA derived from 45 soils [4]. These soils present a range of pHs enabling us
to uncover how the spectrum of environments from which these organisms derive varies with changing
pH. The second dataset is from sediment cores deriving from the Black Sea [5]. Here the 18S rRNA
gene was sequenced by targeted-metagenomics, determining the eukaryotic plankton community struc-
ture over the last twelve thousand years. We can use seqenv to relate the environmental preferences
of these organisms to changes in Black Sea geology, most notably the initial Mediterranean sea influx

(IMI), hence, providing insight into the Black Sea environment prior to the IMI event.

Materials and Methods

The seqenv pipeline proceeds through the following steps, as illustrated diagrammatically in figure
1. The input is a user-supplied F file containing thousands of DNA sequences and, optionally, a
frequency file containing the frequency counts of the sequences across multiple samples. This file takes
the form of a tab delimited text file containing the count matrix. In typical usage, the sequences would
correspond to the consensus sequences of OTUs and the matrix would represent their frequencies across

samples. After the following procedure, multiple outputs are generated:

1. The first step that segenv executes is the parsing of the inpuASTA file. All the sequence
names are removed and replaced by a place-holder title following the sequence “Cl’EIT’, “C3”,

etc. In this fashion, problems caused by odd encodings or ambiguous characters are circumvented.

2. The second step consists of an optional filtering of the sequences to include only the most abun-
dant i.e. highest total frequency across samples. As the computation time scales with the number
of inputs, this filtering can greatly increase performance while leaving results statistically unaf-
fected. The number of selected sequences is a customizable parameter and the default is to use all

sequences. If no frequency matrix is provided this step is skipped.

3. Next, every remaining sequence is compared to a database of the user’s choice. By default, the

“nt” (nucleotide) database provided by NCBI is used and the BLAST algorithm is chosen to carry
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o@e similarity search [7]. This step is the most costly computationally. It can, however, be

automatically paralEed by seqenv on multi-core systems.

. Taking all the results from the sequence similarity search, the best hits are selected by filtering

them according to the e-value of the comparison, the coverage of one sequence against the other,
the identity between one sequence and the other, and a maximum number of targets for each input

sequence. These parameters default to 0.0001, 0.97, 0.97, and 10 respectively.

. For every search hit from every input sequence, the corresponding Genlnfo Identifier (GI) of the

homologous target within the database is recorded. This creates a table that links every input

sequence to zero, one or more GI numbers.

. Then, we collect the “isolation source” text entries associated to all of the GI numbers recorded in

the previous step, provided the GI number was associated with such a field in NCBI’s database,
failing which it is discarded. No internet connection is required as all text entries are stored in an
SQLite3 database and can be accessed locally by segenv. This database links every GI number

to its PubMed identifier along with its isolation source text.

. Using all the isolation source texts collected in the previous step and a text mining module, we

proceed to identify all terms that contain some type of environmental information. Words such
“glacier”, “pelagic” or “forest” are extracted and connected to the controlled EnvO vocabulary.
This consists of a hierarchically organized network of descriptive terms. In particular, the frequency
of occurrence of each word is noted. Concretely, this is done offline by using a named entity

recognition (NER) system [8] and placing results into an SQLE database that is automatically

downloaded on the first run of segenv.

. With all the computed information, we are now able to describe each input sequence by a set of

EnvO terms and their associated frequency forming a term-frequency vector. Across the whole
dataset, this forms a sequence-term matrix. This matrix S has elements s; ;. given the weight of the

kth EnvO term associated with the j# sequence. These weights are calculated according to three
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different normalization strategies. The first is named “flat” and consist of using the raw occurrence
counts. The second is termed “unique isolation” and will count every identical isolation source
only once within the same input sequence, removing duplicated entries. The third is titled “unique
pubmed unique isolation” and will uniquify the frequency counts based on the text entry of the
isolation sources, as well as on the PubMed identifiers from which the Gls are obtained, removing
all but one matching sequence in the event they pertain to the same study. In all cases, the rows
of the matrix are normalized to 1.0, such that s; ;, = s;.’ 6/ D S;J, where we are denoting the raw

counts by 33.7 - The default normalization strategy is “flat”.

If the user supplied a frequency matrix (c.f. second step), we are able to describe every one of
the original biological samples by a set of EnvO terms and frequencies that are simply the sum
of the term vectors over all sequences, weighted by the abundance of that sequence in the sample.
Equivalently, the sample term matrix N elements n; 1, is the matrix product of the frequency matrix

F elements f; ; and the sequence-term matrix, i.e. n}, = j fi,j5j k- Normalizing by the total

!/

frequency in the sample, such that n; ;, = n; w/ > M, we obtain sample term vectors such as,

translated to english: “Sample Z is 25% brackish estuary, 25% river and 50% wetland.”.

Other options are available to the user to further modify and filter the results. The “backtracking”
option, when activated, will propagate frequency counts up the acyclic directed graph described
by the ontology for every EnvO term identified by the text mining module. The “restrict” option,
when specified by passing a given EnvO identifier (e.g. ENV0:00010483), will force the output to
contain only descendants from a single EnvO term. In effect, all other terms that are not reachable

through the given node in the ontology graph are removed.

The first output that is produced is a table serialized in the format of a tab-delimited plain text file
(TSV) representing the composition of each input sequence according to the EnvO terms associ-
ated to them, i.e. the matrix S. The columns represents input sequence and rows represent the

normalized weight of EnvO terms.

If the user provided an frequency matrix (as described in step 2), the program can produce a simi-
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lar TSV table representing the composition of each biological sample according to the EnvO terms
associated to them, i.e. the matrix N. In this case, columns represents samples and rows represent
EnvO terms. Each value corresponds to the normalized weight of the EnvO term in the correspond-

ing sample.

13. For each sample, a visual representation of the hierarchy of the EnvO terms occurring in the isola-
tion source of its imputed close relatives can be made. A PDF file is generated for each sequence
and, if the user provided an abundance table, for each sample. In addition, every PDF has a corre-

sponding DOT file which can be viewed and manipulated with the Graphviz software.

14. Other intermediary outputs are available as well, such as the output of the similarity search and a

precise list of every EnvO term found in each input sequence.

The seqenv package is written in python. The code follows a clean architecture, is commented
and object-oriented. It is free and open-source carrying an MIT license. It is available on github here:

https://github.com/xapple/seqenv. It can be installed on any computer with python by

simply typing: “pip 1n l'L segenv” in your shell.

Results

Earlier versions of the SeqenvV pipeline have already been used in a number of published studies includ-
ing an analysis of the degree of recruitment of marine bacteria from freshwater sources and the air [13], as
well as a survey of bacterial diversity along a 2’600 km river continuum [14], and a study of hydrogenase
genes in lake sediments [15].

Here, to further illustrate its utility, we will apply it to two published datasets and demonstrate that
it provides additional insights into the processes that structure microbial communities not evident in the

original analyses. These two examples comprise:

1. A survey of archaeal amoA gene data from 45 British soils, originating from a broad range of pH

(min. 3.5, max. 8.7, median 6.2) [4]. The sequences were generated by bidirectional 454 pyrose-
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quencing of part of the amoA gene, reads were denoised with AmpliconNoise [16], overlapped and
further error checked by removing those with stop codons when translated into amino acids. For
this part of the analysis, we generated operational taxonomic units (OTUs) at 5% sequence diver-
gence using average linkage hierarchical clustering. This will be higher resolution than species
E [? ], corresponding to ecotypes with well defined environmental preferences. This procedure re-
sulted in just 67 OTU sequences. All sequences were from archaecal ammonia oxidizers (AOAs)

as described in [4].

2. The Black Sea PEme. This study included 454 pyrosequencing of 18S rRNA gene amplicons
from 48 deep sediment samples collected from the Black Sea enabling the reconstruction of mi-
crobial eukaryote populations up to 11°400 years in the past. The V1-V3 region was sequenced as
described in [5]. Reads were denoised with AmpliconNoise and OTUs constructed at 3% sequence
divergence using average linkage hierarchical clustering as species proxies [16]. A total of 17748

OTUs were obtained.

Patterns of ammonia oxidizing archaea (AOA) habitat usage

In total 67 OTUs were observed across the 45 samples. These OTUs have been previously demonstrated
as having well defined pH preferences [4]. For each OTU, we calculated the mean of its pH range as the

weighted averaged of the samples it was observed in, i.e.:

N
Y, = § xn,sYna
n=1

where Y, is the mean pH range for OTU s and Zn,s 1s the relative abundance of s in sample n,
which has pH Y,,. We ran seqenv on the 95% OTU centroid nucleotide sequences considering up
to 100 matches with 95% overlap and 95% identity to the query. Once again, this procedure should
return all sequences within approximate species boundaries. The default “flat” normalization was used.
We restricted the analysis to all EnvO terms that inherit from the term “environmental material” which

is identified by the number ENVO:00010483. Thereby, the redundancy across different terms in our
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analysis was reduced. In figure 2, we show the EnvO terms associated with two OTUs deriving from
the extremes of the observed pH ranges (C46 - 3.5) and (C66 - 8.5). These OTUs had two and fifteen
EnvO terms associated with them in total respectively. In all, we obtained EnvO terms for 66 OTUs. The
67th OTU did not match to any sequences carrying environmental information in the database. In the top
panel of figure 3, the total number of terms found for each OTU as a function of its preferred pH range is
plotted. A significant positive correlation between the diversity of habitats and the pH of the samples the
organism was found (adjusted R-squared: 0.274, p-value: 3.85¢-06). Another weaker but still significant
positive association is observed between sample pH and total OTU diversity (adjusted R-squared: 0.131,
p-value: 0.00922).

To determine which EnvO terms were most associated with the pH preference of the AOA OTUs,
we performed a Random Forest regressioE ] of pH preference against the weighted EnvO terms.
Random Forest uses an ensemble of decision trees constructed from artificial data sets generated by
bootstrap aggregation or <bagging>, i.e. sampling with replacement across samples. This is combined
with random selection of features. Since not all samples are used in each data set, a robust estimate of
model accuracy is possible using the left out samples. Additionally, estimates of variable importance
can be obtained by comparing accuracy of prediction with and without randomly permuting the variable
of interest. This is measured by the statistic: percentage mean decrease of accuracy (%oIncM SE). We
fitted a Random Forest using the randomForest R pack? 1[? 1. The model explained 34.55% of
the variation in pH preference. In figure 4, we visualize the weights of the top ten most important terms

as determined by %IncM SE across OTUs ordered by their pH preference.

Environmental stages of the Black Sea paleome

The 48 sediment samples form a series from a Black Sea core spanning the last 11°400 years. In Coolen
et al. [5], they defined four “Environmental Stages” (ES) in the geological evolution of the Black Sea

that apply to this depth series on the basis of fossil evidence and isotope ratios:

* ES4: Lacustrine interval (—9.0 thousand years (ky) before present B.P.). During this lacus-

trine phase the Black Sea was disconnected from the Mediterranean Sea due to low sea levels. This
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phase ends with the initial marine inflow (IMI) as rising sea levels, due to the end of the ice age

11’700 years ago, resulted in the connection of the Black Sea to the Mediterranean.

» ES3: A period of increasing salinity (~9.0-5.2 ky B.P.) corresponding to the warm and moist mid-

Holocene climatic optimum.

» ES2: Establishment of modern environmental conditions (~5.2-2.5 ky B.P.) and further increasing

salinity associated with the onset of the dry Subboreal.

» ES1: Freshening (~2.5 ky B.P.-present) with onset of the cool and wet Subatlantic climate and

recent anthropogenic perturbations.

In figure 5 we visualise the community structures of these samples, in terms of the 18S rRNA OTU
proportions using a 2D non-metric multi-dimensional scaling (NMDS). This is very similar to Figure
2A of Coolen et al. [5], except that the OTUs in our study were constructed differently, but we include
it here for the sake of completeness. The trajectory through time of the samples together with their
Environmental Stages are shown. From this it is clear that there is a coherent change in structure during
the geological history of the Black Sea and that the samples cluster according to ES.

We next ran seqenv on the 1’748 18S rRNA OTU centroid sequences taking into account up to 100
matches with 97% overlap and 97% identity to the query. As above, we restricted the analysis to those
terms that inherit from the term ENVO:00010483 “environmental material” and used the “flat” normal-
ization option. The normalized term vectors for each OTU were then combined with the relative OTU
frequencies across the 48 sediment samples to obtain the weighted frequency of terms across samples,
as described above. In total we observed 99 separate EnvO terms across the 48 samples. As above, we
used a random forest classifier to predict these environmental stages from the EnvO terms associated with
each sample. This classifier had an error rate of 12.5%. In figure 6 we show the relative frequency of
the ten most important terms in this classifier across the samples, ordered by age and with the ES groups

indicated.
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Discussion

The two analyses presented above demonstrate the value of using segenv to associate EnvO terms with
both individual OTUs and whole samples. In the analysis of AOA OTUs, we demonstrated a significant
association between the pH that an OTU is adapted to and the diversity of environments that it is found.
These results indicate that, as their optimum pH increases, the AOA OTUs are present across a greater
diversity of habitats. As in the original study, a statistically significant relationship between sample OTU
richness and pH was evidenced. That is, as the pH of a sample increases, more species are observed.
We propose that these two observations may be connected: the fact that more environments appear ac-
cessible to the OTUs as the pH increases may generate the diversification of species that is reflected in
the increasing sample richness with pH. At higher pHs, we might expect both of these relationships to be
reversed due to increased competition with bacterial ammonia oxidizers.

In the geological history of the Black Sea, one of the key questions is the nature of that environment
prior to the initial Mediterranean sea influx (IMI). For example, was it a Brackish environment, or was it
akin to a freshwater lake landscape? In our Black Sea dataset analysis, we can note a discrete change in
the EnvO terms associated with the samples at this event when we transition from ES4 to ES3. Prior to
this point, terms such as “freshwater lake” and “river” are frequent, afterwards the samples are dominated
by organisms associated with “sea water”, “ocean water” and “estuary”. The microbial community prior
to the IMI comprised organisms associated with freshwater habitats, important evidence that the IMI was

associated with a substantial increase in salinity.

Conclusion

The two studies described in this paper are not intended to be exhaustive, but present convincing vignettes
of the usefulness of seqgenv. We believe the methods presented here will prove to be an effective and
extremely valuable tool to the community for distilling, analyzing and adding context to DNA sequence
data. Hopefully, in the future, seqenv will contribute crucial insights and advances to the field of

environmental metagenomics.
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Figure 1: Schematic of the internal functioning of the seqenv pipeline.

Continued on next page.
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392 as the schematic focuses on representing the internal functioning of the pipeline and does not illustrate

a concrete case. As each inputed short DNA sequence is processed independently in the all but the last

394 stages of seqenv, only one input sequence is shown here.
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Figure 2: The EnvO terms associated with two AOA OTUs.

For each original inputted sequence, Seqenv outputs a network representing the EnvO terms iden-
396 tified. Two examples of such hierarchical ontologies are shown. The two OTUs chosen had a mean pH

of 3.5 and 8.5. The intensity of the node’s background color reflects the frequency of that term within
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398 hits. Gray indicates the lowest frequency recorded and darker shades of yellow to orange indicate higher

frequencies.
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Figure 3: EnvO terms and OTU richness against mean OTU pH.

The top panel shows the total number of EnvO terms against OTU pH. The dashed red line indicates

a linear regression of number of EnvO terms with OTU pH (adjusted R-squared: 0.2742, p-value: 3.85e-

402 06). The bottom panel shows the community OTU diversity against sample pH for the AOA dataset. OTU

richness was calculated after rarefying to 1’000 reads. Linear regression of sample diversity against pH
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404 (adjusted R-squared: 0.1305, p-value: 0.009217).
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Random forests were used to perform a regression of pH against EnvO terms (Var. explained: 34.6%).
406 The abundance of the top ten most important terms, as determined by percentage mean decrease of accu-

racy (Y%oIncM SFE) are shown across OTUs ordered by their pH preference.
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Figure 4: Heatmap of top ten EnvO terms for determining OTU pH.
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Figure 5: NMDS plot of Black Sea plankton 18S rRNA samples.
408 Non-metric multidimensional scaling (NMDS) of OTU relative abundances with Bray-Curtis dis-

tances were used to ordinate the 18S rRNA Black Sea plankton samples in two dimensions. The age
410 of key samples are indicated together with the Environmental Stage: ES4 (magenta), ES3 (blue), ES2

(green) and ES1 (red). Arrows indicate the temporal succession of samples, and dotted arrows represent
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412 the transition between environmental stages.
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Random forests were used to perform a classification of the Black Sea Environmental Stage (ES)
414 against EnvO terms (Error rate: 12.5%). The abundance of the top ten most important terms, as deter-
mined by the percentage mean decrease of error rate (%IncM S E) are shown. Samples are labelled with

416 ES and order by time before present, and salinity is given for the central part of the sediment core.
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Figure 6: Heatmap of top ten EnvO terms for determining ES.



