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Understanding the distribution of taxa and associated traits across different environments
is one of the central questions in microbial ecology. High-throughput sequencing (HTS)
studies are presently generating huge volumes of data to address this biogeographical
topic. However, these studies are often focused on specific environment types or
processes leading to the production of individual, unconnected datasets. The large
amounts of legacy sequence data with associated metadata that exist can be harnessed to
better place the genetic information found in these surveys into a wider environmental
context. Here we introduce a software program, seqenv, to carry out precisely such a task.
It automatically performs similarity searches of short sequences against the "nt"
nucleotide database provided by NCBI and, out of every hit, extracts – if it is available – the
textual metadata field. After collecting all the isolation sources from all the search results,
we run a text mining algorithm to identify and parse words that are associated with the
Environmental Ontology (EnvO) controlled vocabulary. This, in turn, enables us to
determine both in which environments individual sequences or taxa have previously been
observed and, by weighted summation of those results, to summarize complete samples.
We present two demonstrative applications of seqenv to a survey of ammonia oxidizing
archaea as well as to a plankton paleome dataset from the Black Sea. These demonstrate
the ability of the tool to reveal novel patterns in HTS and its utility in the fields of
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Abstract

Understanding the distribution of taxa and associated traits across different environments is one of the30

central questions in microbial ecology. High-throughput sequencing (HTS) studies are presently gen-

erating huge volumes of data to address this biogeographical topic. However, these studies are often32

focused on specific environment types or processes leading to the production of individual, unconnected

datasets. The large amounts of legacy sequence data with associated metadata that exist can be harnessed34

to better place the genetic information found in these surveys into a wider environmental context. Here

we introduce a software program, seqenv, to carry out precisely such a task. It automatically performs36

similarity searches of short sequences against the “nt” nucleotide database provided by NCBI and, out

of every hit, extracts – if it is available – the <isolation source> textual metadata field. After collecting38

all the isolation sources from all the search results, we run a text mining algorithm to identify and parse

words that are associated with the Environmental Ontology (EnvO) controlled vocabulary. This, in turn,40

enables us to determine both in which environments individual sequences or taxa have previously been

observed and, by weighted summation of those results, to summarize complete samples. We present two42

demonstrative applications of seqenv to a survey of ammonia oxidizing archaea as well as to a plankton

paleome dataset from the Black Sea. These demonstrate the ability of the tool to reveal novel patterns in44

HTS and its utility in the fields of environmental source tracking, paleontology, and studies of microbial

biogeography. To install, go to: https://github.com/xapple/seqenv.46

Introduction

The annotation of DNA sequences, i.e. attaching meaningful labels to them, is key to the interpretation of48

genomics data. In essence, this process gives context to a sequence. For instance, annotation reveals the

taxon from which the sequence was derived [1] and/or gene families potential functions [2]. However,50
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one type of annotation for which no automated bioinformatics pipeline currently exists is the annotation

to the environmental source. In other words, determining the types of environment in which a given52

sequence has previously been found. We introduce a new program titled “seqenv” which addresses

this gap, automatically labeling sequences to the Environmental Ontology (EnvO) [3]. We apply this54

bioinformatics pipeline to two datasets of environmental marker genes derived from terrestrial archaeal

ammonia oxidizers (AOA) [4] and the Black Sea plankton paleome [5]. This method reveals, hitherto,56

unknown patterns in AOA diversity, and adds to our understanding of the geological history of the Black

Sea.58

Annotating sequences to environments has become increasingly relevant as a result of the growing

application of environmental genomics to microbiology. In environmental genomics, microbial DNA60

is extracted directly from an environment and then sequenced, possibly following PCR amplification

of target marker genes such as the 16S rRNA gene [6]. The result is a catalog of the microorganisms62

present in a particular sample. One of the first interrogations concerning such samples is to know what

other environments have these organisms been found in. The answer can reveal ecologically relevant64

insight about those organisms and may provide evidence for contamination from other environments.

There exists a wealth of information in available databases (most notably the ones provided by NCBI)66

which can be used to gain a detailed overview of the biogeography of a particular sequence varieties.

The strategy adopted in seqenv is to take input sequences and match them against the NCBI’s database68

using the time-tested BLAST search algorithm [7].

All hits within a level of identity approximating to species are kept and either the text field “iso-70

lation source” extracted or the PubMed abstracts associated with the submission obtained. In general,

we have found the isolation source metadata to be the most dependable source of environmental infor-72

mation and the results presented here are restricted to that field. A custom named entity recognition

(NER) system based on [8] is then used to label the resulting text with terms from the EnvO ontology74

[3]. An ontology is a formal specifications of the terms in a particular knowledge domain and the rela-

tions among them. Ontologies are often represented as an acyclic directed graph. The Environmental76

Ontology (http://environmentontology.org/) (or EnvO) provides an ontology for this concise, controlled
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vocabulary for the description of environments. EnvO also has the appeal of having been adopted by the78

Genomics Standards Consortium for metadata associated with environmental sequence submission [9].

The terms found associated with each sequence are then collated together to provide its environmental80

context.

We can apply this environmental annotation scheme to any type of sequence, protein coding or ri-82

bosomal rRNA. The sequences can be derived from a particular taxonomic grouping but they can also

correspond to operational taxonomic units (OTUs) used as proxies for taxa in environmental sequencing84

studies [10].

In either case, the nature and diversity of environments associatedwith a particularmicroorganism can86

elucidate and bring light to its ecology. Additionally, if OTUs are used, seqenv can also incorporate their

abundances across samples. This furnishes a sample-level description of the EnvO terms produced by88

simply summing the terms associated with each OTUweighted by their relative abundance in the sample.

The scientist can then use these tables as a basis for multivariate statistics that contrast communities in90

terms of the environmental terms associated with their constituent organisms. This novel approach is a

powerful means for exploring sample level differences in the origin of community constituents.92

Recently, a method has been developed for automatically associating geographic longitude and lati-

tude coordinates to Genbank records through rule based text mining of associated PubMedCentral articles94

[11]. Our approach is distinguished from this in two ways. Firstly, we start from sequences rather than

records, allowing us examine the distribution of environmental contexts within a certain level of sequence96

similarity, secondly we associate to EnvO terms rather than geographic coordinates. This makes seqenv

more relevant to exploring the ecology of microbes, determining the distribution of OTUs across envi-98

ronment types, as opposed to tracking viral outbreaks which was the focus in [11]. The information that

seqenv automatically generates can answer similar questions to those addressed in [12], where they100

examined co-occurrence of OTUs across sampling sites, and classified isolation sources to EnvO terms

through text matching. We provide this functionality in a single coherent software pipeline and promote102

user-friendliness.

To illustrate the usefulness of our pipeline, we apply it to two different datasets. The first is a previ-104
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ously published study of AOA derived from 45 soils [4]. These soils present a range of pHs enabling us

to uncover how the spectrum of environments from which these organisms derive varies with changing106

pH. The second dataset is from sediment cores deriving from the Black Sea [5]. Here the 18S rRNA

gene was sequenced by targeted-metagenomics, determining the eukaryotic plankton community struc-108

ture over the last twelve thousand years. We can use seqenv to relate the environmental preferences

of these organisms to changes in Black Sea geology, most notably the initial Mediterranean sea influx110

(IMI), hence, providing insight into the Black Sea environment prior to the IMI event.

Materials and Methods112

The seqenv pipeline proceeds through the following steps, as illustrated diagrammatically in figure

1. The input is a user-supplied FASTA file containing thousands of DNA sequences and, optionally, a114

frequency file containing the frequency counts of the sequences across multiple samples. This file takes

the form of a tab delimited text file containing the count matrix. In typical usage, the sequences would116

correspond to the consensus sequences of OTUs and the matrix would represent their frequencies across

samples. After the following procedure, multiple outputs are generated:118

1. The first step that seqenv executes is the parsing of the inputted FASTA file. All the sequence

names are removed and replaced by a place-holder title following the sequence “C1”, “C2”, “C3”,120

etc. In this fashion, problems caused by odd encodings or ambiguous characters are circumvented.

2. The second step consists of an optional filtering of the sequences to include only the most abun-122

dant i.e. highest total frequency across samples. As the computation time scales with the number

of inputs, this filtering can greatly increase performance while leaving results statistically unaf-124

fected. The number of selected sequences is a customizable parameter and the default is to use all

sequences. If no frequency matrix is provided this step is skipped.126

3. Next, every remaining sequence is compared to a database of the user’s choice. By default, the

“nt” (nucleotide) database provided by NCBI is used and the BLAST algorithm is chosen to carry128
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out the similarity search [7]. This step is the most costly computationally. It can, however, be

automatically parallelized by seqenv on multi-core systems.130

4. Taking all the results from the sequence similarity search, the best hits are selected by filtering

them according to the e-value of the comparison, the coverage of one sequence against the other,132

the identity between one sequence and the other, and a maximum number of targets for each input

sequence. These parameters default to 0.0001, 0.97, 0.97, and 10 respectively.134

5. For every search hit from every input sequence, the corresponding GenInfo Identifier (GI) of the

homologous target within the database is recorded. This creates a table that links every input136

sequence to zero, one or more GI numbers.

6. Then, we collect the “isolation source” text entries associated to all of the GI numbers recorded in138

the previous step, provided the GI number was associated with such a field in NCBI’s database,

failing which it is discarded. No internet connection is required as all text entries are stored in an140

SQLite3 database and can be accessed locally by seqenv. This database links every GI number

to its PubMed identifier along with its isolation source text.142

7. Using all the isolation source texts collected in the previous step and a text mining module, we

proceed to identify all terms that contain some type of environmental information. Words such144

“glacier”, “pelagic” or “forest” are extracted and connected to the controlled EnvO vocabulary.

This consists of a hierarchically organized network of descriptive terms. In particular, the frequency146

of occurrence of each word is noted. Concretely, this is done offline by using a named entity

recognition (NER) system [8] and placing results into an SQLite3 database that is automatically148

downloaded on the first run of seqenv.

8. With all the computed information, we are now able to describe each input sequence by a set of150

EnvO terms and their associated frequency forming a term-frequency vector. Across the whole

dataset, this forms a sequence-term matrix. This matrix S has elements sj,k given the weight of the152

kth EnvO term associated with the jth sequence. These weights are calculated according to three
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different normalization strategies. The first is named “flat” and consist of using the raw occurrence154

counts. The second is termed “unique isolation” and will count every identical isolation source

only once within the same input sequence, removing duplicated entries. The third is titled “unique156

pubmed unique isolation” and will uniquify the frequency counts based on the text entry of the

isolation sources, as well as on the PubMed identifiers from which the GIs are obtained, removing158

all but one matching sequence in the event they pertain to the same study. In all cases, the rows

of the matrix are normalized to 1.0, such that sj,k = s′j,k/
∑

l s
′
j,l, where we are denoting the raw160

counts by s′j,k. The default normalization strategy is “flat”.

9. If the user supplied a frequency matrix (c.f. second step), we are able to describe every one of162

the original biological samples by a set of EnvO terms and frequencies that are simply the sum

of the term vectors over all sequences, weighted by the abundance of that sequence in the sample.164

Equivalently, the sample termmatrixN elements ni,k, is the matrix product of the frequency matrix

F elements fi,j and the sequence-term matrix, i.e. n′
i,k =

∑
j fi,jsj,k. Normalizing by the total166

frequency in the sample, such that ni,k = n′
i,k/

∑
l n

′
i,l, we obtain sample term vectors such as,

translated to english: “Sample Z is 25% brackish estuary, 25% river and 50% wetland.”.168

10. Other options are available to the user to further modify and filter the results. The “backtracking”

option, when activated, will propagate frequency counts up the acyclic directed graph described170

by the ontology for every EnvO term identified by the text mining module. The “restrict” option,

when specified by passing a given EnvO identifier (e.g. ENVO:00010483), will force the output to172

contain only descendants from a single EnvO term. In effect, all other terms that are not reachable

through the given node in the ontology graph are removed.174

11. The first output that is produced is a table serialized in the format of a tab-delimited plain text file

(TSV) representing the composition of each input sequence according to the EnvO terms associ-176

ated to them, i.e. the matrix S. The columns represents input sequence and rows represent the

normalized weight of EnvO terms.178

12. If the user provided an frequency matrix (as described in step 2), the program can produce a simi-
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lar TSV table representing the composition of each biological sample according to the EnvO terms180

associated to them, i.e. the matrix N. In this case, columns represents samples and rows represent

EnvO terms. Each value corresponds to the normalized weight of the EnvO term in the correspond-182

ing sample.

13. For each sample, a visual representation of the hierarchy of the EnvO terms occurring in the isola-184

tion source of its imputed close relatives can be made. A PDF file is generated for each sequence

and, if the user provided an abundance table, for each sample. In addition, every PDF has a corre-186

sponding DOT file which can be viewed and manipulated with the Graphviz software.

14. Other intermediary outputs are available as well, such as the output of the similarity search and a188

precise list of every EnvO term found in each input sequence.

The seqenv package is written in python. The code follows a clean architecture, is commented190

and object-oriented. It is free and open-source carrying an MIT license. It is available on github here:

https://github.com/xapple/seqenv. It can be installed on any computer with python by192

simply typing: “pip install seqenv” in your shell.

Results194

Earlier versions of the seqenv pipeline have already been used in a number of published studies includ-

ing an analysis of the degree of recruitment of marine bacteria from freshwater sources and the air [13], as196

well as a survey of bacterial diversity along a 2’600 km river continuum [14], and a study of hydrogenase

genes in lake sediments [15].198

Here, to further illustrate its utility, we will apply it to two published datasets and demonstrate that

it provides additional insights into the processes that structure microbial communities not evident in the200

original analyses. These two examples comprise:

1. A survey of archaeal amoA gene data from 45 British soils, originating from a broad range of pH202

(min. 3.5, max. 8.7, median 6.2) [4]. The sequences were generated by bidirectional 454 pyrose-
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quencing of part of the amoA gene, reads were denoised with AmpliconNoise [16], overlapped and204

further error checked by removing those with stop codons when translated into amino acids. For

this part of the analysis, we generated operational taxonomic units (OTUs) at 5% sequence diver-206

gence using average linkage hierarchical clustering. This will be higher resolution than species

[? ], corresponding to ecotypes with well defined environmental preferences. This procedure re-208

sulted in just 67 OTU sequences. All sequences were from archaeal ammonia oxidizers (AOAs)

as described in [4].210

2. The Black Sea Paleome. This study included 454 pyrosequencing of 18S rRNA gene amplicons

from 48 deep sediment samples collected from the Black Sea enabling the reconstruction of mi-212

crobial eukaryote populations up to 11’400 years in the past. The V1-V3 region was sequenced as

described in [5]. Reads were denoised with AmpliconNoise and OTUs constructed at 3% sequence214

divergence using average linkage hierarchical clustering as species proxies [16]. A total of 1’748

OTUs were obtained.216

Patterns of ammonia oxidizing archaea (AOA) habitat usage

In total 67 OTUs were observed across the 45 samples. These OTUs have been previously demonstrated218

as having well defined pH preferences [4]. For each OTU, we calculated the mean of its pH range as the

weighted averaged of the samples it was observed in, i.e.:220

Ȳs =

N∑
n=1

xn,sYn,

where Ȳs is the mean pH range for OTU s and xn,s is the relative abundance of s in sample n,

which has pH Yn. We ran seqenv on the 95% OTU centroid nucleotide sequences considering up222

to 100 matches with 95% overlap and 95% identity to the query. Once again, this procedure should

return all sequences within approximate species boundaries. The default “flat” normalization was used.224

We restricted the analysis to all EnvO terms that inherit from the term “environmental material” which

is identified by the number ENVO:00010483. Thereby, the redundancy across different terms in our226
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analysis was reduced. In figure 2, we show the EnvO terms associated with two OTUs deriving from

the extremes of the observed pH ranges (C46 - 3.5) and (C66 - 8.5). These OTUs had two and fifteen228

EnvO terms associated with them in total respectively. In all, we obtained EnvO terms for 66 OTUs. The

67th OTU did not match to any sequences carrying environmental information in the database. In the top230

panel of figure 3, the total number of terms found for each OTU as a function of its preferred pH range is

plotted. A significant positive correlation between the diversity of habitats and the pH of the samples the232

organism was found (adjusted R-squared: 0.274, p-value: 3.85e-06). Another weaker but still significant

positive association is observed between sample pH and total OTU diversity (adjusted R-squared: 0.131,234

p-value: 0.00922).

To determine which EnvO terms were most associated with the pH preference of the AOA OTUs,236

we performed a Random Forest regression [? ] of pH preference against the weighted EnvO terms.

Random Forest uses an ensemble of decision trees constructed from artificial data sets generated by238

bootstrap aggregation or <bagging>, i.e. sampling with replacement across samples. This is combined

with random selection of features. Since not all samples are used in each data set, a robust estimate of240

model accuracy is possible using the left out samples. Additionally, estimates of variable importance

can be obtained by comparing accuracy of prediction with and without randomly permuting the variable242

of interest. This is measured by the statistic: percentage mean decrease of accuracy (%IncMSE). We

fitted a Random Forest using the randomForest R package [? ] [? ]. The model explained 34.55% of244

the variation in pH preference. In figure 4, we visualize the weights of the top ten most important terms

as determined by %IncMSE across OTUs ordered by their pH preference.246

Environmental stages of the Black Sea paleome

The 48 sediment samples form a series from a Black Sea core spanning the last 11’400 years. In Coolen248

et al. [5], they defined four “Environmental Stages” (ES) in the geological evolution of the Black Sea

that apply to this depth series on the basis of fossil evidence and isotope ratios:250

• ES4: Lacustrine interval (∼11.4–9.0 thousand years (ky) before present B.P.). During this lacus-

trine phase the Black Sea was disconnected from the Mediterranean Sea due to low sea levels. This252
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phase ends with the initial marine inflow (IMI) as rising sea levels, due to the end of the ice age

11’700 years ago, resulted in the connection of the Black Sea to the Mediterranean.254

• ES3: A period of increasing salinity (∼9.0-5.2 ky B.P.) corresponding to the warm and moist mid-

Holocene climatic optimum.256

• ES2: Establishment of modern environmental conditions (∼5.2-2.5 ky B.P.) and further increasing

salinity associated with the onset of the dry Subboreal.258

• ES1: Freshening (∼2.5 ky B.P.-present) with onset of the cool and wet Subatlantic climate and

recent anthropogenic perturbations.260

In figure 5 we visualise the community structures of these samples, in terms of the 18S rRNA OTU

proportions using a 2D non-metric multi-dimensional scaling (NMDS). This is very similar to Figure262

2A of Coolen et al. [5], except that the OTUs in our study were constructed differently, but we include

it here for the sake of completeness. The trajectory through time of the samples together with their264

Environmental Stages are shown. From this it is clear that there is a coherent change in structure during

the geological history of the Black Sea and that the samples cluster according to ES.266

We next ran seqenv on the 1’748 18S rRNA OTU centroid sequences taking into account up to 100

matches with 97% overlap and 97% identity to the query. As above, we restricted the analysis to those268

terms that inherit from the term ENVO:00010483 “environmental material” and used the “flat” normal-

ization option. The normalized term vectors for each OTU were then combined with the relative OTU270

frequencies across the 48 sediment samples to obtain the weighted frequency of terms across samples,

as described above. In total we observed 99 separate EnvO terms across the 48 samples. As above, we272

used a random forest classifier to predict these environmental stages from the EnvO terms associated with

each sample. This classifier had an error rate of 12.5%. In figure 6 we show the relative frequency of274

the ten most important terms in this classifier across the samples, ordered by age and with the ES groups

indicated.276
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Discussion

The two analyses presented above demonstrate the value of using seqenv to associate EnvO terms with278

both individual OTUs and whole samples. In the analysis of AOA OTUs, we demonstrated a significant

association between the pH that an OTU is adapted to and the diversity of environments that it is found.280

These results indicate that, as their optimum pH increases, the AOA OTUs are present across a greater

diversity of habitats. As in the original study, a statistically significant relationship between sample OTU282

richness and pH was evidenced. That is, as the pH of a sample increases, more species are observed.

We propose that these two observations may be connected: the fact that more environments appear ac-284

cessible to the OTUs as the pH increases may generate the diversification of species that is reflected in

the increasing sample richness with pH. At higher pHs, we might expect both of these relationships to be286

reversed due to increased competition with bacterial ammonia oxidizers.

In the geological history of the Black Sea, one of the key questions is the nature of that environment288

prior to the initial Mediterranean sea influx (IMI). For example, was it a Brackish environment, or was it

akin to a freshwater lake landscape? In our Black Sea dataset analysis, we can note a discrete change in290

the EnvO terms associated with the samples at this event when we transition from ES4 to ES3. Prior to

this point, terms such as “freshwater lake” and “river” are frequent, afterwards the samples are dominated292

by organisms associated with “sea water”, “ocean water” and “estuary”. The microbial community prior

to the IMI comprised organisms associated with freshwater habitats, important evidence that the IMI was294

associated with a substantial increase in salinity.

Conclusion296

The two studies described in this paper are not intended to be exhaustive, but present convincing vignettes

of the usefulness of seqenv. We believe the methods presented here will prove to be an effective and298

extremely valuable tool to the community for distilling, analyzing and adding context to DNA sequence

data. Hopefully, in the future, seqenv will contribute crucial insights and advances to the field of300

environmental metagenomics.
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Figures388
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also called an "OTU".

The whole process is 
repeated the same 

way for every 
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independently. 343206452
G-id (global identifier)

Search result against NT 
database.

(maximum 10 hits are found 
so maximum 10 G-ids are 

retrieved)

324498760 
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Every GI has 0 or 1 
isolation source.
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another GI)
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Isolation source
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Note: G-ids with no 
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recognized envos in 
their isolation source 
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in seqenv

Figure 1: Schematic of the internal functioning of the seqenv pipeline.

Continued on next page.
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Count it 1.0

Count it 1.0

Count it 1.0

All numbers are fake
This figure describes 
a plan for processing 

data, not results.

Sun Jun 26 2016
Last modified:

Description of seqenv internal pipeline structure
Lucas Sinclair, lucas.sinclair@me.com

This OTU is 25% lakish
This OTU is 25% marine biomish
This OTU is 25% marine habitish
This OTU is 25% wetlandish

Result

This GI is 200% lake
Result for 343206452

These are the "flat" 
results per GI.
(without special 

normalization rules such 
as backtracking)

This GI is 100% marine biome
This GI is 100% marine habitat
This GI is 100% wetland

Result for 324498760

Count it 1.0

Count it 1.0

Counts per ENVO 
term.

This GI is 100% marine biome
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This GI is 100% wetland

Result for 324499999

None
Result for 324498738

None
Result for 324498739

Don't count it

Don't count it

Note: The "--proportional" 
option is active

390

This figure details how EnvO term frequencies are computed. The numbers provided are fictional

as the schematic focuses on representing the internal functioning of the pipeline and does not illustrate392

a concrete case. As each inputed short DNA sequence is processed independently in the all but the last

stages of seqenv, only one input sequence is shown here.394
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Figure 2: The EnvO terms associated with two AOA OTUs.

For each original inputted sequence, seqenv outputs a network representing the EnvO terms iden-

tified. Two examples of such hierarchical ontologies are shown. The two OTUs chosen had a mean pH396

of 3.5 and 8.5. The intensity of the node’s background color reflects the frequency of that term within
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hits. Gray indicates the lowest frequency recorded and darker shades of yellow to orange indicate higher398

frequencies.
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Figure 3: EnvO terms and OTU richness against mean OTU pH.

The top panel shows the total number of EnvO terms against OTU pH. The dashed red line indicates400

a linear regression of number of EnvO terms with OTU pH (adjusted R-squared: 0.2742, p-value: 3.85e-

06). The bottom panel shows the community OTU diversity against sample pH for the AOAdataset. OTU402

richness was calculated after rarefying to 1’000 reads. Linear regression of sample diversity against pH
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(adjusted R-squared: 0.1305, p-value: 0.009217).404
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Random forests were used to perform a regression of pH against EnvO terms (Var. explained: 34.6%).

The abundance of the top ten most important terms, as determined by percentage mean decrease of accu-406

racy (%IncMSE) are shown across OTUs ordered by their pH preference.
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Figure 4: Heatmap of top ten EnvO terms for determining OTU pH.
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Figure 5: NMDS plot of Black Sea plankton 18S rRNA samples.

Non-metric multidimensional scaling (NMDS) of OTU relative abundances with Bray-Curtis dis-408

tances were used to ordinate the 18S rRNA Black Sea plankton samples in two dimensions. The age

of key samples are indicated together with the Environmental Stage: ES4 (magenta), ES3 (blue), ES2410

(green) and ES1 (red). Arrows indicate the temporal succession of samples, and dotted arrows represent
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the transition between environmental stages.412
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Random forests were used to perform a classification of the Black Sea Environmental Stage (ES)

against EnvO terms (Error rate: 12.5%). The abundance of the top ten most important terms, as deter-414

mined by the percentage mean decrease of error rate (%IncMSE) are shown. Samples are labelled with

ES and order by time before present, and salinity is given for the central part of the sediment core.416

PeerJ reviewing PDF | (2016:07:12292:0:0:NEW 24 Jul 2016)

Manuscript to be reviewed



p. 29

Figure 6: Heatmap of top ten EnvO terms for determining ES.
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