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ABSTRACT
Annually, half of all plant-derived carbon is added to soil where it is microbially
respired to CO2. However, understanding of the microbiology of this process is limited
because most culture-independent methods cannot link metabolic processes to the
organisms present, and this link to causative agents is necessary to predict the results
of perturbations on the system. We collected soil samples at two sub-root depths
(10–20 cm and 30–40 cm) before and after a rainfall-driven nutrient perturbation event
in a Northern California grassland that experiences a Mediterranean climate. From
ten samples, we reconstructed 198 metagenome-assembled genomes that represent all
major phylotypes. We also quantified 6,835 proteins and 175 metabolites and showed
that after the rain event the concentrations of many sugars and amino acids approach
zero at the base of the soil profile. Unexpectedly, the genomes of novel members of
the Gemmatimonadetes and Candidate Phylum Rokubacteria phyla encode pathways
for methylotrophy. We infer that these abundant organisms contribute substantially
to carbon turnover in the soil, given that methylotrophy proteins were among the
most abundant proteins in the proteome. Previously undescribed Bathyarchaeota and
Thermoplasmatales archaea are abundant in deeper soil horizons and are inferred
to contribute appreciably to aromatic amino acid degradation. Many of the other
bacteria appear to breakdown other components of plant biomass, as evidenced by the
prevalence of various sugar and amino acid transporters and corresponding hydrolyzing
machinery in the proteome. Overall, our work provides organism-resolved insight into
the spatial distribution of bacteria and archaea whose activities combine to degrade
plant-derived organics, limiting the transport of methanol, amino acids and sugars
into underlying weathered rock. The new insights into the soil carbon cycle during
an intense period of carbon turnover, including biogeochemical roles to previously
little known soil microbes, were made possible via the combination of metagenomics,
proteomics, and metabolomics.
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INTRODUCTION
The terrestrial carbon reservoir is primarily distributed among grasslands (∼34%), forests
(∼39%), and cultivated farms (∼17%) (White, Murray & Rohweder, 2000).While in forests
the majority of fixed carbon is stored vegetation, most fixed carbon in grasslands is stored
in soil. Thus, grassland soils are one of the most important reservoirs of terrestrial carbon
on the planet. This observation has motivated many studies of processes that impact
the fate of carbon compounds in grassland soil systems (Blazewicz, Schwartz & Firestone,
2014; Kandeler et al., 2006; Mau et al., 2015; Reinsch et al., 2014; Schimel & Schaeffer, 2012;
Verastegui et al., 2014). Over a variety of time scales, organic detritus is either respired back
to CO2 or degraded into smaller molecules that are transported in solution to underlying
zones (Placella, Brodie & Firestone, 2012). In Mediterranean climate soils, this process
emits an amount of CO2 equal to the annual output from other ecosystems immediately
following the first Fall rain, when nutrients from senesced plants are driven downward.
Carbon exported from the shallow soils provides nutrients for microorganisms in lower
soil horizons and the deeper subsurface.

Understanding which microorganisms are present and the pathways by which they
process carbon compounds is key to understanding the form and redistribution of soil
organicmatter. Soil ecologists andmicrobiologists have employed, and continue to employ,
isolation, phospholipid-derived fatty acid (PLFA) analysis, fingerprinting with denaturing
gradient gel electrophoresis (DGGE) (Muyzer, De Waal & Uitterlinden, 1993) and terminal
fragment length polymorphism (T-RFLP) (Osborn, Moore & Timmis, 2000) analyses, and
16S rRNA amplification and sequencing (Banning et al., 2011; He, Xu & Hughes, 2006;
Henckel, Friedrich & Conrad, 1999) to identify soil microbes. Bacteria reported in soils
are typically affiliated with the Proteobacteria, Firmicutes, Acidobacteria, Actinobacteria,
Verrucomicrobia, Gemmatimonadetes, and Bacteroidetes phyla (Evans & Wallenstein,
2012; Fierer et al., 2012; Kuramae et al., 2012). Given the evolutionary/adaptation pressures
in different soil types (McKissock, Gilkes & Walker, 2002), nutrient availability (Adair,
Wratten & Lear, 2013; Goldfarb et al., 2011; Veresoglou et al., 2012), temperature and
moisture (Aanderud et al., 2013; Peltoniemi et al., 2015), pH (Lauber et al., 2009), variety
of vegetation (Herzberger, Duncan & Jackson, 2014; Piper et al., 2015; Prober et al., 2015),
and microenvironments within the soil, it is expected that there will be substantial genetic
diversity within many of these reported phyla, giving rise to clusters of closely related
organisms, as well as organisms from additional phyla that have thus-far eluded detection
in soils.

Prior studies of microbial functions (i.e., ammonia oxidation, methylotrophy) in
soil have used targeted approaches such as gene amplification (qPCR, pyrosequencing)
(Hofmann et al., 2016; Pester et al., 2012; Stacheter et al., 2013), culturing of isolates and
enrichments (Beck et al., 2014). More recently, metagenomic methods have been applied
to soil samples with the objective of providing a cultivation- and primer-independent
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view of microbial community composition and functional capacities (Delmont et al.,
2015;Hultman et al., 2015; Luo et al., 2014;White et al., 2016). Genomes provide metabolic
insight (including for organisms that have not been cultivated) and enable identification
of pathways involved in biogeochemical processes, but they have rarely been reconstructed
from soil (Delmont et al., 2015; Hultman et al., 2015; Pell et al., 2012). These recent studies
have shown that resolution of the community is possible and that much of the community’s
metabolic potential centers around respiration, complex carbohydrate degradation and
central metabolism.

Here we conducted a multi-omic investigation of the microbiology and microbial
activity in the shallow sub-root and deeper regions of grassland soil that experiences
a Mediterranean climate. Samples were collected during the major annual period of
carbon turnover around the time of the first Fall rain event. The well-studied meadow
(Cruz-Martínez et al., 2009; Suttle, Thomsen & Power, 2007) is located in the Angelo Coastal
Reserve in Northern California (part of the Eel River Critical Zone Observatory). These
grassland soils provide an ideal system for studying processes in the sub-root zone because
roots are confined to a well-defined horizon. Prior work in this meadow documented that
carbon is fixed by∼50 plant species (Suttle, Thomsen & Power, 2007) during the wet spring
season. The carbon compounds accumulate in the upper soil horizon after plants die late in
summer (Aerts, Bakker & De Caluwe, 1992; Berendse, 1994; Wedin & Tilman, 1990). Thus,
portions of these carbon compounds that accumulate in the upper 10 cm of the soil include
both leaf litter and dead root material will percolate down as dissolved metabolites through
the 40–50 cm deep soils, which are developed on weathered vermiculite-dominated argillite
and sandstone.

Our sampling scheme was designed to probe microbial diversity and active carbon
turnover in soil using a combined metagenomic, proteomic and metabolomic approach.
An important motivation for recovery of genomes from the metagenomes is that protein
sequences can be predicted in organism context and used in mass spectrometry studies
to identify proteins that are highly abundant in microbial cells (Brooks et al., 2015; Mosier
et al., 2015). This information, in combination with metabolite concentrations measured
through the soil profile, enables identification of the organisms, pathways and spatial
distribution of carbon turnover processes at the time of sample collection. We uncovered
roles for bacteria and archaea from phylum lineages lacking isolated representatives and
identify methylotrophy and archaeal heterotrophy as major carbon cycling processes in
the sub-root zone. The study demonstrates that genome-resolved multi-omic approaches
can be effectively used to interrogate microbiallymediated processes in one of the Earth’s
complex ecosystems.

MATERIALS & METHODS
Sampling and DNA extraction
We collected samples from the Angelo Coast Range Reserve (with permission under APP #
27790) meadow 39◦44′21.4′′N 123◦37′51.0′′W) on four days: before the rain, four and six
days after one inch of rain fell, and two days after three inches of rain fell in September, 2013.
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At two plots 10 m apart in the Northern end of the meadow, a soil pit for each sampling
day was dug to 50 cm and depth was marked every 10 cm. Approximately 1 kg of soil
was removed from each of two depths (10–20 cm and 30–40 cm) using sterilized stainless
steel hand trowels. Each sample was homogenized briefly in a sterile bowl and divided
into several sterile Whirl-Pak bags. One sample bag was placed on wet ice for transport
to the lab for pH and moisture analyses. The remaining samples were immediately flash
frozen in a mixture of dry ice and ethanol and then placed on dry ice for transport to
the lab for long-term storage at −80 ◦C. For pH analysis, 2 g of fresh, field-wet soil were
suspended in 10 mL 0.01 M CaCl2 and shaken for one hour at 100 rpm. The suspension
was then centrifuged for 5 min at 6,000 rpm at 4 ◦C, and the resulting supernatant was
filtered through a #1 Whatman filter and analyzed with a pH probe. Gravimetric soil
moisture was determined by weighing subsamples of sieved soil (2 mm sieve) before and
after drying at 60 ◦C for at least 48 h. Soil particle size distribution was determined by
measuring the relative density of the soil suspended in 5% sodium hexametaphosphate
solution with a hydrometer over the course of settling (40 s–2 h). To measure extractable
organic carbon content, 5 g soil samples were suspended in 25 mL of 0.5 M potassium
sulfate and shaken for two hours at 150 rpm. The suspension was then filtered through a #1
Whatman filter and quantified on an OI Analytical 1010, Total Organic Carbon Analyzer.
Soil characteristics are summarized in Fig. S1.

For each depth, DNA was extracted using MoBio Laboratories PowerMax Soil DNA
Isolation kits from 10 g of soil from ten of a the much larger set of samples used for other
analyses: (1) pre-rain in plot 1 from 10–20 cm, (2) pre-rain in plot 1 from 30–40 cm, (3)
four days after the first rain in plot 1 from 10–20 cm, (4) four days after the first rain in
plot 1 from 30–40 cm, (5) six days after the first rain in plot 1 from 10–20 cm, (6) six
days after the first rain in plot 1 from 30–40 cm, (7) six days after the first rain in plot 2
from 10–20 cm, (8) two days after the second rain in plot 1 from 10–20 cm, (9) two days
after the second rain in plot 1 from 30–40 cm, and (10) two days after the second rain
in plot 2 from 10–20 cm. We optimized the protocol for our samples, to maximize DNA
yield while minimizing shearing: each sample was only vortexed for 1 min, followed by a
30 min heat step at 65 ◦C, inverting every 10 min. Each sample was also extracted twice,
and combined at the spin filter step. We performed two elution steps of 5 mL each, and
precipitated the DNA using sodium acetate and glycogen, resuspending in 100 uL of 10
mM Tris buffer. This resulted in unsheared large fragment size DNA, with average yields of
2,351 ng/g soil (10–20 cm depth) and 1,277 ng/g soil (30–40 cm depth). Fragment size was
checked on 0.5% agarose gels using a 23 kb genomic DNA ladder and DNA concentration
was measured using a Qubit Fluorometric Quantitation device, dsDNA Broad Range
Assay Kit.

DNA sequencing and reconstruction of genomes
DNA sequencingwas conducted at the Joint Genome Institute, USA. 250 bp paired Illumina
reads were processed with BBMap (https://sourceforge.net/projects/bbmap/). BBMap was
run twice (1) to trim adapters bbduk.sh was used with parameters k= 23, mink= 11, hdist
= 1, tbo, tpe, ktrim = r, ftm = 5 and (2) to remove phiX and Illumina trace contaminants
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bbduk.sh was used with parameters k= 31, hdist= 1. Illumina adapter reference sequences,
the phiX genome and Illumina traces were provided by JGI.

Reads were further trimmed with Sickle (https://github.com/najoshi/sickle) using
default settings. Paired end read datasets from each sample were assembled independently
from one another using idba_ud under default settings, including the –pre_correction
option (Peng et al., 2012). For scaffolds greater than 1,000 bp, open reading frames were
predicted with Prodigal (Hyatt et al., 2010) and functional annotations were determined
through similarity searches against the UniProt, UniRef90 (Suzek et al., 2007) and KEGG
(Kanehisa et al., 2012; Ogata et al., 1999) databases. tRNAs were predicted for each
scaffold using tRNAscan-SE (http://lowelab.ucsc.edu/tRNAscan-SE/). To identify 16S
rRNA gene sequences, we searched all assembled scaffolds against the manually curated
structural alignment of the 16S rRNA provided with SSU-Align (Nawrocki, Kolbe &
Eddy, 2009). Coverage values for each scaffold were calculated by read mapping using
Bowtie2 (http://bowtie-bio.sourceforge.net/bowtie2/index.shtml) using default settings.
The scaffolds, all associated annotations, and coverage information were then processed
and uploaded into ggKbase: http://ggkbase.berkeley.edu/angelo_ncbi_2016/organisms.
The sequencing reads have been deposited as ‘‘Meadow soil samples from Angelo, CA
genome sequencing and assembly’’: SRA302421—2015-10-05T12:25:59.383. Genomes are
currently being processed for submission to NCBI under accession PRJNA297196.

We established a phylogenetic profile for each scaffold by comparing the genes to
a database of reference genomes. Assignment of scaffolds >8 kb to genome bins was
accomplished using emergent self-organizing maps (ESOM) (Fig. S5). The matrix used in
the ESOMwas built from a combination of series coverage patterns across samples for each
scaffold (ten columns) and tetranucleotide frequency of each scaffold (256 columns). Bins
were fine tuned to remove scaffolds classified as wrongly binned based on phylogenetic
information or other anomalies using the visualization tools provided by ggKbase. Genome
bins were named based on placement in phylogenetically informative gene trees and the
overall taxonomic profile of each bin. Bin completeness was evaluated based on the recovery
of content of a set of 51 single copy genes for bacteria and 38 single copy genes for archaea
using a tool developed in Probst et al. (2016). The phylogenetic signal, in combination with
aberrant coverage and/or GC content, was used to identify bin contaminants. Draft quality
genomes, defined as genome bins from metagenomes, contain at least 70% of the requisite
single copy genes within minimal duplication (a firm cutoff for duplicate genes was not
used because some arise due to genes split by scaffolding gaps or contig ends).

Time series analysis
The relative coverage for every scaffold encoding a ribosomal protein S3 gene, thus
representing a single strain was determined to indicate the relative abundance of each
organism in each sample. Coverage values were normalized to account for differences in
sample data size. Values for each species in the same phylum were summed to generate the
stacked bar chart presented in Fig. 1 in the ‘Results’ section.
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Proteomics methods
For each soil sample, total proteins were extracted from 10 g of soil using NoviPure R©

Soil Protein Extraction Kit (MoBio). The crude protein extracts were concentrated to ∼1
ml using Amicon R© Ultra-4 Centrifugal Filter Units (30 KDa molecular weight cut-off,
Millipore). Trichloroacetic acid was then added to precipitate proteins overnight at 4 ◦C.
Proteins were pelleted by centrifugation at 4 ◦C, washed with ice-cold acetone three times,
and re-solubilized in guanidine (6 M) and dithiothreitol (10 mM). Bicinchoninic acid
assays were conducted to estimate the protein concentration before adding dithiothreitol.
50µg of proteins from each soil sample was further processed with the filter-aided sample
preparation (Wisniewski et al., 2009). Proteins were first trypsin digested overnight in an
enzyme:substrate ratio of 1:100 (weight:weight) at room temperature with gentle shaking,
followed by a secondary digestion for 4 h. All digested peptide samples were stored at
−80 ◦C.

LC-MS/MS proteomic measurements were carried out with 11-step online
multidimensional protein identification technology (MudPIT) (Washburn, Wolters &
Yates, 2001) on an LTQ Orbitrap Elite mass spectrometer (Thermo Scientific), as described
previously (Li et al., 2014). In each MudPIT run, 25 µg of peptides were loaded offline into
a 150-µm-I.D. two-dimensional back column (Polymicro Technologies) packed with 3 cm
of C18 reverse phase (RP) resin (Luna, Phenomenex) and 3 cm of strong cation exchange
(SCX) resin (Luna, Phenomenex). The back column loaded with peptides was de-salted
offline with 100% Solvent A (95% H2O, 5% CH3CN and 0.1% formic acid) and washed
with a 1-h gradient from 100% Solvent A to 100% Solvent B (30% H2O, 70% CH3CN and
0.1% formic acid) to move peptides from RP resin to SCX resin. Then, the back column
was connected to a 100-µm-I.D. front column (New Objective) packed in-house with
15cm of C18 RP resin and placed in-line with a U3000 quaternary HPLC pump (Dionex).
Each MudPIT run was configured with 11 SCX fractionations using 5%, 7%, 10%, 12%,
15%, 17%, 20%, 25%, 35%, 50% and 100% of Solvent D (500mM ammonium acetate
dissolved in Solvent A). Each SCX fraction was separated by a 110-min RP gradient from
100% Solvent A to 50% Solvent B. The LC eluent was directly nanosprayed (Proxeon)
into an LTQ Orbitrap Elite mass spectrometer (Thermo Scientific). Both MS scans and
HCD MS/MS scans were acquired in Orbitrap with the resolution of 30,000 and 15,000,
respectively. The top 10 most abundant precursor ions were selected for MS/MS analysis
by HCD after each MS scan. Peptides of each soil sample were measured in technical
duplicates.

A protein sequence database was constructed from 3,408,250 full-length predicted
proteins (combined file size of 863.56 Gb) by metagenomics from four samples; (1)
pre-rain plot 1 10–20 cm, 2 days after second rain (2) plot 1 10–20 cm, (3) plot 1 30–40
cm, and (4) plot 2 10–20 cm, and their reverse sequences as decoys for estimation of
false discovery rate (FDR) (Elias & Gygi, 2007). Database searching was performed with
Sipros 3.0 (Hyatt & Pan, 2012;Wang et al., 2013) on the Titan supercomputer at Oak Ridge
Leadership Computing Facility. The following parameters were used: dynamic oxidation
of methionine, static alkylation of cysteine by iodoacetamide, 0.03 Da mass tolerance
for precursor ions and 0.01 Da for fragment ions, up to three missed cleavages, and full
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enzyme specificity required. The FDR was strictly controlled at the peptide level (1%). One
unique peptide was required for each identified protein/protein group. Indistinguishable
proteins were combined into protein groups based on the parsimony rule (Nesvizhskii
& Aebersold, 2005). The numbers of identified protein/protein group per sample ranges
is provided in Table S3B. Proteins were linked to draft genomes so the functions could
be assigned to individual organisms. Spectral counts of proteins were normalized across
the samples for label-free quantification as described previously (Pan & Banfield, 2014;
Wang et al., 2013). The mass spectrometry proteomics data have been deposited to the
ProteomeXchange Consortium via the PRIDE (Vizcaíno et al., 2016) partner repository
with the dataset identifier PXD004965.

Metabolomics methods
Metabolites were extracted from sieved (2 mm) soil samples using an aqueous extraction
protocol (modified from Swenson et al., 2015). Briefly, sieved soils (4 g) were incubated
(200 rpm, 1 h, 4 ◦C) in triplicate with MilliQ water (16 ml) amended with 1.6 µg/ml
of ABMBA (2-Amino-3-Bromo-5-methylbenzoic acid) and 2 µg/ml of UL-13C-Glucose
included as internal extraction standards. Samples were centrifuged (3,220 × g, 15 min,
4 ◦C) and the supernatant was carefully decanted. Soils were then back extracted twice
with MilliQ water (4 ml, 2 ml) as above but with abbreviated incubation times (15 min
and 30 s). Following centrifugation, supernatants were pooled, frozen (−80 ◦C) and
lyophilized. Metabolites were then re-suspended in 100% methanol (250 ml, to limit salt
solubility) with internal standards (5 µg/ml—Table S5) and filtered (Millipore, 0.22 mm
PVDF microcentrifuge filters). Samples were analyzed in random order on an Agilent 6550
iFunnel Q-TOF LC/MS system with a SeQuant ZIC-pHILIC zwitterionic exchange column
(150× 2.1 mm, 5 mm, Merck Millipore) using a neutral pH (5 mMNH4OAc)/acetonitrile
gradient (10% to 55% aqueous phase over 25 min at 0.25 ml/min) in both positive and
negative ionization mode. Metabolites and putative metabolites were identified manually
through severalmethods including: comparison to theNorthen Lab standards library (>290
compounds), MS/MS analyses, and formula generation (Agilent MassHunter) (Table S5).
Peak detection and areas were determined using the Northen Lab’s Metabolite Atlas
software (http://metatlas.nersc.gov) (Table S6). Internal standards (including extraction
standards) were used for quality control analyses and to detect and control for retention
time shifts and other analytical variability in any of the sample analyses. A one-way ANOVA
was conducted on metabolites across the samples to determine if they changed significantly
between samples; p-values were then corrected for multiple comparisons (Benjamini &
Hochberg, 1995) (Table S7). Significant changes were determined for metabolites between
sampling times at each depth and between depths in each sample using ANOVA with
post-hoc Tukey HSD pairwise analyses (Table S8).

16S rRNA and rpS3 phylogenetic analyses
For the 16S ribosomal RNA (rRNA) tree and ribosomal protein S3 (rpS3), alignments
were generated from all 16S rRNA and rpS3 genes available the metagenomes. Sequences
are provided in the Supplemental Information. All 16S rRNA genes longer than 660
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bp were aligned using the SINA alignment algorithm through the SILVA web interface
(Pruesse, Peplies & Glöckner, 2012; Pruesse et al., 2007). All rpS3 amino acid sequences
longer than 180 aa long were aligned using MUSCLE (Edgar, 2004a; Edgar, 2004b). The full
alignments were stripped of columns containing 95%ormore gaps. Amaximum-likelihood
phylogeny was inferred using RAxML (Stamatakis, 2014) run using the GTRCAT model
of evolution for the 16S rRNA and PROTGAMMLG for the rpS3. The RAxML inference
included calculation of 300 bootstrap iterations for the 16S rRNA tree and 100 for the
rpS3 tree (MRE-based Bootstopping criterion), with 100 randomly sampled to determine
support values.

Ordination analyses of microbial community structure
Ribosomal protein S3 genes were retrieved using HMMs build from the dataset published
in Hug et al. (2015) and used to search against predicted protein sequences in all samples.
Only sequences that spanned at least 60% of the alignment were included and clustered at
99% similarity (equivalent to species level Sharon et al., 2015) using Usearch (clusterfast,
Edgar (2010)). Abundances of each cluster in each sample were determined from scaffold
coverage (see above) and normalized to percent abundances in each sample. Principle
coordinate analysis (PCoA) based on Bray-Curtis distance measure was computed using
the R programming environment (R Core Team, 2015) in conjunction with the vegan
package (Dixon, 2003).

Methanol dehydrogenase tree
The amino acid sequences of the PQQ-dependent methanol dehydrogenase proteins
detected in the proteomics data were aligned to reference sequences with MUSCLE and
this alignment was used to build a tree with RAxML with the PROTGAMMAWAG model
and 100 bootstrap iterations.

Physical and chemical characterization of the soil
Samples of soil and the weathered bedrock (mudstone and sandstone) were collected for
mineralogical and other analyses using electronmicroprobe, X-ray diffraction and scanning
electron microscopic methods. Minerals identified included vermiculite (the predominant
mineral in the soil), plagioclase and alkali feldspars, minor apatite and a mixture of Fe,
Mn-oxyhydroxides.

RESULTS
Between 14 and 25 Gb of DNA sequence data were obtained per soil sample for the ten soil
samples, two of which were time and depth replicates. The 250 bp reads were assembled as
detailed in ‘Methods,’ resulting in 2,982,775 contigs > 1,000 bp in length (42,770 contigs
> 10,000 bp, the longest was 538,000 bp). In total, these contigs encode 8,773,880 genes
(Table S1). For each sample, the reads were then mapped back to the assembled contigs of
the sample to generate coverage statistics.

We compared themicrobial community structure across the sample series using coverage
of scaffolds assembled from the sequence datasets. Out of the 1,420 microorganisms
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Figure 1 Prokaryotic diversity and abundance over sampling time and depth. Ribosomal protein S3-encoding scaffold relative abundances for
each sample are plotted in (A), and organized as follows: pre-rain (1, 5), four days after the first rainfall (2, 6), six days after the first rainfall (3, 7, 9)
and two days after the second rainfall (4, 8, 10) at 10–20 cm (1–4, 9, 10) and 30–40 cm deep (5–8). Persistent and abundant species (>1% abundant
in multiple samples) are colored by phylum and shaded by species. The beta diversity PCoA plot (B) compares the ten sample communities (blue
denotes 10–20 cm and red denotes 30–40 cm samples). A diagram depicting the sampled ecosystem (C) shows the shallow roots of the annual forbs
and grasses mostly remain in the top 10 cm and the rocks increase in size in the deeper soil.

detected based on marker gene (rpS3) sequences, 652 occurred in 2–18 times (average: 4.2
± 2.86) over the ten samples and had relative abundances of between 0.06 and 3.2% of the
community (Fig. 1). The same information was used in an ordination analysis and showed
that samples from the same depth were more similar to each other than to those from the
other depth with the exception of the first post-rain 10–20 cm sample (Fig. 1). The results
indicate substantial overlap in the organisms present, especially among samples from the
same soil depth. The same organisms were also observed in soil samples collected at the
same depth and time from sites separated by ∼10 m. In fact, many of these organisms are
highly abundant, ranking in the top ten most abundant organisms and amounting for >
1% relative abundance in each sample (Fig. 1). The availability of sequence information
for multiple independently assembled samples with substantial overlap in community
membership enabled the addition of series abundance parameterization to nucleotide
frequency-based genome binning. We generated 198 bins, 46 of which were classified
as metagenome-assembled draft genomes. Most sequence fragments that could not be
assigned to specific genomes were grouped at the phylum-level and assigned to ‘‘megabins’’
(Table S2A). However, most of the relatively high coverage scaffolds in each sample were
binned into draft genomes.
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A notable feature of the soil microbial community compositions, evident based on
phylogenetic analysis of single copy genes, is the high representation of organisms in the sub-
root zone soils from phyla that are relatively poorly represented in the NCBI database. For
example, we obtained draft genomes for two Gemmatimonadetes, two Verrucomicrobia,
eight Acidobacteria, one Armatimonadetes, three Chloroflexi, and three Nitrospirae.
Importantly, we also reconstructed seven draft genomes from the Rokubacteria, a
bacterial Candidate Phylum first reported from aquifer sediment in 2015 (Hug et al.,
2016). In addition, we reconstructed draft genomes for one Betaproteobacterium, two
Deltaproteobacteria an Actinomycetales and one novel Actinobacteria. The reconstructed
genomes, which represent all major phyla detected in the soil samples, substantially expand
the coverage of phylogenetic diversity in the NCBI database (Table S2B). In addition, we
generated four draft genomes from the ‘‘Miscellaneous Crenarchaeota Group’’ (MCG),
two from the ‘‘Soil Crenarchaeota Group’’ (SCG) and three from the ‘‘South African Gold
Mine Miscellaneous Group’’ (SAGMCG). The SCG and SAGMCG are likely within the
Thaumarchaeotes whereas the MCG are novel Bathyarchaeota (Figs. S2A and S2B). We
also sampled Euryarchaeotes from the Thermoplasmatales lineage, but the genome bins
were not well resolved.

Phylogenetic trees constructed using marker genes for both bacteria and the archaea
from samples collected from different depths and times display structures similar to the
seed puff of a dandelion, with many closely related strains at the termini of most branches
(Fig. 2 and Fig. S2). In prior studies, strains were grouped at higher taxonomic levels, up
to the phylum level (Delmont et al., 2015; Hultman et al., 2015). The Gemmatimonadetes
phylum branch of the ribosomal protein S3 phylogenetic tree (Fig. 2) exhibits fine scale
diversity that is comparable to the observed level of diversity detected in every phylum.
Many organisms of the same type (separated by zero branch length in Fig. 2) occurred in
samples collected at different times and from both depths.

Before the rain, the most abundant organisms in the shallow depth interval (10–20 cm)
are Gemmatimonadetes and Actinobacteria species. Gemmatimonadetes species are also
abundant after the rain event. Thermoplasmatales are highly abundant in samples collected
after the rain event (Fig. 1).

In general, the microbial community composition of 30–40 cm depth samples differed
from that of the 10–20 cm depth samples and samples collected before and after the
rain event were less different than those collected from the shallower soil. Notably,
the community sampled from deeper soil prior to the rain event was dominated by
a Rokubacterium and several Thermoplasmatales (Euryarchaeota) were abundant.
In fact, around 20% of the microorganisms sampled in the deeper soil interval were
archaea, an interesting finding because archaea are generally believed to be relatively rare
compared to bacteria in soil (Fierer et al., 2012). In samples collected after the rain, three
Thermoplasmatales archaea are highly abundant and rank in the top 10 most abundant
organisms in the deeper soil (Fig. 1).

We obtained proteomic information to provide insight into the active pathways that
mediated carbon and nitrogen compound transformations. Between 2,881 and 4,716
proteins/protein groups were identified per soil sample (Table S3A). Overall, we identified
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To all 
other bacteria

Figure 2 Gemmatimonadetes phylogenetic ribosomal protein S3 tree. Subsection of the experiment’s
ribosomal protein S3 phylogenetic tree shows typical diversity within the phyla: dozens of novel, closely
related organisms of the Gemmatimonadetes bacterial phylum inhabit the two soil zones (10–20 cm, blue
and 30–40 cm, red) before (squares) and after the rain events (four days after: circles, six days after: trian-
gles, and two days after the second rain: asterisks). Identical ribosomal protein S3 sequence branches rep-
resenting members of the same species were collapsed and the time and depth symbols of these members
are presented horizontally.

6,835 proteins and 6,378 protein groups in the soil microbiome, based on 28,782 distinct
peptide identifications. It is important to note that we could link most identified proteins
to the specific microorganisms from which they derived because a significant fraction of
our sequence data was genome-resolved.

Significantly, the most abundant protein in the proteome was not involved in plant
sugar breakdown. Rather, it was pyrrolo-quinoline quinone (PQQ)-dependent methanol
dehydrogenase (MDH). This protein is encoded in the genome of a Gemmatimonadetes
bacterium. PQQ dependent MDH (PQQ MDH) is the second step of methanotrophy,
and follows the oxidation of methane to methanol by methane monooxygenase. However,
methanemonooxygenase was not present in any of the genomes, including those harboring
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the methanol dehydrogenase. Thus, we infer that this enzyme is involved inmethylotrophy,
the consumption of methanol. Lesser abundant PQQ MDH proteins from Rokubacteria
were also detected in the proteomics analysis

MDH proteins have typically well-conserved sequences. The MDH proteins represented
in the proteome were aligned with sequences from the literature (Taubert et al., 2015) and a
tree was built, resulting in the clustering of the proteins by phylum. The Rokubacteria XoxF
sequences formed a distinct branch in the MDH protein tree (XoxF and MxaF families)
and the Gemmatimonadetes sequences formed a new clade with the XoxF sequences from
various Proteobacteria (Taubert et al., 2015) (Fig. 3) The Gemmatimonadetes PQQ-MDH
proteins were generally more abundant than those from Rokubacteria (as shown in the heat
map on the right side of Fig. 3). The MDH proteins all contain the catalytic and cofactor
binding residues required for activity (Anthony & Williams, 2003), including those for
PQQ, as well as the aspartate residues thought to select for the lanthanides such as Ce3+

and La3+ (Keltjens et al., 2014; Pol et al., 2014). The selection for lanthanides over Ca2+

is an interesting bioinorganic trait because while lanthanides are abundant in the Earth’s
crust, they are highly insoluble and thus considered biologically unavailable and in turn
not well studied (Skovran & Gomez, 2015). Despite this, La3+ is required for the activity of
the XoxF type MDH perhaps because it a more efficient Lewis acid in the polarization of
PQQ than Ca2+ (Bogart, Lewis & Schelter, 2015; Pol et al., 2014).

Following oxidation of methanol by PQQ MDH the toxic formaldehyde product
must be moved from the periplasm to the cytosol for transformation and incorporation
into 3C compounds. The reaction can occur via one of three pathways: the glutathione,
tetrahydromethanopterin (THMPT), or tetrahydrofolate (THF)-linked formaldehyde
oxidation pathways (Chistoserdova, 2011). The Gemmatimonadetes genomes have the
entire THMPT formaldehyde oxidation pathway and the tetrahydrofolate to serine pathway
for these reactions. Furthermore, they encode the PQQ biosynthesis machinery. The
THMPT biosynthesis machinery is encoded immediately upstream of the PQQMDH gene
(Fig. S3) (Scott & Rasche, 2002). The results strongly support the capacity formethylotrophy
in these soil-associated Gemmatimonadetes and functioning of this pathway (Fig. 4
and Fig. S4).

Although the Rokubacteria have PQQ MDH, the genomes do not encode any of
the three pathways for formaldehyde transformation. It has been suggested that the
XoxF type of MDH is able to convert methanol directly to formate, bypassing the
formaldehyde oxidation mechanism (Pol et al., 2014). Formate then may be broken down
using formate dehydrogenase to yield energy or be assimilated by one of several pathways.
The Rokubacteria also may be carrying out beta-oxidation of fatty acids, as these proteins
for this pathway are abundant in the proteome.

We identified many proteins likely responsible for decomposing matter from the
meadow’s early summer senescing annual grasses (Bromus hordeaceus, Bromus diandrus,
and Bromus tectorum) and annual lupine (Lupinus bicolor) (for a full species list, see
Table S4). Highly represented were carbohydrate-active enzymes such as glycoside
hydrolases, polysaccharide lyases, and many sugar and amino acid transport proteins
(Table S3A). Notably, enzymes of the Thermoplasmatales and Bathyarchaeota archaea
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Figure 3 PQQ-dependent methanol dehydrogenase (XoxF andMxaF) protein clades and abundances
in the soil zones. PQQ-dependent methanol dehydrogenase (XoxF and MxaF) protein tree containing se-
quences from the literature and experimental sequences in the soil zones with their corresponding relative
abundance of normalized spectral counts from the proteomics results in a heat map.

for protein uptake and degradation, such as extracellular serine-type endopeptidases
(annotated as pyrolisin-like serine protease and encoded with a N-terminal signal
peptide), amino acid transporters, and cytoplasmic amidases and formamidases highly
represented in the proteome. The findings parallel results for marine Thermoplasmatales
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monadetes (purple) and Proteobacteria can oxidize formaldehyde via the tetrahydromethanopterin and
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the tetrahydrofolate-linked pathway then converted to serine by glycine hydroxymethyltransferase. Serine
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by different enzymes to phosphoenolpyruvate (phosphoglycerate hydratase or phosphoglycerate dehy-
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hyde assimilation pathway but do encode citric acid/glyoxylate cycle genes that could assimilate carbon
(citrate synthase) and regenerate glyoxylate (isocitrate lyase).

(Lloyd et al., 2013) and members of the TACK superfamily from groundwater (Castelle et
al., 2015), and suggest a role for novel soil Archaea in protein degradation.

We investigated the distribution of metabolites in triplicate extracted soil water samples
using a robust Liquid Chromatography-based Mass Spectroscopy (LC-MS) metabolomics
workflow based on a previous study on samples from the meadow soils (Swenson et al.,
2015). A total of 125 unique compounds were detected and quantified. These include sugars
(one to six sugar residues per chain), sugar alcohols, amino acids, nucleotides/nucleosides,
quaternary amines, osmolytes and several suspected sugar metabolites and derivatives
(Fig. 5). Notably, most concentrations fall to zero at the base of the soil zone, an observation
that suggests efficient scavenging of these compounds by microbial soil communities and
not the sorption to mineral surfaces (Fischer, Ingwersen & Kuzyakov, 2010).
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Figure 5 Comparison of detected sugars and common nitrogenous compounds in Angelo soils at
10–20 cm and 30–40 cm. (A) lists sugars and (B) lists nitrogen-containing compounds and the heat map
indicates relative mean sample concentrations. Columns are ordered left to right by date. Row colors (left
sides of plot) are based on chosen metabolite groupings. A clear decrease in metabolite abundances is ob-
served with increasing soil depth.
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Dissolved organic nitrogen, which is comprised of nitrogen-bearing molecules such
as amino acids, represents an important nutrient source for soil microbial communities
(Jones et al., 2004). The metabolomic data identifies dramatic increases in amino acid and
nucleotide concentrations at 10–20 cm right after the second rain event (Fig. 5). The timing
of this increase, immediately following a substantial rainfall event, points to the vertical
transport of these compounds from the top 10 cm. However, the source and localization
of their production were not determined in the current experiment. Notably, there was
no observed accumulation of these compounds in the deeper soil (30–40 cm). This may
be attributable to microbial activity at these depths. For example, the Thermoplasmatales
and Bathyarchaeota archaea, which were highly represented in the 30–40 cm depth soil
especially after rain events, have proteins for uptake and aerobic breakdown of peptides.
Abundances of these proteins, which include dipeptide, oligopeptide, hydrophobic peptide,
polar peptide transporters are high in samples collected after the first rainfall (Table S3A).

Interestingly, ammonia-producing formamidase is the most abundant protein
identified for several archaea. Ammonia liberated by archaeal peptide degradation
likely supports growth of SAGMCG and SCG Thaumarchaeota, which both have
ammonia monooxygenases genes. A copper-containing nitrite reductase (NirK), along
with cytochromes, sulfurtransferases and Fe-S proteins, were abundant in the proteome
but NO reductases were not identified by proteomics (although they are encoded in the
genomes). Overall the results suggest roles for Thaumarchaeota in both nitrification and
denitrification

Breakdown of plant-derived organics can release sulfur compounds. For example,
glucosinolates are sulfur-bearing organics that are produced by Brassicales, a widely
distributed group of plants in the mustard family that were identified in this study’s
meadow. Degradation products of glucosinolates include sulfur-containing thiocyanate
and isothionates. The Rokubacteria have genes of the Sox sulfur oxidation pathway, as
do the first-described Rokubacteria described from groundwater (Hug et al., 2016), and
some Sox proteins were identified in the proteome. Thus, these novel bacteria are inferred
to play an important role in sulfur biogeochemistry in the sub-root zone soil during the
rainfall-induced period of organic matter turnover.

Choline sulfate is an interesting sulfur-containing osmolyte identified in the
metabolome. This compound is produced by many organisms, including plants and
fungi, and is degraded to produce betaine via sulfatase enzymes. Betaine was also identified
by metabolomics. Notably, sulfatases were observed in the proteomes of Actinobacteria,
Chloroflexi, Alphaproteobacteria and Betaproteobacteria. Sulfate released from choline
sulfate degradation may play an important role in soil bacterial sulfur metabolism
(Markham et al., 1993). Choline sulfate and betaine both contain three methyl groups
per molecule that are released upon the degradation to glycine and could contribute to the
growth of the methylotrophic bacteria.

DISCUSSION
Our study design aimed to deeply analyze soil microbial community composition and
to detect genes and proteins from many organisms, including those at relatively low
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abundance. This generated a soil metagenomic dataset of unprecedented size (>200 Gb)
and complexity (>1,400 species). Given the massive data sizes involved in this research, we
limited analysis to ten samples so we do not attempt to describe overall shifts in the patterns
of microbial distribution during this time period. However, the spectrum of conditions
provided access to a wider variety of genomes than would be provided if analyses target
a single sampling location or time point. Also, we extracted DNA from large (∼200 g)
homogenized samples; this likely reduced the impact of spatial microheterogeneity and
probably explains why overlap in community composition could be detected.

Only recently has genome reconstruction from soil (seven from permafrost by Hultman
et al. (2015), seventeen from enrichments by Delmont et al. (2015), and 129 from prairie
soil by White et al. (2016)) been achieved. In our study, no single organism represented
>3% of the community. The extensive strain and within population variation likely
explains the high level of fragmentation of genomes for some organisms (Tables S1 and
S2). Even with these challenges, we reconstructed genomes from all the major lineages
represented in the microbial communities. We attribute this result to the assembly of
reads into large scaffolds, many of which could be binned because overlap in community
composition over the sample series enabled binning using abundance pattern information.
Scaffold assembly provided high quality ribosomal protein S3 sequences that were used
to distinguish organisms at the species level, a phylogenetic resolution exceeding that
which could be obtained by rRNA sequencing methods (Sharon et al., 2015). The predicted
protein dataset provided the foundation for multi-omic analyses that yielded functional
insights.

Most prior research on carbon cycling in soil has focused on microbial degradation
of complex soil organic macromolecules, likely derived in part from plant biomass. Our
metabolomics analysis suggest that the organic and nitrogenous substrates needed to sustain
microbial life disappear from the soils relatively rapidly as few metabolites accumulate to
measurable amounts in the deeper soil profile. Nitrogenous compounds, mostly free
amino acids, were identified in soil after the second rain in the 10–20 cm zone yet were
practically undetectable in the 30–40 cm zone. It is clear that the substrate availability
between one 10 cm zone to the next is very different to that in the upper soil horizon, and
will support different microbes. For example, the Verrucomicrobia and Actinobacteria
are only abundant in the 10–20 cm depth interval and much rarer in the 30–40 cm depth
interval. We also found abundant, diverse proteins involved amino acid and carbohydrate
degradation and import in every partial to near-complete draft genome. Because we
employed an untargeted proteomics, we could identify many thousands of proteins using a
peptide database composed of full-length genes predicted from the samples’ metagenomes.

Yet, interestingly the most abundant protein in the proteomics data was the PQQ-
dependent methanol dehydrogenase from Gemmatimonadetes and Rokubacteria. In
addition to complex carbohydrates, plant biomass and root exudates also provide an
abundant source of methanol (Sutton & Sposito, 2005). Previously, only members of
Proteobacteria, NC10, and Verrucomicrobia have been shown to be methylotrophs
(Chistoserdova, 2011; Op den Camp et al., 2009). Methylotrophy was tentatively linked to
Gemmatimonadetes only once before, when 13C methanol containing compounds were
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fed to a lake sediment sample and labeled Gemmatimonadetes 16S rRNA was identified
(Nercessian et al., 2005). Methylotrophy has been described in aerobic lake sediments
(Costello & Lidstrom, 1999), the phyllosphere (Corpe & Rheem, 1989; Delmotte et al., 2009)
marine (Radajewski et al., 2002; Stacheter et al., 2013), and soil (Eyice et al., 2015; Kolb,
2009; Radajewski et al., 2002; Stacheter et al., 2013) environments. These studies found that
methanol-oxidizing enzymes of Proteobacteria have micro- and nanomolar affinity for
methanol, the highest activity occurring in the root-associated soil, and thatmethylotrophic
communities thrive under the full range of plant diversity and soil pH (Radajewski et al.,
2002; Stacheter et al., 2013). Further, methylotrophic methanogenesis can occur under
aerobic conditions (Hofmann et al., 2016; Karl et al., 2008; Metcalf et al., 2012). However,
in our study, no methyl-coenzyme M reductase complex (mcrA) gene was predicted
in any dataset. Thus, methylotrophy is neither occurring in nor linked to co-occurring
methanogens.

Notably, we observe a significant fraction of the microbial community (87 distinct
organisms via rpS3 genes) belong to the as yet uncultured yet widespread phylum
Bathyarchaeota (formerly known as the Miscellaneous Crenarchaeotal Group) (Gagen
et al., 2013; Kubo et al., 2012). Bathyarchaeota have been identified by 16S rRNA studies
of sulfate-methane transition zones and hypothesized as being involved in dissimilatory
anaerobic methane oxidation coupled to organic carbon assimilation (Biddle et al., 2006).
In a recent report, Bathyarchaeota were identified in metagenomic analyses of coal-bed
methane well water. The genomes encoded a complete methanogenic pathway including
an ancient mcrA (Evans et al., 2015). The four draft (71–91%) Bathyarchaeota genomes
do not contain the genes required for methanotrophy or methanogenesis but encode
oligopeptide import and amino acid degradation pathways, which were also abundant
in the proteomics analysis. The large transporter diversity suggests substantial substrate
flexibility in Bathyarchaeota (and also in Thermoplasmatales archaea). Thus, along with
other communitymembers includingThermoplasmatales, Bathyarchaeota likely contribute
to degradation of nitrogen-containing compounds in the deeper soil. The findings underline
the importance of genomic resolution, because metabolic roles of the soil Bathyarchaeota
predicted based on phylogenetic information and previously published genomes would
have been incorrect.

CONCLUSION
This genome-resolved multi-omic study revealed many populations of little known
bacteria and archaea in sub-root zone soil microbial communities. Our proteogenomic
analysis yielded strong evidence for methanol oxidation in novel members of the
Gemmatimonadetes and Rokubacteria phyla. These capacities have not been previously
linked to organisms of these phyla, although Gemmatimonadetes are common members
of soil microbial communities. Rokubacteria, on the other hand, have not previously been
reported from soil, so the findings of this study contribute new information regarding
microbial community composition as well as function. Removal of methanol and other
small organic molecules from solutions draining from upper soil horizons by these
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bacteria limits their availability for metabolism by organisms at greater distance from
leaf-litter associated carbon sources. Although methanogeneis is not prominent in the
studied grassland, such activities in other soils could restrict the supply of methanol
to methylotrophic methanogens in deeper subsurface regions. We found that different
microbes and metabolites are abundant in samples collected just 10 cm apart. Likely, the
organisms are stratified by substrate availability, a pattern that results in part from the
activities of organisms in the overlying soil regions.

ACKNOWLEDGEMENTS
We would like to thank the rest of the members (and former members) of the Banfield lab
for their help with and the development of various tools and reference libraries, and Dr.
David Burstein for help with collecting soil samples. The sequencing was conducted by the
US Department of Energy Joint Genome Institute, a DOE Office of Science User Facility,
and Lawrence Berkeley National Laboratory.

ADDITIONAL INFORMATION AND DECLARATIONS

Funding
This work is supported by the Office of Science, Office of Biological and Environmental
Research, of the US Department of Energy Grant DOE-SC10010566. The sequencing
was conducted by the US Department of Energy Joint Genome Institute, a DOE Office
of Science User Facility, and Lawrence Berkeley National Laboratory under Contract
No. DE-AC02-05CH11231. The funders had no role in study design, data collection and
analysis, decision to publish, or preparation of the manuscript.

Grant Disclosures
The following grant information was disclosed by the authors:
Office of Science, Office of Biological and Environmental Research, of the US Department
of Energy: DOE-SC10010566.
US Department of Energy Joint Genome Institute.
DOE Office of Science User Facility. Lawrence Berkeley National Laboratory: DE-AC02-
05CH11231.

Competing Interests
The authors declare there are no competing interests.

Author Contributions
• Cristina N. Butterfield, Zhou Li and Peter F. Andeer conceived and designed
the experiments, performed the experiments, analyzed the data, contributed
reagents/materials/analysis tools, wrote the paper, prepared figures and/or tables,
reviewed drafts of the paper.
• Susan Spaulding performed the experiments, contributed reagents/materials/analysis
tools, prepared figures and/or tables.

Butterfield et al. (2016), PeerJ, DOI 10.7717/peerj.2687 19/28

https://peerj.com
http://dx.doi.org/10.7717/peerj.2687


• Brian C. Thomas performed the experiments, contributed reagents/materials/analysis
tools, wrote the paper, prepared figures and/or tables, reviewed drafts of the paper.
• Andrea Singh performed the experiments, contributed reagents/materials/analysis tools.
• Robert L. Hettich, Trent Northen and Chongle Pan conceived and designed the
experiments, contributed reagents/materials/analysis tools, wrote the paper, reviewed
drafts of the paper.
• Kenwyn B. Suttle performed the experiments, contributed reagents/materials/analysis
tools, wrote the paper, reviewed drafts of the paper.
• Alexander J. Probst performed the experiments, contributed reagents/materials/analysis
tools, wrote the paper, prepared figures and/or tables.
• Susannah G. Tringe contributed reagents/materials/analysis tools, wrote the paper,
reviewed drafts of the paper.
• Jillian F. Banfield conceived and designed the experiments, analyzed the data, contributed
reagents/materials/analysis tools, wrote the paper, prepared figures and/or tables,
reviewed drafts of the paper.

Field Study Permissions
The following information was supplied relating to field study approvals (i.e., approving
body and any reference numbers):

Angelo Coast Range Reserve Permission APP#27790.

DNA Deposition
The following information was supplied regarding the deposition of DNA sequences:

Sequencing reads: ‘‘Meadow soil samples from Angelo, CA genome sequencing and
assembly’’: SRA302421; Soil metagenome, BioProject PRJNA297196; and all data is also
available in ggKbase: http://ggkbase.berkeley.edu/angelo_ncbi_2016/organisms.

Data Availability
The following information was supplied regarding data availability:

The raw data has been supplied as a Supplemental File.

Supplemental Information
Supplemental information for this article can be found online at http://dx.doi.org/10.7717/
peerj.2687#supplemental-information.

REFERENCES
Aanderud ZT, Jones SE, Schoolmaster DR, Fierer N, Lennon JT. 2013. Sensitivity of

soil respiration and microbial communities to altered snowfall. Soil Biology and
Biochemistry 57:217–227 DOI 10.1016/j.soilbio.2012.07.022.

Adair KL,Wratten S, Lear G. 2013. Soil phosphorus depletion and shifts in plant com-
munities change bacterial community structure in a long-term grassland manage-
ment trial. Environmental Microbiology Reports 5:404–413
DOI 10.1111/1758-2229.12049.

Butterfield et al. (2016), PeerJ, DOI 10.7717/peerj.2687 20/28

https://peerj.com
https://www.ncbi.nlm.nih.gov/sra?term=SRA302421
http://www.ncbi.nlm.nih.gov/bioproject/?term=PRJNA297196
http://ggkbase.berkeley.edu/angelo_ncbi_2016/organisms
http://dx.doi.org/10.7717/peerj.2687/supplemental-information
http://dx.doi.org/10.7717/peerj.2687#supplemental-information
http://dx.doi.org/10.7717/peerj.2687#supplemental-information
http://dx.doi.org/10.1016/j.soilbio.2012.07.022
http://dx.doi.org/10.1111/1758-2229.12049
http://dx.doi.org/10.7717/peerj.2687


Aerts R, Bakker C, De Caluwe H. 1992. Root turnover as determinant of the cy-
cling of C, N, and P in a dry heathland ecosystem. Biogeochemistry 15:175–190
DOI 10.1007/BF00002935.

Anthony C,Williams P. 2003. The structure and mechanism of methanol dehy-
drogenase. Biochimica et Biophysica Acta—Proteins and Proteomics 1647:18–23
DOI 10.1016/S1570-9639(03)00042-6.

Banning NC, Gleeson DB, Grigg AH, Grant CD, Andersen GL, Brodie EL, Mur-
phy DV. 2011. Soil microbial community successional patterns during forest
ecosystem restoration. Applied and Environmental Microbiology 77:6158–6164
DOI 10.1128/AEM.00764-11.

Beck DAC, McTaggart TL, Setboonsarng U, Vorobev A, KalyuzhnayaMG, Ivanova
N, Goodwin L,Woyke T, LidstromME, Chistoserdova L. 2014. The ex-
panded diversity of Methylophilaceae from Lake Washington through cul-
tivation and genomic sequencing of novel ecotypes. PLoS ONE 9:e102458
DOI 10.1371/journal.pone.0102458.

Benjamini Y, Hochberg Y. 1995. Controlling the false discovery rate: a practical and
powerful approach to multiple testing. Journal of the Royal Statistical Society. Series
B (Methodological) 57:289–300.

Berendse F. 1994. Litter decomposability—a neglected component of plant fitness.
Journal of Ecology 82:187–190 DOI 10.2307/2261398.

Biddle JF, Lipp JS, Lever MA, Lloyd KG, Sørensen KB, Anderson R, Fredricks HF,
Elvert M, Kelly TJ, Schrag DP, SoginML, Brenchley JE, Teske A, House CH,
Hinrichs K-U. 2006.Heterotrophic Archaea dominate sedimentary subsurface
ecosystems off Peru. Proceedings of the National Academy of Sciences of the United
States of America 103:3846–3851 DOI 10.1073/pnas.0600035103.

Blazewicz SJ, Schwartz E, FirestoneMK. 2014. Growth and death of bacteria and fungi
underlie rainfall-induced carbon dioxide pulses from seasonally dried soil. Ecology
95:1162–1172 DOI 10.1890/13-1031.1.

Bogart JA, Lewis AJ, Schelter EJ. 2015. DFT study of the active site of the XoxF-type nat-
ural, cerium-dependent methanol dehydrogenase enzyme. Chemistry 21:1743–1748
DOI 10.1002/chem.201405159.

Brooks B, Mueller RS, Young JC, Morowitz MJ, Hettich RL, Banfield JF. 2015. Strain-
resolved microbial community proteomics reveals simultaneous aerobic and
anaerobic function during gastrointestinal tract colonization of a preterm infant.
Frontiers in Microbiology 6: Article 654 DOI 10.3389/fmicb.2015.00654.

Castelle CJ, Wrighton KC, Thomas BC, Hug LA, Brown CT,Wilkins MJ, Frischkorn
KR, Tringe SG, Singh A, Markillie LM, Taylor RC,Williams KH, Banfield
JF. 2015. Genomic expansion of domain archaea highlights roles for organ-
isms from new phyla in anaerobic carbon cycling. Current Biology 25:690–701
DOI 10.1016/j.cub.2015.01.014.

Chistoserdova L. 2011.Modularity of methylotrophy, revisited. Environmental Microbi-
ology 13:2603–2622 DOI 10.1111/j.1462-2920.2011.02464.x.

Butterfield et al. (2016), PeerJ, DOI 10.7717/peerj.2687 21/28

https://peerj.com
http://dx.doi.org/10.1007/BF00002935
http://dx.doi.org/10.1016/S1570-9639(03)00042-6
http://dx.doi.org/10.1128/AEM.00764-11
http://dx.doi.org/10.1371/journal.pone.0102458
http://dx.doi.org/10.2307/2261398
http://dx.doi.org/10.1073/pnas.0600035103
http://dx.doi.org/10.1890/13-1031.1
http://dx.doi.org/10.1002/chem.201405159
http://dx.doi.org/10.3389/fmicb.2015.00654
http://dx.doi.org/10.1016/j.cub.2015.01.014
http://dx.doi.org/10.1111/j.1462-2920.2011.02464.x
http://dx.doi.org/10.7717/peerj.2687


CorpeWA, Rheem S. 1989. Ecology of the methylotrophic bacteria on living leaf sur-
faces. FEMS Microbiology Letters 62:243–249 DOI 10.1016/0378-1097(89)90248-6.

Costello AM, LidstromME. 1999.Molecular characterization of functional and phylo-
genetic genes from natural populations of methanotrophs in lake sediments. Applied
and Environmental Microbiology 65:5066–5074.

Cruz-Martínez K, Suttle KB, Brodie EL, PowerME, Andersen GL, Banfield JF. 2009.
Despite strong seasonal responses, soil microbial consortia are more resilient to
long-term changes in rainfall than overlying grassland. ISME Journal 3:738–744
DOI 10.1038/ismej.2009.16.

Delmont TO, Eren AM,Maccario L, Prestat E, Esen OC, Pelletier E, Le Paslier D,
Simonet P, Vogel TM. 2015. Reconstructing rare soil microbial genomes using
in situ enrichments and metagenomics. Frontiers in Microbiology 6: Article 358
DOI 10.3389/fmicb.2015.00358.

Delmotte N, Knief C, Chaffron S, Innerebner G, Roschitzki B, Schlapbach R, Von
Mering C, Vorholt JA. 2009. Community proteogenomics reveals insights into the
physiology of phyllosphere bacteria. Proceedings of the National Academy of Sciences
of the United States of America 106:16428–16433 DOI 10.1073/pnas.0905240106.

Dixon P. 2003. VEGAN, a package of R functions for community ecology. Journal of
Vegetation Science 14:927–930.

Edgar R. 2004a.MUSCLE: a multiple sequence alignment method with reduced time and
space complexity. BMC Bioinformatics 5:1–19 DOI 10.1186/1471-2105-5-113.

Edgar RC. 2004b.MUSCLE: multiple sequence alignment with high accuracy and high
throughput. Nucleic Acids Research 32:1792–1797 DOI 10.1093/nar/gkh340.

Edgar RC. 2010. Search and clustering orders of magnitude faster than BLAST. Bioinfor-
matics 26:2460–2461 DOI 10.1093/bioinformatics/btq461.

Elias JE, Gygi SP. 2007. Target-decoy search strategy for increased confidence in large-
scale protein identifications by mass spectrometry. Nature Methods 4:207–214
DOI 10.1038/nmeth1019.

Evans PN, Parks DH, Chadwick GL, Robbins SJ, Orphan VJ, Golding SD, Tyson GW.
2015.Methane metabolism in the archaeal phylum Bathyarchaeota revealed by
genome-centric metagenomics. Science 350:434–438 DOI 10.1126/science.aac7745.

Evans SE,WallensteinMD. 2012. Soil microbial community response to drying and
rewetting stress: does historical precipitation regime matter? Biogeochemistry
109:101–116 DOI 10.1007/s10533-011-9638-3.

Eyice O, NamuraM, Chen Y, Mead A, Samavedam S, Schafer H. 2015. SIP metage-
nomics identifies uncultivated Methylophilaceae as dimethylsulphide degrading bac-
teria in soil and lake sediment. ISME Journal 9:2336–2348
DOI 10.1038/ismej.2015.37.

Fierer N, Leff JW, Adams BJ, Nielsen UN, Bates ST, Lauber CL, Owens S, Gilbert
JA,Wall DH, Caporaso JG. 2012. Cross-biome metagenomic analyses of soil
microbial communities and their functional attributes. Proceedings of the Na-
tional Academy of Sciences of the United States of America 109:21390–21395
DOI 10.1073/pnas.1215210110.

Butterfield et al. (2016), PeerJ, DOI 10.7717/peerj.2687 22/28

https://peerj.com
http://dx.doi.org/10.1016/0378-1097(89)90248-6
http://dx.doi.org/10.1038/ismej.2009.16
http://dx.doi.org/10.3389/fmicb.2015.00358
http://dx.doi.org/10.1073/pnas.0905240106
http://dx.doi.org/10.1186/1471-2105-5-113
http://dx.doi.org/10.1093/nar/gkh340
http://dx.doi.org/10.1093/bioinformatics/btq461
http://dx.doi.org/10.1038/nmeth1019
http://dx.doi.org/10.1126/science.aac7745
http://dx.doi.org/10.1007/s10533-011-9638-3
http://dx.doi.org/10.1038/ismej.2015.37
http://dx.doi.org/10.1073/pnas.1215210110
http://dx.doi.org/10.7717/peerj.2687


Fischer H, Ingwersen J, Kuzyakov Y. 2010.Microbial uptake of low-molecular-weight
organic substances out-competes sorption in soil. European Journal of Soil Science
61:504–513 DOI 10.1111/j.1365-2389.2010.01244.x.

Gagen EJ, Huber H, Meador T, Hinrichs KU, ThommM. 2013. Novel cultivation-
based approach to understanding the Miscellaneous Crenarchaeotic Group (MCG)
archaea from sedimentary ecosystems. Applied and Environmental Microbiology
79:6400–6406 DOI 10.1128/AEM.02153-13.

Goldfarb KC, Karaoz U, Hanson CA, Santee CA, BradfordMA, Treseder KK,Wal-
lensteinMD, Brodie EL. 2011. Differential growth responses of soil bacterial taxa
to carbon substrates of varying chemical recalcitrance. Frontiers in Microbiology 2:
Article 94 DOI 10.3389/fmicb.2011.00094.

He J, Xu Z, Hughes J. 2006.Molecular bacterial diversity of a forest soil under residue
management regimes in subtropical Australia. FEMS Microbiology Ecology 55:38–47
DOI 10.1111/j.1574-6941.2005.00006.x.

Henckel T, FriedrichM, Conrad R. 1999.Molecular analyses of the methane-oxidizing
microbial community in rice field soil by targeting the genes of the 16S rRNA,
particulate methane monooxygenase, and methanol dehydrogenase. Applied and
Environmental Microbiology 65:1980–1990.

Herzberger AJ, Duncan DS, Jackson RD. 2014. Bouncing back: plant-associated
soil microbes respond rapidly to prairie establishment. PLoS ONE 9:e115775
DOI 10.1371/journal.pone.0115775.

Hofmann K, Pauli H, Praeg N,Wagner AO, Illmer P. 2016.Methane-cycling microor-
ganisms in soils of a high-alpine altitudinal gradient. FEMS Microbiology Ecology
92(3): fiw009 DOI 10.1093/femsec/fiw009.

Hug LA, Thomas BC, Brown CT, Frischkorn KR,Williams KH, Tringe SG, Banfield
JF. 2015. Aquifer environment selects for microbial species cohorts in sediment and
groundwater. ISME Journal 9:1846–1856 DOI 10.1038/ismej.2015.2.

Hug LA, Thomas BC, Sharon I, Brown CT, Sharma R, Hettich RL,Wilkins MJ,
Williams KH, Singh A, Banfield JF. 2016. Critical biogeochemical functions in the
subsurface are associated with bacteria from new phyla and little studied lineages.
Environmental Microbiology 18:159–173 DOI 10.1111/1462-2920.12930.

Hultman J, WaldropMP, Mackelprang R, DavidMM,McFarland J, Blazewicz SJ,
Harden J, TuretskyMR, McGuire AD, ShahMB, VerBerkmoes NC, Lee LH,
Mavrommatis K, Jansson JK. 2015.Multi-omics of permafrost, active layer and
thermokarst bog soil microbiomes. Nature 521:208–212 DOI 10.1038/nature14238.

Hyatt D, Chen GL, LoCascio PF, LandML, Larimer FW, Hauser LJ. 2010. Prodigal:
prokaryotic gene recognition and translation initiation site identification. BMC
Bioinformatics 11:119 DOI 10.1186/1471-2105-11-119.

Hyatt D, Pan C. 2012. Exhaustive database searching for amino acid mutations in
proteomes. Bioinformatics 28:1895–1901 DOI 10.1093/bioinformatics/bts274.

Jones DL, Shannon D, Murphy DV, Farrar J. 2004. Role of dissolved organic nitrogen
(DON) in soil N cycling in grassland soils. Soil Biology and Biochemistry 36:749–756
DOI 10.1016/j.soilbio.2004.01.003.

Butterfield et al. (2016), PeerJ, DOI 10.7717/peerj.2687 23/28

https://peerj.com
http://dx.doi.org/10.1111/j.1365-2389.2010.01244.x
http://dx.doi.org/10.1128/AEM.02153-13
http://dx.doi.org/10.3389/fmicb.2011.00094
http://dx.doi.org/10.1111/j.1574-6941.2005.00006.x
http://dx.doi.org/10.1371/journal.pone.0115775
http://dx.doi.org/10.1093/femsec/fiw009
http://dx.doi.org/10.1038/ismej.2015.2
http://dx.doi.org/10.1111/1462-2920.12930
http://dx.doi.org/10.1038/nature14238
http://dx.doi.org/10.1186/1471-2105-11-119
http://dx.doi.org/10.1093/bioinformatics/bts274
http://dx.doi.org/10.1016/j.soilbio.2004.01.003
http://dx.doi.org/10.7717/peerj.2687


Kandeler E, Mosier AR, Morgan JA, Milchunas DG, King JY, Rudolph S, Tscherko
D. 2006. Response of soil microbial biomass and enzyme activities to the transient
elevation of carbon dioxide in a semi-arid grassland. Soil Biology and Biochemistry
38:2448–2460 DOI 10.1016/j.soilbio.2006.02.021.

Kanehisa M, Goto S, Sato Y, Furumichi M, TanabeM. 2012. KEGG for integration
and interpretation of large-scale molecular data sets. Nucleic Acids Research
40:D109–D114 DOI 10.1093/nar/gkr988.

Karl DM, Beversdorf L, Bjorkman KM, ChurchMJ, Martinez A, Delong EF.
2008. Aerobic production of methane in the sea. Nature Geoscience 1:473–478
DOI 10.1038/ngeo234.

Keltjens JT, Pol A, Reimann J, Op Den CampHJM. 2014. PQQ-dependent methanol
dehydrogenases: rare-earth elements make a difference. Applied Microbiology and
Biotechnology 98:6163–6183 DOI 10.1007/s00253-014-5766-8.

Kolb S. 2009. Aerobic methanol-oxidizing Bacteria in soil. FEMS Microbiology Letters
300:1–10 DOI 10.1111/j.1574-6968.2009.01681.x.

Kubo K, Lloyd KG, Biddle JF, Amann R, Teske A, Knittel K. 2012. Archaea of the
Miscellaneous Crenarchaeotal Group are abundant, diverse and widespread in
marine sediments. ISME Journal 6:1949–1965 DOI 10.1038/ismej.2012.37.

Kuramae EE, Yergeau E,Wong LC, Pijl AS, Van Veen JA, Kowalchuk GA. 2012. Soil
characteristics more strongly influence soil bacterial communities than land-use
type. FEMS Microbiology Ecology 79:12–24 DOI 10.1111/j.1574-6941.2011.01192.x.

Lauber CL, HamadyM, Knight R, Fierer N. 2009. Pyrosequencing-based assessment of
soil pH as a predictor of soil bacterial community structure at the continental scale.
Applied and Environmental Microbiology 75:5111–5120 DOI 10.1128/AEM.00335-09.

Li Z,Wang Y, Yao Q, Justice NB, Ahn TH, Xu D, Hettich RL, Banfield JF, Pan C. 2014.
Diverse and divergent protein post-translational modifications in two growth
stages of a natural microbial community. Nature Communications 5: Article 4405
DOI 10.1038/ncomms5405.

Lloyd KG, Schreiber L, Petersen DG, Kjeldsen KU, Lever MA, Steen AD, Stepanauskas
R, Richter M, Kleindienst S, Lenk S, SchrammA, Jorgensen BB. 2013. Predominant
archaea in marine sediments degrade detrital proteins. Nature 496:215–218
DOI 10.1038/nature12033.

Luo C, Rodriguez-R LM, Johnston ER,Wu L, Cheng L, Xue K, Tu Q, Deng Y, He Z, Shi
JZ, YuanMM, Sherry RA, Li D, Luo Y, Schuur EAG, Chain P, Tiedje JM, Zhou
J, Konstantinidis KT. 2014. Soil microbial community responses to a decade of
warming as revealed by comparative metagenomics. Applied and Environmental
Microbiology 80:1777–1786 DOI 10.1128/AEM.03712-13.

Markham P, Robson GD, Bainbridge BW, Trinci AP. 1993. Choline: its role in the
growth of filamentous fungi and the regulation of mycelial morphology. FEMS
Microbiology Reviews 10:287–300.

Mau RL, Liu CM, Aziz M, Schwartz E, Dijkstra P, Marks JC, Price LB, Keim P, Hungate
BA. 2015. Linking soil bacterial biodiversity and soil carbon stability. ISME Journal
9:1477–1480 DOI 10.1038/ismej.2014.205.

Butterfield et al. (2016), PeerJ, DOI 10.7717/peerj.2687 24/28

https://peerj.com
http://dx.doi.org/10.1016/j.soilbio.2006.02.021
http://dx.doi.org/10.1093/nar/gkr988
http://dx.doi.org/10.1038/ngeo234
http://dx.doi.org/10.1007/s00253-014-5766-8
http://dx.doi.org/10.1111/j.1574-6968.2009.01681.x
http://dx.doi.org/10.1038/ismej.2012.37
http://dx.doi.org/10.1111/j.1574-6941.2011.01192.x
http://dx.doi.org/10.1128/AEM.00335-09
http://dx.doi.org/10.1038/ncomms5405
http://dx.doi.org/10.1038/nature12033
http://dx.doi.org/10.1128/AEM.03712-13
http://dx.doi.org/10.1038/ismej.2014.205
http://dx.doi.org/10.7717/peerj.2687


McKissock I, Gilkes RJ, Walker EL. 2002. The reduction of water repellency by added
clay is influenced by clay and soil properties. Applied Clay Science 20:225–241
DOI 10.1016/S0169-1317(01)00074-6.

Metcalf WW, Griffin BM, Cicchillo RM, Gao J, Janga SC, Cooke HA, Circello BT,
Evans BS, Martens-HabbenaW, Stahl DA, Van der DonkWA. 2012. Synthesis of
methylphosphonic acid by marine microbes: a source for methane in the aerobic
ocean. Science 337:1104–1107 DOI 10.1126/science.1219875.

Mosier AC, Li Z, Thomas BC, Hettich RL, Pan C, Banfield JF. 2015. Elevated tempera-
ture alters proteomic responses of individual organisms within a biofilm community.
ISME Journal 9:180–194 DOI 10.1038/ismej.2014.113.

Muyzer G, DeWaal EC, Uitterlinden AG. 1993. Profiling of complex microbial
populations by denaturing gradient gel electrophoresis analysis of polymerase
chain reaction-amplified genes coding for 16S rRNA. Applied and Environmental
Microbiology 59:695–700.

Nawrocki EP, Kolbe DL, Eddy SR. 2009. Infernal 1.0: inference of RNA alignments.
Bioinformatics 25:1335–1337 DOI 10.1093/bioinformatics/btp157.

Nercessian O, Noyes E, KalyuzhnayaMG, LidstromME, Chistoserdova L. 2005.
Bacterial populations active in metabolism of C1 compounds in the sediment
of Lake Washington, a freshwater lake. Applied and Environmental Microbiology
71:6885–6899 DOI 10.1128/AEM.71.11.6885-6899.2005.

Nesvizhskii AI, Aebersold R. 2005. Interpretation of shotgun proteomic data:
the protein inference problem.Molecular & Cellular Proteomics 4:1419–1440
DOI 10.1074/mcp.R500012-MCP200.

Ogata H, Goto S, Sato K, FujibuchiW, Bono H, Kanehisa M. 1999. KEGG: ky-
oto encyclopedia of genes and genomes. Nucleic Acids Research 27:29–34
DOI 10.1093/nar/27.1.29.

Op den CampHJM, Islam T, Stott MB, Harhangi HR, Hynes A, Schouten S, Jetten
MSM, Birkeland NK, Pol A, Dunfield PF. 2009. Environmental, genomic and
taxonomic perspectives on methanotrophic Verrucomicrobia. Environmental
Microbiology Reports 1:293–306 DOI 10.1111/j.1758-2229.2009.00022.x.

Osborn AM,Moore ERB, Timmis KN. 2000. An evaluation of terminal-restriction
fragment length polymorphism (T-RFLP) analysis for the study of microbial
community structure and dynamics. Environmental Microbiology 2:39–50
DOI 10.1046/j.1462-2920.2000.00081.x.

Pan C, Banfield JF. 2014. Quantitative metaproteomics: functional insights into micro-
bial communities.Methods in Molecular Biology 1096:231–240
DOI 10.1007/978-1-62703-712-9_18.

Pell J, Hintze A, Canino-Koning R, Howe A, Tiedje JM, Brown CT. 2012. Scaling
metagenome sequence assembly with probabilistic de Bruijn graphs. Proceedings of
the National Academy of Sciences of the United States of America 109:13272–13277
DOI 10.1073/pnas.1121464109.

Peltoniemi K, Laiho R, Juottonen H, Kiikkilä O, Mäkiranta P, Minkkinen K, Pennanen
T, Penttilä T, Sarjala T, Tuittila E-S, Tuomivirta T, Fritze H. 2015.Microbial

Butterfield et al. (2016), PeerJ, DOI 10.7717/peerj.2687 25/28

https://peerj.com
http://dx.doi.org/10.1016/S0169-1317(01)00074-6
http://dx.doi.org/10.1126/science.1219875
http://dx.doi.org/10.1038/ismej.2014.113
http://dx.doi.org/10.1093/bioinformatics/btp157
http://dx.doi.org/10.1128/AEM.71.11.6885-6899.2005
http://dx.doi.org/10.1074/mcp.R500012-MCP200
http://dx.doi.org/10.1093/nar/27.1.29
http://dx.doi.org/10.1111/j.1758-2229.2009.00022.x
http://dx.doi.org/10.1046/j.1462-2920.2000.00081.x
http://dx.doi.org/10.1007/978-1-62703-712-9_18
http://dx.doi.org/10.1073/pnas.1121464109
http://dx.doi.org/10.7717/peerj.2687


ecology in a future climate: effects of temperature and moisture on microbial
communities of two boreal fens. FEMS Microbiology Ecology 91(7): fiv062
DOI 10.1093/femsec/fiv062.

Peng Y, Leung HCM, Yiu SM, Chin FYL. 2012. IDBA-UD: a de novo assembler for
single-cell and metagenomic sequencing data with highly uneven depth. Bioinfor-
matics 28:1420–1428 DOI 10.1093/bioinformatics/bts174.

Pester M, Rattei T, Flechl S, Gröngröft A, Richter A, Overmann J, Reinhold-
Hurek B, Loy A,Wagner M. 2012. AmoA-based consensus phylogeny of
ammonia-oxidizing archaea and deep sequencing of amoA genes from soils
of four different geographic regions. Environmental Microbiology 14:525–539
DOI 10.1111/j.1462-2920.2011.02666.x.

Piper CL, Siciliano SD,Winsley T, Lamb EG. 2015. Smooth brome invasion increases
rare soil bacterial species prevalence, bacterial species richness and evenness. Journal
of Ecology 103:386–396 DOI 10.1111/1365-2745.12356.

Placella SA, Brodie EL, FirestoneMK. 2012. Rainfall-induced carbon dioxide pulses
result from sequential resuscitation of phylogenetically clustered microbial groups.
Proceedings of the National Academy of Sciences of the United States of America
109:10931–10936 DOI 10.1073/pnas.1204306109.

Pol A, Barends TRM, Dietl A, Khadem AF, Eygensteyn J, JettenMSM, Op den Camp
HJM. 2014. Rare earth metals are essential for methanotrophic life in volcanic
mudpots. Environmental Microbiology 16:255–264 DOI 10.1111/1462-2920.12249.

Prober SM, Leff JW, Bates ST, Borer ET, Firn J, HarpoleWS, Lind EM, Seabloom
EW, Adler PB, Bakker JD, Cleland EE, Decrappeo NM, Delorenze E, Hagenah N,
Hautier Y, Hofmockel KS, Kirkman KP, Knops JMH, La Pierre KJ, Macdougall AS,
McCulley RL, Mitchell CE, Risch AC, Schuetz M, Stevens CJ, Williams RJ, Fierer
N. 2015. Plant diversity predicts beta but not alpha diversity of soil microbes across
grasslands worldwide. Ecology Letters 18:85–95 DOI 10.1111/ele.12381.

Probst AJ, Castelle CJ, Singh A, Brown CT, Anantharaman K, Sharon I, Hug LA,
Burstein D, Emerson JB, Thomas BC, Banfield JF. 2016. Genomic resolution of a
cold subsurface aquifer community provides metabolic insights for novel microbes
adapted to high CO<inf>2</inf> concentrations. Environmental Microbiology Epub
ahead of print Apr 26 2016 DOI 10.1111/1462-2920.13362.

Pruesse E, Peplies J, Glöckner FO. 2012. SINA: accurate high-throughput multiple
sequence alignment of ribosomal RNA genes. Bioinformatics 28:1823–1829
DOI 10.1093/bioinformatics/bts252.

Pruesse E, Quast C, Knittel K, Fuchs BM, LudwigW, Peplies J, Glöckner FO. 2007.
SILVA: a comprehensive online resource for quality checked and aligned ribosomal
RNA sequence data compatible with ARB. Nucleic Acids Research 35:7188–7196
DOI 10.1093/nar/gkm864.

Radajewski S, Webster G, Reay DS, Morris SA, Ineson P, Nedwell DB, Prosser JI,
Murrell JC. 2002. Identification of active methylotroph populations in an acidic
forest soil by stable-isotope probing.Microbiology 148:2331–2342.

Butterfield et al. (2016), PeerJ, DOI 10.7717/peerj.2687 26/28

https://peerj.com
http://dx.doi.org/10.1093/femsec/fiv062
http://dx.doi.org/10.1093/bioinformatics/bts174
http://dx.doi.org/10.1111/j.1462-2920.2011.02666.x
http://dx.doi.org/10.1111/1365-2745.12356
http://dx.doi.org/10.1073/pnas.1204306109
http://dx.doi.org/10.1111/1462-2920.12249
http://dx.doi.org/10.1111/ele.12381
http://dx.doi.org/10.1111/1462-2920.13362
http://dx.doi.org/10.1093/bioinformatics/bts252
http://dx.doi.org/10.1093/nar/gkm864
http://dx.doi.org/10.7717/peerj.2687


R Core Team. 2015. R: a language and environment for statistical computing. Vienna: R
Foundation for Statistical Computing. Available at http://www.R-project.org/ .

Reinsch S, Michelsen A, Sárossy Z, Egsgaard H, Schmidt IK, Jakobsen I, Ambus P.
2014. Short-term utilization of carbon by the soil microbial community under future
climatic conditions in a temperate heathland. Soil Biology and Biochemistry 68:9–19
DOI 10.1016/j.soilbio.2013.09.014.

Schimel JP, Schaeffer SM. 2012.Microbial control over carbon cycling in soil. Frontiers
in Microbiology 3: Article 348 DOI 10.3389/fmicb.2012.00348.

Scott JW, RascheME. 2002. Purification, overproduction, and partial characterization of
β-RFAP synthase, a key enzyme in the methanopterin biosynthesis pathway. Journal
of Bacteriology 184:4442–4448 DOI 10.1128/jb.184.16.4442-4448.2002.

Sharon I, Kertesz M, Hug LA, Pushkarev D, Blauwkamp TA, Castelle CJ, Amirebrahimi
M, Thomas BC, Burstein D, Tringe SG,Williams KH, Banfield JF. 2015. Accurate,
multi-kb reads resolve complex populations and detect rare microorganisms.
Genome Research 25:534–543 DOI 10.1101/gr.183012.114.

Skovran E, Gomez NCM. 2015. Just add lanthanides. Science 348:862–863
DOI 10.1126/science.aaa9091.

Stacheter A, Noll M, Lee CK, Selzer M, Glowik B, Ebertsch L, Mertel R, Schulz D,
Lampert N, Drake HL, Kolb S. 2013.Methanol oxidation by temperate soils and en-
vironmental determinants of associated methylotrophs. ISME Journal 7:1051–1064
DOI 10.1038/ismej.2012.167.

Stamatakis A. 2014. RAxML version 8: a tool for phylogenetic analysis and post-analysis
of large phylogenies. Bioinformatics 30:1312–1313
DOI 10.1093/bioinformatics/btu033.

Suttle KB, ThomsenMA, PowerME. 2007. Species interactions reverse grassland
responses to changing climate. Science 315:640–642 DOI 10.1126/science.1136401.

Sutton R, Sposito G. 2005.Molecular structure in soil humic substances: the new view.
Environmental Science and Technology 39:9009–9015 DOI 10.1021/es050778q.

Suzek BE, Huang H, McGarvey P, Mazumder R,Wu CH. 2007. UniRef: comprehensive
and non-redundant UniProt reference clusters. Bioinformatics 23:1282–1288
DOI 10.1093/bioinformatics/btm098.

Swenson TL, Jenkins S, Bowen BP, Northen TR. 2015. Untargeted soil metabolomics
methods for analysis of extractable organic matter. Soil Biology and Biochemistry
80:189–198 DOI 10.1016/j.soilbio.2014.10.007.

Taubert M, Grob C, Howat AM, Burns OJ, Dixon JL, Chen Y, Murrell JC. 2015.
XoxF encoding an alternative methanol dehydrogenase is widespread in
coastal marine environments. Environmental Microbiology 17:3937–3948
DOI 10.1111/1462-2920.12896.

Verastegui Y, Cheng J, Engel K, Kolczynski D, Mortimer S, Lavigne J, Montalibet J,
Romantsov T, Hall M, McConkey BJ, Rose DR, Tomashek JJ, Scott BR, Charles
TC, Neufeld JD. 2014.Multisubstrate isotope labeling and metagenomic analysis
of active soil bacterial communities.mBio 5:e44203 DOI 10.1128/mBio.01157-14.

Butterfield et al. (2016), PeerJ, DOI 10.7717/peerj.2687 27/28

https://peerj.com
http://www.R-project.org/
http://dx.doi.org/10.1016/j.soilbio.2013.09.014
http://dx.doi.org/10.3389/fmicb.2012.00348
http://dx.doi.org/10.1128/jb.184.16.4442-4448.2002
http://dx.doi.org/10.1101/gr.183012.114
http://dx.doi.org/10.1126/science.aaa9091
http://dx.doi.org/10.1038/ismej.2012.167
http://dx.doi.org/10.1093/bioinformatics/btu033
http://dx.doi.org/10.1126/science.1136401
http://dx.doi.org/10.1021/es050778q
http://dx.doi.org/10.1093/bioinformatics/btm098
http://dx.doi.org/10.1016/j.soilbio.2014.10.007
http://dx.doi.org/10.1111/1462-2920.12896
http://dx.doi.org/10.1128/mBio.01157-14
http://dx.doi.org/10.7717/peerj.2687


Veresoglou SD, Thornton B, Menexes G, Mamolos AP, Veresoglou DS. 2012. Soil
fertilization leads to a decline in between-samples variability of microbial com-
munity δ13C profiles in a grassland fertilization experiment. PLoS ONE 7:e44203
DOI 10.1371/journal.pone.0044203.

Vizcaíno JA, Csordas A, Del-Toro N, Dianes JA, Griss J, Lavidas I, Mayer G, Perez-
Riverol Y, Reisinger F, Ternent T, Xu QW,Wang R, Hermjakob H. 2016.
2016 update of the PRIDE database and its related tools. Nucleic Acids Research
44:D447–D456 DOI 10.1093/nar/gkv1145.

Wang Y, Ahn TH, Li Z, Pan C. 2013. Sipros/ProRata: a versatile informatics sys-
tem for quantitative community proteomics. Bioinformatics 29:2064–2065
DOI 10.1093/bioinformatics/btt329.

WashburnMP,Wolters D, Yates 3rd JR. 2001. Large-scale analysis of the yeast proteome
by multidimensional protein identification technology. Nature Biotechnology
19:242–247 DOI 10.1038/85686.

Wedin DA, Tilman D. 1990. Species effects on nitrogen cycling: a test with perennial
grasses. Oecologia 84:433–441 DOI 10.1007/BF00328157 .

White RA, Bottos EM, Roy Chowdhury T, Zucker JD, Brislawn CJ, Nicora CD, Fansler
SJ, Glaesemann KR, Glass K, Jansson JK. 2016.Moleculo long-read sequencing
facilitates assembly and genomic binning from complex soil metagenomes.mSystems
1(3):e00045-16 DOI 10.1128/mSystems.00045-16.

White R, Murray A, Rohweder M. 2000. Pilot analysis of global ecosystems: grassland
ecosystems. Washington, D.C.: World Resources Institute.

Wisniewski JR, Zougman A, Nagaraj N, MannM. 2009. Universal sample preparation
method for proteome analysis. Nature Methods 6:359–362 DOI 10.1038/nmeth.1322.

Butterfield et al. (2016), PeerJ, DOI 10.7717/peerj.2687 28/28

https://peerj.com
http://dx.doi.org/10.1371/journal.pone.0044203
http://dx.doi.org/10.1093/nar/gkv1145
http://dx.doi.org/10.1093/bioinformatics/btt329
http://dx.doi.org/10.1038/85686
http://dx.doi.org/10.1007/BF00328157 
http://dx.doi.org/10.1128/mSystems.00045-16
http://dx.doi.org/10.1038/nmeth.1322
http://dx.doi.org/10.7717/peerj.2687

