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ABSTRACT
The ‘‘Graphical Fragment Assembly’’ (GFA) is an emerging format for the represen-
tation of sequence assembly graphs, which can be adopted by both de Bruijn graph-
and string graph-based assemblers. Here we present RGFA, an implementation of the
proposed GFA specification in Ruby. It allows the user to conveniently parse, edit and
write GFA files. Complex operations such as the separation of the implicit instances of
repeats and themerging of linear paths can be performed. A typical application of RGFA
is the editing of a graph, to finish the assembly of a sequence, using information not
available to the assembler. We illustrate a use case, in which the assembly of a repetitive
metagenomic fosmid insert was completed using a script based on RGFA. Furthermore,
we show how the API provided by RGFA can be employed to design complex graph
editing algorithms. As an example, we developed a detection algorithm for CRISPRs in
a de Bruijn graph. Finally, RGFA can be used for comparing assembly graphs, e.g., to
document the changes in a graph after applying a GUI editor. A program, GFAdiff is
provided, which compares the information in two graphs, and generate a report or a
Ruby script documenting the transformation steps between the graphs.

Subjects Bioinformatics, Genomics
Keywords GFA format, Sequence assembling, Assembly graph, Software library, Graphical
Fragment Assembly, Graph transformation

INTRODUCTION
The advent of the next generation sequencing technologies was accompanied by the
development of analysis tools, able to cope with the large datasets and the peculiarities of
different sequencing platforms. An important class of sequence analysis tools are sequence
assemblers, which aim at assembling a set of sequencing reads into a complete sequence.

Most assembly programs are based on graph representations of common substrings of
the sequencing reads. Some popular assembly programs, such as Velvet (Zerbino & Birney,
2008) and SPAdes (Bankevich et al., 2012) employ a de Bruijn graph. In this graph, each
k-mer w in the sequence reads corresponds to an edge in the graph connecting those
nodes, representing respectively, the two (k−1)-mers of w . Other assemblers, such as
SGA (Simpson & Durbin, 2012) and Readjoiner (Gonnella & Kurtz, 2012) employ a string
graph. This is a representation of the set of strings compatible with the set of sequencing
reads and their overlaps. It can be obtained from an overlap graph, in which each read is
represented by a node, and each edge stands for a suffix-prefix match of a pair of reads.

The final output of an assembler program is, in most cases, a collection of contig
sequences, obtained by traversing the assembly graph. However, the assembly graph
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itself offers more information than the set of contigs: it contains, in a compact form, all
information about sequence similarities between the sequence reads. As a consequence,
all possible solutions for assemblies involving sequence repeats can be derived from the
assembly graph. Sequence polymorphisms, repeats and lack of coverage in the sequence
data lead to characteristic signatures in the graph and a careful analysis of these signatures
may provide an understanding of, e.g., why the assembler traversing the paths in the graph
does not deliver a complete genome sequence.

Manual editing of the graph is often necessary to improve or finish the assembly. For
example, certain paths may be selected based on additional information and decisions
about the orientation of a given sequence may be made. Although assemblers often output
the assembly graph to file, an obstacle to the development of tools for handling those
graphs has been the lack of a common file format.

In 2014 the ‘‘Graphical Fragment Assembly’’ (Li, 2014) was introduced as a
common format. It is compatible to both de Bruijn graphs and string graphs.
Subsequently, a collaborative open project has developed the initial draft into a full
specification proposal (GFA Format Specification Working Group, 2016). The proposed
GFA specification has been adopted by different software packages; however, support
for the manipulation of GFA graphs in scripting languages is currently very limited
(see ‘Discussion’).

In this work, we present RGFA, an implementation of the GFA specification in the
scripting language Ruby. It offers an API to parse, edit and write GFA files, complying
with the proposed standard. The RGFA library is complemented by the RGFATools. These
exploit the flexibility of the GFA format, by employing their own custom fields and own
naming conventions convenient for more advanced graph manipulation algorithms.

The API provided by RGFA was designed to facilitate easy implementation of custom
analysis pipelines. The readability of code based on RGFA well supports the documentation
of ad-hoc developed editing steps applied to assembly graphs. Such a documentation is
sometimes required to allow reproducibility of an assembly which has been manually
finished. Another use case of RGFA is the rapid prototyping of new graph editing
algorithms. We give examples of these scenarios by providing use cases of RGFA for
assembling repetitive fosmid inserts and for detecting Clustered Regularly Interspaced
Short Palindromic Repeats (CRISPRs) in de Bruijn graphs.

RGFA and RGFATools are available at http://github.com/ggonnella/rgfa.

METHODS
RGFA and RGFATools
RGFA has been developed using Ruby, version 2.0 and follows the conventions and format
specified by the packaging system Rubygem.

The RGFA package provides an implementation of the ‘‘Graphical Format Assembly’’
(GFA) format in Ruby. In particular, the proposed GFA specification (GFA Format
Specification Working Group, 2016) (last commit on May 17. 2016) is fully supported.
RGFA contains methods to construct a GFA graph, read a graph from file, validate and edit
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it and write it back to file. It also allows simple graph manipulation, limited to operations
which do not make any assumption on the graph content and do not define any custom
fields.

RGFATools is implemented as a separate part of the RGFA package, which can be
optionally required if needed. It provides further methods and scripts to manipulate,
simplify and compare graphs. In contrast to the main RGFA code, which is generic, some
assumptions are made, e.g., requiring the presence of count information on segments.
Furthermore, RGFATools also defines several optional custom fields required by its
operations. This contrast is the main reason for splitting the software into two parts.

GFA graphs
A GFA file specifies records representing the GFA graph. Sequences are represented by
nodes, named segments (record type S). The segments are connected by different kinds of
edges both representing suffix-prefix matches (SPMs) of pairs of segments; containments
(record type C) represent SPMs in which one segment is completely contained in the other
and links (record type L) represent SPMs for which this is not true. Furthermore, the GFA
file can contain generic information in header records (type H) and paths in the graph can
explicitly be represented by dedicated path records (type P).

The GFA graph was implemented in the RGFA class of RGFA. It is comprised of a
collection of RGFA::Line objects, as described below. Segments and paths are stored in
hash tables, which allow a simple and efficient lookup by record name. The graph traversal
is made possible by references which connect links/containments and segments, in both
directions.

The class RGFA provides a method info to obtain basic topology information, such as
the number of connected components and of the number of dead-ends, as well as sequence
statistics, such as the total, longest, shortest, average and N50 segment sequence lengths.

The format of GFA lines
Each line in a GFA file specifies a record consisting of tab-separated fields. The first field
is always required (empty lines can be ignored) and it consists of a single capital letter
specifying the record type. Depending of the record type, further fields are required. Past
the required fields, optional fields (also denoted tags) can follow.

The record type and the other required fields are defined by the column they occur in.
Optional fields consist of field name, data type and value. The field name consists of two
letters or one letter and one number: upper case letters are reserved for optional fields
pre-defined in the GFA specification, while applications can define custom fields using
lower case letters for their name. The available data types for optional fields are A (single
characters), i (signed integers), f (floating points numbers), Z (strings), J (JSON data), H
(byte arrays) and B (numeric arrays).

Lines of the GFA format are implemented in RGFA by the class RGFA::Line. For each
record type, a subclass of RGFA::Line is defined. This provides a list of required fields
and predefined optional fields, as well as methods relevant only to a specific record type.
The data type for each field is validated using the regular expression provided in the GFA
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specification. For optional fields, the field name is also validated according to the above
mentioned criteria. Methods for setting and getting field values and creating new optional
fields are dynamically generated.

When accessed, the value of a field is converted from or into an appropriate Ruby class.
This applies to required fields, whenever possible, and to optional fields of type i (Integer),
f (Float), B (Array of Integer or Float) and J (Array or Hash).

The class GFA provides methods to add objects derived from header, segment, link,
containment and path lines to a graph. Once a graph has been completely read or
constructed, references to the segments in links, containments and paths can be validated.
If a segment is deleted, the deletion is cascaded (by default) to all links, containments and
paths referring to it. If a segment or path is renamed, all references to it are updated.

Double strand sequences, segment orientation and segment ends
As the segments refer to DNA sequences, it always represents a sequence and its reverse
complement at the same time. In all references to a segment in GFA (stored in the fields
from and to of links and containments and in the field segment names of paths) the segment
names are always accompanied by a flag specifying the orientation of the segment in the
current context.

Some assembly graphs, such as the original string graph as defined by Myers (2005),
explicitly handle the two ends of a sequence as related but separate entities. Thereby, the B
and E ends of a sequence can be viewed as imaginary points located, respectively, before
the beginning and after the end of the sequence in its forward orientation.

In the GFA specification, there is no explicit concept of segment ends. However, in order
to traverse and simplify the graph, it is useful to explicitly consider the segment ends. For
this reason, RGFA provides methods which allow the user to retrieve the links between two
specific segment ends or all links of a given segment end.

A conversion from the internal links representation is obtained as follows. The links of
the B-end of a segment are all links either from the segment in reverse orientation, or links
to the segment in forward orientation. The links of the E-end of a segment are all links from
the segment in forward orientation or to the segment in reverse orientation.

Read count, coverage and copy number
The GFA specification defines optional fields for storing counts, namely the number of
reads (RC), k-mers (KC) or fragments (FC), (all denoted by c in this context) supporting a
particular segment. This information can either be provided directly by the assembler, or
obtained by mapping the sequencing reads to the segment sequences.

RGFA provides a method for computing the coverage of a segment s. The average length
of reads or fragments or the k-mer count, all denoted by ` in this context, can be provided to
compute a more accurate coverage for short segments as follows: coverage(c,s,`)= c

|s|−`+1 .
RGFATools provide a method which allows to compute, based on the coverage, an

estimated copy number for each segment. The current implementation requires the user
to provide a coverage value scov of single copy segments. A minimal coverage mincov can
also be provided. By default mincov = 0.25 · scov . Then for each segment s of coverage cov ,
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the copy number cn(s,cov) is defined by

cn(s,cov)=


0 if cov <mincov
1 if mincov ≤ cov < scov ·1.5⌊ cov
scov
+0.5

⌋
otherwise.

.

Segment multiplication
RGFA provides a method to clone a given segment s. The method requires the user to
specify a multiplication factor m≥ 2. It replaces s by m segments (termed here copies of s)
identical to s, except for the count tag values, which are divided by m.

By default, the method duplicates all links of s in each of the copies. However, this is not
always ideal. For example, consider the situation where an end of a segment s1 is connected
to two segments s2 and s3, and the copy number of s1 is double that of s2 and s3. In this
case, it is useful to distribute the links of s1 among the copies s′1 and s

′′

1 of s1, so that the
link to s2 is assigned to s′1 and the link to s3 is assigned to s

′′

1. For this reason, RGFATools
extends the multiplication operation, providing a links distribution feature, described in
the next section.

Furthermore, RGFATools provides origin tracking for the multiplication operation,
introducing a custom string field or (origin). If s.or is not yet set, then s.or is set to
s.name, the name of s. The value of s.or is then copied to all clones.

Distribution of links among the copies of a segment
Let S be the set of segments cloned from s, which replace s after multiplication. Let L be
the set of links of one of the ends of s. RGFATools provides an optional extension of the
multiplication operation, which can be applied if the segments in S, as well as all segments
reachable from them have the copy number 1 after multiplication. In this case, RGFATools
distributes L on S as follows.

Letm be the multiplication factor (number of copies of s after multiplication). Heuristic
criteria are applied to select the end of s from which L is taken to be distributed on S. The
criteria aim at eliminating as many links as possible, without loosing any information. The
process of distributing L on S is then performed as follows. The segments S={S1,S2,...,Sm}
are processed one after the other. Let n= |L| and L= {L1,L2,...,Ln}. In the i-th iteration,
links are assigned to Si as follows. If n≤m, then Li is assigned to Si. The lastm−n elements
of S, if any, will remain without a link.

If n>m, then all links in L′ = {Li,...,Li+n−m} are assigned to Si. As the operation
assumes that the copy number in S and all segments reachable from it is of the value 1, a
Hamiltonian path will follow only one of the links from each of the copies. Thus n−m
links in s are spurious, i.e., they represent sequence overlaps, but do not connect segments
originating from the same region of the target sequence. Assigning n−m+ 1 links to
each copy as described still allows one to use any combination of m out of n links. For
example, say n= 3 andm= 2, i.e., S={S1,S2}. One of the three elements of L={L1,L2,L3}
must be spurious, i.e., not present in the correct assembly path, but we don’t know which
one. Therefore, when traversing the graph, it must still be possible to follow any of the
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combinations of two L elements (L1,L2), (L2,L3) and (L1,L3). By the first iteration, i= 1,
we assign to Si= S1 the links Li= L1 and Li+n−m= L1+3−2= L2. Similarly, when i= 2, the
links L2 and L3 are assigned to S2.

Linear paths
For ω ∈ {B,E}, let λ(s,ω) be the number of links of the ω-end of the segment s. If
λ(s,B)= λ(s,E)= 1, we call s an internal segment.

A linear path is a path which starts from a segment sα , traverses the graph from the end
ωα of sα , such that λ(sα,ωα)= 1, then follows only internal segments, and enters the last
segment sβ , from an end ωβ , such that λ(sβ,ωβ)= 1. Note that it is not required that sα or
sβ are internal segments.

RGFA provides a method for enumerating all linear paths in the graph starting from
a segment s satisfying λ(s,B)= 1 or λ(s,E)= 1 and traversing in all directions with single
links. By bookkeeping visited nodes, it is taken care that all paths are enumerated only
once.

The segments in a linear path can then be collapsed into a single segment which
represents exactly the same sequence as the original path. This is obtained by including
the sequence of the segments in the path, either in forward or reverse direction, depending
on the ends at which the traversal enters a segment (for details see Myers (2005)). After
merging is completed, references to the segments at the extremities of the path are updated
to refer to the merged segment.

RGFATools provides additional features for path merging, such as tracking the list of
segments merged (or tag), as well as their position in the merged segment (introducing a
custom mp tag), thus reducing the assembly problem in practice.

Enforcing mandatory links
The problem of finding aHamiltonian path is NP-hard (Karp, 1972). However, it is possible
to easily recognize some edges, which are not compatible with such a path.

Assume that each connected component in the graph is a different molecule
(e.g., chromosome) and that the ends of the molecule are known (i.e., there are two
sequences with no links on one side; or the molecule is circular). If a segment end e has a
single link `, connecting it to a segment end e ′, `must be present in any Hamiltonian path
(it is mandatory). Any other link of e ′ cannot be part of a Hamiltonian path and can be
deleted from the graph (it is superfluous). In a similar way, any link of a segment to itself
is superfluous, except when it is the only link of the segment.

RGFATools provides a method which detects all mandatory links in the graph and
removes all superfluous links.

Random orientation of invertible segments
Consider a segment swhich in both its ends e and e ′ has links to the same two segment ends
f 6∈ {e,e ′}, f ′ 6∈ {e,e ′}, f 6= f ′. We call this segment an invertible segment. For an invertible
segment it is not possible to determine the orientation of s with respect to e and e ′. In
some cases it may still be preferable to obtain a single sequence by orienting the invertible
segment randomly.
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RGFATools provides a method to randomly orient invertible segments keeping track of
the coordinates of the possible inversion in a custom integer array field rn. An invertible
segment s can be written as uvu′, where u is the longest prefix of s such that u′ is the reverse
complement of u. The coordinate of the possible inversion when randomly orienting s
are also those of v . Therefore, if s=wxw ′ is a merged segment, composed of the original
segments w,x,w ′, such that w ′ is the reverse complement of w , then using the tracking
information stored during the merging, the coordinates of the inversion stored are also
those of x .

RESULTS
Easy parsing and editing of GFA graphs
We have developed an implementation of the proposed specification of the ‘‘Graphical
Fragment Assembly’’ (GFA) format in the Ruby programming language.

The interface was designed with the aim of clarity and user-friendliness. For example,
adding a new custom optional field to a record only requires to set its value; if the field does
not exist yet in the record, the corresponding setter and getter methods are automatically
created by exploiting the metaprogramming features of Ruby.

Code based on RGFA is simple and often readable even for non-rubyists. The following
code snippet, for example, loads a GFA graph from a file, and outputs a table of segment
names and their lengths.

gfa = RGFA.from_file("graph.gfa")

gfa.segments.each{|s| puts(s.name + "\t" + s.length)}

Besides the basic operations, such as adding, renaming or deleting elements, also more
complex operations are implemented in RGFA, such as the duplication of segments and
the merging of linear paths. The expressiveness of Ruby, combined with the interface
design principle mentioned above, allow the user to conveniently code further complex
operations. The following single statement, for example, removes all segments with a
coverage less than 10×, as well as all isolated segments with a sequence shorter than 200 bp:

gfa.rm(gfa.segments.select {|s| (s.coverage < 10) or

(s.connectivity == [0,0] and

s.length < 200)})

The installation of RGFA and RGFATools is based on the standard Ruby packages
management system rubygems and is thus automatized. There are no dependencies, and
the code can run on all machines on which Ruby (version ≥ 2.0) is installed. The code of
RGFA is designed to be easily maintainable and is accompanied by a thorough test suite.
This feature is particularly important, as the GFA specification is still under development
(e.g., a new GFA version, 2.0, has been recently proposed) and future changes in the
specification will likely require modification of RGFA.

Comparison of GFA graphs and generation of edit scripts
The assembly graph often requires further intervention, in order to provide a complete
sequence. Manual editing can for example be done using Bandage (Wick et al., 2015), which
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allows one to modify a graph by interacting with its graphical user interface. However,
Bandage does not record the operations applied to the graph. Also if automated graph
manipulation tools are applied, it can be interesting to examine how they exactly changed
the graph.

Although GFA is a line-based text format, parsing is required, in order to recognize
whether a difference in the text is significative or not. For example, if two segments just
differ by the order of the optional fields, they are equivalent to each other. However,
general purpose text-comparison tools such as diff would not be able to recognize this
equivalence.

For this reason, we implemented a tool, GFAdiff, based on RGFA. The tool parses and
compares to each other two GFA files. Differences in all record types are detected. Thereby,
the comparison is granular: e.g., the comparison of segments with the same name is done
at the level of fields. The set of differences is output in a format similar to that of the diff
tool. Alternatively, using the option -script, GFAdiff is able to generate an RGFA-based
Ruby script, which, when applied to the first GFA graph generates the second one.

Case study: assembly of a repetitive fosmid insert
Functional screening of fosmid-based metagenomic libraries is a powerful method
to analyze environmental DNA and discover new genes coding for an enzyme of
interest (Martínez & Osburne, 2013).

In a collaborative project (manuscript under preparation), the goal was to sequence
the insert of selected fosmids from a metagenomic library. Sequences were obtained from
single clones using multiplexed paired-end sequencing on an Illumina MiSeq platform,
with a read length of 2 × 300 bp, and an insert size of ≈ 400 bp. We applied standard
preprocessing methods to the sequencing data.

Despite the short target sequence lengths (vector 8 kbp and insert up to 40 kbp),
assembling the fosmids proved to be challenging. For example, after preprocessing, the
read set of fosmid F1 (estimated length ≈ 47 kbp) contained 40 · 103 sequences, with
an average length of 400 bp (coverage ≈ 340×). We applied different assemblers, but,
despite the high coverage and the conservative preprocessing, none was able to completely
assemble the fosmid sequence. For example, SPAdes (Bankevich et al., 2012) delivered 18
contigs with a total length of 21.7 kbp. The assembly graph of SPAdes (Fig. 1A) shows that
the contigs have a read coverage between 37× and 1,400×, which indicate that the insert
has likely a repetitive structure. Aligning the contigs to the vector sequence (pCC1FOS,
GenBank acc. EU140751) by BlastN, shows (Fig. 1A, cyan) that most of the vector sequence
is contained in a contig, with length 6.9 kbp and coverage 320.2×.

We applied RGFATools to solve the repetitive structure of the insert. First, segments
were multiplied according to their copy numbers, which were computed from the expected
coverage (340×). Then a minimal coverage filter of 60× was applied and p-bubbles
remaining in the vector sequence were eliminated, by discarding the path with lower
coverage. After merging the remaining linear paths in the graph, we obtained a graph with
eight segments and 32 links (Fig. 1B).
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337.8x

(a) (b)

(c)

(d)

Figure 1 The original assembly graph of the fosmid data as delivered by SPAdes (A) and the simplifi-
cations obtained by RGFATools (B, C, D). The figure was prepared using Bandage (Wick et al., 2015).

Finally, we enforced mandatory links and randomly oriented invertible segments in a
loop, merging linear paths after each operation. After the first two iterations, the graph
contained only four segments and six links (Fig. 1C). The third iteration yielded a single
segment (Fig. 1D) of 46.3 kbp.

Case study: identifying CRISPRs in de Bruijn graphs
Clustered Regularly Interspaced Short Palindromic Repeats (CRISPRs) are a common
feature of prokaryotic genomes. Each locus contains short conserved directed repeats
(24–47 bp) separated by unique spacers (26–72 bp) (Sorek, Kunin & Hugenholtz, 2008).

Tools such as PILER-CR (Edgar, 2007) are able to detect CRISPRs in an assembled
sequence. However, obtaining an assembled sequence is not always possible, in particular
for applications such as metagenomics. Here the method of Ben-Bassat & Chor (2015)
is more appropriate as it can identify CRISPRs in partial overlap graphs obtained from
readsets.

We used RGFA to implement (in less than a day) an algorithm to find potential CRISPR
signatures in a de Bruijn graph with k < |R|+1 where |R| is the minimum length of a
CRISPR repeat (|R| = 28 in this case study). If a segment represents a CRISPR repeat, then
it will have a higher copy number compared to its adjacent segments, and graph structure
in the surroundings will typically present several branches (as in Fig. 2). Let |s| be the
sequence length and cn(s) be the copy number of a segment s (which can be computed
from its k-mer count). Let cmin be the minimum repeat count (default: 3), lrmin and
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Figure 2 Assembly graph of a 2.3 kbp region of the genome of Acinetobacter sp. ADP1 containing a
CRISP with 6 instances of a 28 bp repeat (R), one of which containing a mismatch (R’) and 32 bp long
spacers (S1–S5). The figure was prepared using Bandage (Wick et al., 2015).

lrmax the minimum and maximum repeat length, and lsmin and lsmax the minimum
and maximum spacer length. To identify CRISPRs, we start a depth-first traversal from
all segments r such that cn(r)> cmin and lrmin≤ |r | ≤ lrmax . Each segment s is traversed
at most cn(s) times. Let u be the sequence of the path, non including r . The traversal
is interrupted if |u|> |r |+ lsmax ·2 (terminus) or the path arrives at r again (circle). If
cn(s)−1 circles and 2 termini are found, the CRISPR candidate is output.

Let r1,...,rn be the ordered set of repeat instances in a CRISPR with n repeats. Let si be
the spacer after ri. Some inexact repeats may be present. If ri is inexact and i= 1 or i= n,
the instance will not be found. If 1< i< n, then the length of the path between ri and ri+2
will be |si|+|ri+1|+|si+1|. For this reason, we allow the traversal to continue up to a path
length |r |+ lsmax ·2. In case the distance is larger than |r |, we indicate in our output, that
an inexact repeat instance is probably present.

In a preliminary test of the algorithm, we constructed a de Bruijn graph from regions
of the Acinetobacter sp. ADP1 genome (Refseq acc. NC_005966) 1 kbp around the three
CRISPR arrays predicted by PILER-CR with default parameters. We simplified the de
Bruijn graph by merging linear paths using RGFA and analyzed the resulting graph using
the algorithm sketched above. The RGFA-based program was able to correctly identify the
CRISPR array in all three regions.

The algorithm was tested using exact copy numbers and assuming no erroneous k-mers
and paths are present in the graph. Applying it to a graph constructed from real sequencing
reads will be investigated in the future.
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DISCUSSION
The current assembly algorithms use two different flavors of assembly graphs, de Bruijn
and string graphs. Besides a different construction, both graph flavors represent the same
information: the set of possible assemblies of a set of sequencing reads. A de Bruijn graph is
equivalent to an overlap graph, where nodes are the k−1-mers and edges are the overlaps
of length k−2. Thus, after the construction and simplification, both graphs can be output
using a common format.

Most assemblers provide some kind of output of the final assembly graph. This can be
useful for further sequence analysis, as it contains information on how the contigs relate
to each other. However, the graph must be output in a standard format, in order to allow
using the graph by other programs, besides the sequence assembler, which constructed it.

A first effort to design such a format was FASTG (Jaffe et al., 2012). This is an extension
of the FASTA format, a choice which is motivated by the fact that most assemblies are
output as MultiFASTA collections of contigs. However, FASTG presents several issues and,
although proposed already in 2011, its adoption was very slow (Melsted & Crusoe, 2014).
For example, in FASTG sequences are represented on edges of the graph; This complicates
operations such as changing a sequence to its reverse complement (Li, 2014).

GFA, the ‘‘Graphical Fragment Assembly’’ format was designed in order to cope with
the shortcomings of the FASTG format (Li, 2014). It is already mature and is used by
some early adopters (GFA Format Specification Working Group, 2016), despite the fact
that the specification is not yet finalized. Similarly to other popular formats in sequence
analysis, such as SAM (Li et al., 2009), GFA is a text-based tab-separated values format with
single-line records (headers, sequences, overlaps, etc. . . ). Thus, GFA files can be processed
by line oriented text-based utilities, such as the POSIX tools sort or grep. However,
more complex operations require to parse the records and construct the graph. Therefore,
specialized tools are needed.

ABySS (Simpson et al., 2009), BFGraph (http://github.com/pmelsted/bfgraph), miniasm
(http://github.com/lh3/miniasm) and McCortex (Iqbal et al., 2012) allow the output
of their assembly graphs in GFA format. LA2gfa (http://github.com/jts/daligner)
constructs a GFA graph from the results of Daligner (Myers, 2014), a local aligner
for PacBio reads. The tool vg (http://github.com/vgteam/vg), implementing sequence
variation graphs also allows output in GFA format. The format conversion tool gfatools
(http://github.com/lh3/gfatools) allows to convert the graphs of Velvet (Zerbino & Birney,
2008), SPAdes, Soapdenovo (Luo et al., 2012), and SGA (Simpson & Durbin, 2012) to GFA.
Manual GUI-based editing of a GFA graph is possible using Bandage (Wick et al., 2015).
However, neither Bandage, nor any other of the mentioned tools offer scripting capability
or an application programming interface to their GFA implementation.

RGFA is an implementation of GFA in the scripting language Ruby providing an API,
which allows to read, validate, write and manipulate GFA files and graphs. It is available
under a free software license (http://www.isc.org/downloads/software-support-policy/isc-
license/).
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Another implementation of the GFA specification in the Ruby programming
language has been developed in parallel with our software: the gfa library (https:
//github.com/lmrodriguezr/gfa). Its implementation appears to be rather incomplete;
e.g., the current version (0.1.2), does not provide an interface for simple graph operations,
such as efficiently enumerating the links which connect a given segment. Complex
operations, such as linear path detection and merging are not available. Furthermore,
the most recent changes of the GFA specification, such as the support of JSON types, have
not yet been reflected in the gfa library.

RGFA graphs can be converted into an RGL (Ruby Graph Library) graph object
(https://github.com/monora/rgl). This is a generic framework for graph data structures
and algorithms, offering e.g., generic traversal operations, and graphical output using
GraphViz (http://www.graphviz.org/). RGL is not specific for assembly graphs and some
peculiarities of the GFA graphs, such as the double strandedness of the segments, and the
different kind of edges do not have a direct representation in the framework (e.g., two
vertices, with both orientations, must be added for each segment). RGL graphs respecting
some conventions can be converted to RGFA graphs. This allows for interoperation of the
different libraries, despite some limitations: a graph file can be parsed using the gfa library,
converted to an RGL graph (losing part of the information, such as optional fields, segment
sequences, containments and paths), then to an RGFA graph.

RGFA is based on the Ruby programming language. Conceived as an interpreted
scripting language, its performance is often not sufficient for very large datasets. We tested
the performance on amedium sized dataset, consisting of a de Bruijn graph from a bacterial
genome, including 3.5 million segments and about the same amount of links. The memory
footprint of interpreted object-oriented languages is often a problem. However, for parsing
the GFA file and creating its memory representation, the memory peak of our library was
only about 2.3× larger than the memory peak of Bandage (4.3 Gb), which is implemented
in C++. Also, our library was able to simplify the graph in acceptable time. Nevertheless, for
similar applications, speedup could be achieved by implementing some of the time-critical
algorithms as C extensions for Ruby. These would also allow to support multithreaded
parallel processing, as extensions are not limited by the Global Interpreter Lock.

In contrast to a graphical editing program, such as Bandage, RGFA allows to create
manipulation pipelines, which can then be applied to several graphs or their connected
components in a unified way without manual interference. Furthermore, the simple RGFA
syntax is designed to be understood even by readers not proficient in the use of Ruby. Thus
RGFA can be used for creating scripts exactly documenting custom editing of assembly
graphs, which are otherwise often only vaguely described in the method section of papers.
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