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ABSTRACT

Initial soil water conditions play a critical role when seeding is the primary approach
to revegetate post-mining areas. In some semi-arid climates, such as the Brigalow
Belt Bioregion in eastern Australia, extensive areas are affected by open-cut mining.
Together with erratic rainfall patterns and clayey soils, the Brigalow Belt denotes a
unique biome which is representative of other water-limited ecosystems worldwide.
Apart from other environmental stressors, germination is governed by the water po-
tential of the surrounding soil material. While previous studies have confirmed the
high tolerance of Brigalow (Acacia harpophylla) seeds to a broad range of tempera-
ture and salinity, the question of how soil water potential triggers seed germination
remains. In this study, we used three replicates of 50 seeds of Brigalow to investigate
germination in relation to water potential as an environmental stressor. Solutions of
Polyethylene Glycol (PEG 6000) were applied to expose seeds to nine osmotic wa-
ter potentials ranging from soil water saturation (0 MPa) and field capacity (—.01 to
—.03 MPa) to the permanent wilting point (—1.5 MPa). We measured germinabil-
ity (number of germinated seeds relative to total number of seeds per lot) and mean
germination time (mean time required for maximum germination of a seed lot) to
quantify germination. Based on the empirical data of the germination we estimated
the parameters of the hydrotime model which simulates timing and success of seed
emergence. Our findings indicate that Brigalow seeds are remarkably tolerant to wa-
ter stress, with germination being observed at a water potential as low as —1.5 MPa.
Likewise, the average base water potential of a seed population (hydrotime model)
was very low and ranged between —1.533 and —1.451 MPa. In general, Brigalow
seeds germinate opportunistically over a broad range of abiotic conditions related to
temperature, salinity, and water availability. Direct seeding and germination of na-
tive plants on post-mining land may be an effective and economically viable solution
in order to re-establish plant communities. However, due to their capacity to repro-
duce asexually, alternative rehabilitation approaches such as transplantation of whole
soil-root compartments may become attractive for restoration ecologists to achieve
safe, stable, and non-polluting ecosystems.
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INTRODUCTION

The Brigalow Belt is an extensive bioregion located between the subtropical coastline and
semi-arid interior of eastern Australia (Arnold et al., in press). Climatically and
pedologically the bioregion is distinct from surrounding areas (Isbell, 2002; Lloyd, 1984),
and as a consequence, its ecological and biodiversity attributes are unique worldwide
(Johnson, 1980). Rainfall events occur erratically, both between years and intra-seasonally,
and the clayey soils have high fertility and good water holding capacities (Gunn, 1984). Of
the few plant species able to survive under these water-limited constraints (Connor ¢
Tunstall, 1968), A. harpophylla (Brigalow) is the predominant one, from which the
bioregion derives its name.

Since the 1950s, the delicate balance between soils and the native plant communities
has been disrupted (Eyre et al., 2009) through clearance of Brigalow woodland for
agricultural land use (cropping, grazing), which reduced the original extension of the
bioregion dramatically (Arnold et al., in press). Consequently, A. harpophylla dominant
ecosystems have been listed as endangered under both state (Vegetation Management Act
1999) and national legislation (Environment Protection and Biodiversity Conservation Act
1999: EPBC Act) (Environment Australia, 2001). More recently, areas in the Bowen Basin
(largest coal reserve in Australia) have been concurrently affected by surface mine
developments. The legislative requirement to reclaim post-mining land to provide safe,
stable, and non-polluting environments (Commonwealth of Australia, 2006) provides the
opportunity to re-establish native Brigalow plant communities.

Re-vegetation typically comprises either passive regeneration or proactive management
such as transplanting seedlings and mature stands (Musselman et al., 2012), tube
stocking, or direct seeding. The latter may be an effective and economically viable
solution in order to re-establish Brigalow plant communities (Engel ¢» Parrotta, 2001;
Lamb, Erskine & Parrotta, 2005; Reichman, Bellairs ¢ Mulligan, 2006). In this regard, seed
germination is an important indicator of re-vegetation success as it represents the first
stage of plant physiological response and development to environmental conditions. Seed
germination can be controlled by a range of abiotic stressors of which temperature and
salinity have only limited impact on A. harpophylla seeds within the ranges of 15-38°C
and 0-20 dS/m, respectively (Reichman, Bellairs & Mulligan, 2006 ). However, given the
unique pedological and climatic conditions of the Brigalow Belt, the question remains
how Brigalow seeds respond to changes in water availability from soil. This quantitative
information is crucial for simulating timing and success of seed emergence, for example
when applying the hydrotime model (Bradford, 1990; Gummerson, 1986).

Although being the major environmental stressor in the Brigalow Belt Bioregion, less
information exists on the direct effect of soil water potential on germination of
A. harpophylla seeds. Therefore, the primary aim of this study is to determine their
germination response in relation to soil water potential. In this regard, we investigate
whether reduced germination at high values of soil salinity is due to toxic rather than
osmotic effects (Reichman, Bellairs & Mulligan, 2006). As a secondary goal and based on
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ISeeds were collected in November 2012
from the native Brigalow catchment at
the Brigalow Research Station (Cowie,
Thornton & Radford, 2007).

the empirical data of the germination trials we estimate the parameters of the hydrotime
model for A. harpophylla. Finally, we discuss our findings in the context of previous seed
germination trials and alternative opportunities to re-establish plants on post-mining
areas under water limited conditions.

MATERIALS AND METHODS

Experimental design

We used seeds! of A. harpophylla to investigate germination in relation to water potential
as environmental factor. Three replicates of 50 seeds per treatment (i.e., water potential)
were placed at equal distance on an absorbent substrate (Wettex®). Materials (e.g.,
tweezers, Wettex®, glassware) were autoclaved for 20 min at 121°C and preparation of
treatments as well as any monitoring took place in a laminar flow cabinet. All treatments
and replicates were then placed randomly within a germination cabinet under constant
temperature (25°C) and a 12 h day and night cycle. Seeds were removed from petri dishes
once a perceptible radicle emerged. The experiment ceased after five days with no further
germination. No pre-treatment of seeds was required for the selected species to break
dormancy (Schmidt, 2000; Turnbull & Martensz, 1982).

For controlled experiments on seed-soil relations the osmotic water potential can be
used to represent soil matric potential (Carpita et al., 1979; Gray, Steckel ¢» Hands, 1990;
McWilliam & Phillips, 1971). We used solutions of polyethylene glycol (PEG 6000) to
expose seeds to nine osmotic water potentials: 0, -.01, —.03, —.1, —.25, —.5, —.75, —1,
and —1.5 MPa. These values capture soil water conditions ranging from water saturation
(0 kPa) and field capacity (—.01 to —.03 MPa) to the permanent wilting point
(—1.5 MPa). The empirical equation derived by Michel ¢ Kaufmann (1973) and revised
by Wood, Dart & So (1993) was used to set up the required water potential (v in kPa):

y = (6.3 x 107°T — 0.021 x 96)0**7, N

where T is the temperature in K (here 298.15 K), and O denotes the osmolality in

g 1000 g~ ! of water. Solutions measuring 15 ml of PEG 6000 were added to the seeds on
the Wettex® substrate within a 90 mm petri dish and wrapped with Parafilm® to prevent
evaporation. The dishes were opened each day to provide aeration and to count and
remove germinated seeds.

Germinability and mean germination time

We used germinability G (%) and mean germination time ¢ (days) as measurements to
quantify germination (Ranal & Santana, 2006). While G simply represents the number of
germinated seeds (g) relative to the total number of seeds per replicate (n):

G = (g/n) 100, (2)

t denotes the mean length of time required for maximum germination of a seed lot
(Czabator, 1962):

k
f = Zg,'ti Zg,’, (3)
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Table 1 Osmotic pressure ¥, and NaCl concentration based on the electrical conductivity used in
Reichman, Bellairs & Mulligan (2006).

Electrical conductivity (dS m~1)?  NaCl concentration (g kgf1 H20)h Osmotic pressure ¥, (MPa)

0 0 0

5 1.17 —.05
10 4.57 —.195
15 6.86 —.293
20 9.14 —.391
25 11.43 —.489
30 13.7 —.586

& Reichman, Bellairs & Mulligan (2006).
b United States Salinity Laboratory Staff (1954).

where t; is the time elapsed from initiation of the experiment to the ith observation day
until germination ceases on the kth day.

We applied a generalised logistic regression model (GLM) on a logit scale and simple
linear regression for G and ¢, respectively, to test the significance of the relationship
between germination percentage or time required for maximum germination and
decreasing water potential. Assumptions were tested via diagnostic plots, which showed
no violation of homogeneity of variance and normal distribution for the residuals.
Separate GLM models were adopted for each species as this provided the best fit for the
data. We also employed other models (linear regression and logistic regression with a
probit scale) and various transformations (arcsine, square root transformations) but they
either did not fit the data, or when they did, failed homogeneity of variance and normal
distribution of error (p > 0.05).

We compared the results for G with those published by Reichman, Bellairs & Mulligan
(2006) for salinity. Therefore, we estimated the osmotic pressure y, (MPa) based on the
value range of electrical conductivity used in Reichman, Bellairs & Mulligan (2006):

wo = MRT, (4)

where M is the molarity (mol L~!) of the sodium chloride solution, T is the temperature
in K (here 298.15 K), and R is the gas constant (] mol~! K~1). The corresponding values
of y, are presented in Table 1.

Estimating parameters of the hydrotime model

The hydrotime model was proposed by Bradford (1990), Gummerson (1986) to
“simultaneously account for both the timing and the extent of germination of a given seed
population in relation to its y environment” (Bradford, 2002). It is defined as:

Ou = (y — wp(P))tp, (5)

where 0y is the hydrotime constant (MPa h), tp (h) is the time to germination of
percentage P of the seed population, and y,(P) (MPa) is the base or threshold water
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potential above which P can still complete germination. Among the seed population,
is variable and can be described by a range of frequency distributions (Mesgaran et al.,
2013) of which the normal frequency distribution is the most commonly used one defined
by its mean y(Ps0) and standard deviation o, (Gummerson, 1986). Together, these
parameters enable prediction of the germination time courses, i.e., both rate and extent of
germination of the seed population, at any y at a constant temperature (Bradford, 2002):

tp = 0 /(v — wp(Ps0)). (6)

In this regard, Oy “quantifies the inherent speed of germination, which can vary among
species and physiological states” (Bradford, 2002), whereas y,(Ps0) indicates the average
stress tolerance of a seed population, and o, describes the synchrony in germination
timing among seeds in a population. We estimated these parameters based on the
observed values of tp for each y, i.e., we plotted the germination rates (1/¢p in h')asa
function of y and fitted regressions to the observed data (Fig. 4). This resulted in straight
lines with slopes of 01;1 and intercepts on the y-axis corresponding with 3 (P). The
values of y,(P) were then fitted to a normal and log-logistic frequency distribution,
respectively, and their distribution parameters were estimated accordingly.

RESULTS

Spearman’s correlation coefficient of —0.96 indicated a significant (p = 10™%) negative
correlation between mean time required for maximum germination and germinability
(Fig. 1). Above —.75 MPa germinability was remarkably large and mean germination
time small. The mean time required for maximum germination ranged between three
and five days at water potentials higher than —.75 MPa and increased to over seven days
at water potentials lower than —1 MPa (Fig. 2B). Likewise, germinability was highest
(90% =% 9%) at the water potential corresponding to saturated soil water conditions
(0 MPa) and significantly decreased with decreasing water potential (p = 0.003) to
65% £ 11% and 20% =+ 9% at water potentials of —.75 MPa and —1 MPa, respectively
(Fig. 2A). Remarkably, at a water potential as low as —1.5 MPa (permanent wilting point)
still 4% + 1.8% of the seeds germinated. Accordingly, the estimated mean base water
potentials were —1533 and —1451 MPa for the normal and log-logistic distribution,
respectively (Fig. 3), and the estimated hydrotime constant was .0607 MPa h (Table 2).
In Figure 4 we plotted the germinability of Brigalow seeds in relation to the osmotic
pressure based on solutions of sodium chloride as applied by Reichman, Bellairs &
Mulligan (2006), and solutions of Polyethylene Glycol as applied in this study. While no
significant differences (p < 0.05) were observed between the two treatments for osmotic
pressures above —.4 MPa, germinability was smaller under the sodium chloride
treatment for osmotic pressures below —.4 MPa.

DISCUSSION

The findings of this study allude to the seed water condition of A. harpophylla. Together
with the initial soil water conditions, these state variables have crucial implications for the
rehabilitation of post-mining areas under water-limited conditions.
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Figure 1 Negative correlation between mean germination time and germinability. Spearman’s corre-
lation coefficient ry is significantly different from zero (p = 10™%).

Table2 Osmotic pressure and NaCl concentration based on the electrical conductivity used in Reichman,
Bellairs ¢ Mulligan (2006). Parameters estimates of the the hydrotime constant (Bradford, 2002), and the log-
logistic distribution (scale a, shape f) and normal distribution (mean u, standard deviation o) based on the
germination trials of A. harpophylla.

Parameter Estimated value Standard error

0 (MPa h) .0607 0117
Normal distribution

1t (MPa) —1.533 798

o (MPa) 642 257
Log-logistic distribution

o (MPa) —1.451 .0012

B (=) 1.28 1.09

Soil and seed water conditions

Initial soil water conditions play a critical role when direct seeding is the primary
approach to revegetating post-mining areas. This is even more important in a semi-arid
climate, where water is limited due its scarcity or erratic occurrence (Rodriguez-Iturbe ¢
Proporato, 2004). Seed germination is triggered by the amount of water the seed can
imbibe, which is related to the water potentials of both the soil and the seed (Bewley et al.,
2013; Bradford, 2002; Evans & Etherington, 1990; Williams & Shaykewich, 1971). In this
regard, water can only enter the seed if the seed water potential is below the water
potential of the surrounding soil material. In general, air-dry seeds have water potential
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Figure 2 Germination results. (A) Germinability G and (B) time required for maximum germination t
of A. harpophylla in relation to the water potential . Error bars indicate the standard deviation across 3
replicates of 50 seeds.

values of —50 to —350 MPa (Bewley et al., 2013). The empirical results of this study
indicate that seeds of A. harpophylla are very water stress tolerant, that is, their seed water
potential is extraordinarily low. For example, radicles still emerged at a water potential as
low as —1.5 MPa (Fig. 2A). Likewise, the mean base water potential of the seed
population ranges between —1.533 and —1.451 MPa (Table 2 and Fig. 3). These are
remarkable values compared with selected Mediterranean (Kichy ¢ Tielborger, 2007)?
and agricultural plant species (Watt, Bloomberg ¢ Finch-Savage, 2011)% . Qualitatively,
the low seed water potential corresponds well with other investigative studies on
physiological water relations of A. harpophylla (Doley, 2004), which measured foliage
water potentials as low as —15 MPa (Connor & Tunstall, 1968) and shoot water potentials
of —7.2 to —6.8 MPa (Connor, Tunstall ¢» Van den Driessche, 1971; Tunstall ¢ Connor,
1981; Van den Driessche, Connor & Tunstall, 1971). Also the seed coat, which is atypically
soft compared with other Acacia species, denotes an adaptive mechanism to erratic
rainfall patterns of the Brigalow Belt Bioregion to rapidly overcome dormancy if soil
water conditions are elevated (Johnson, 1964; Reichman, Bellairs ¢» Mulligan, 20065 Scott,
Jones & Williams, 1984).

The parameter estimates of the hydrotime model (Table 2) play a critical role for
predicting the time required to germinate a fraction of the seed population under given
soil water conditions (Eq. (5)). In this regard and together with the physiological
parameters of the hydrotime model (i.e., hydrotime constant and distribution of the base
water potential) the soil water potential governs germination and, consequently, the
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Figure 3 Hydrotime model-parameters. Germination rate in relation to water potential y (adapted according to Bradford (2002)). While the
slopes of the curves correspond to the reciprocal of the hydrotime constant 6", the interceptions with the y-axis correspond to the base water
potential yy, for a given percentage P of the seed population. The values of y, can be described by a range of frequency distributions (Mesgaran

et al., 2013) among the seeds of a lot (inset). Parameter estimates of the log-logistic (a, ) and normal distribution (x, o), and §H are presented in
Table 2.

success of initial vegetation recruitment and early ecosystem establishment. Moreover,
together with empirical data on the effect of temperature on the germination of Brigalow
seeds (Reichman, Bellairs ¢» Mulligan, 2006), the findings of this study can be utilised to
parameterise hydrothermal models (Bradford, 2002; Bullied, Van Acker ¢» Bullock, 2012;
Gummerson, 1986; Kochy & Tielborger, 2007; Watt, Bloomberg & Finch-Savage, 2011) for
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Figure 4 Water potential vs salinity. Germinability G of A. harpophylla in relation to the osmotic pres-
sure , based on solutions of sodium chloride (squares (Reichman, Bellairs & Mulligan, 2006)) and PEG
(crosses). Error bars indicate the standard error across 4 replicates of 20 seeds (Reichman, Bellairs & Mul-
ligan, 2006) and 3 replicates of 50 seeds for salinity and soil water potential, respectively.

predictive modelling of germination in relation to the two environmental factors of
temperature and water availability.

The results of this study show that germinability decreases and the time required for
maximum germination increases with decreasing soil water potential (Fig. 2). Moreover,
the strong negative correlation between germinability and mean germination time
(Fig. 1) underpins how important a rather short germination time is to maximise
germination success. Thus, topsoil restoration at post-mining land in the Brigalow Belt
Bioregion should target to maximise the initial soil water potential while explicitly
considering the erratic character of rainfall patterns in Central Queensland (Audet et al.,
2013; Audet et al., 2012). This can be accomplished by optimising soil attributes such as
depth, texture, compaction, organic amendments, etc. (Arnold, 2012; Arnold et al.,
in press; Zipper et al., 2013). Apart from physical soil restoration, pre-treatment of seeds,
i.e., seed priming, also plays a critical role to enhance germination (Jisha, Vijayakumari ¢
Puthur, 2013). Amongst the broad range of seed priming techniques, hydropriming and
osmopriming are the most promising approaches for plant establishment in semi-arid
climate to increase seedling growth (Yagmur ¢ Kaydan, 2008), and root and shoot length
(Kaur, Gupta & Kaur, 2002). Although the exact mechanisms behind pre-treatments of
seeds are not fully understood, seed priming seems to activate cell signalling pathways
and cellular responses to environmental stressors resulting in faster plant defence
responses (Jisha, Vijayakumari & Puthur, 2013).
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4G = 90% after 14 days.

>Note that soil hydraulic conductivity
can become a limiting factor in dry
soils (Bewley et al., 2013).

®Interface between the pedosphere and
the hydrosphere (Li, Lin ¢ Levia, 2012)

Despite plant available water being the primary environmental factor in the Brigalow
Belt Bioregion (Arnold et al., in press), due to hot summers and highly saline mine spoils
secondary stressors such as temperature and salinity may also play a critical role for the
germination success of A. harpophylla, which was tested by Reichman, Bellairs ¢» Mulligan
(2006). Their findings indicate no significant trend in germination among the
temperature range of 15-38°C.* Likewise, seeds of A. harpophylla showed remarkable
tolerance to salinity up to an electrical conductivity of 30 dS m~!, however, with
significant reduction in germination at salinity greater than 20 dS m~!. The authors
speculated “it seems unlikely that the reduced germination at 25 and 30 dS/m were due to
osmotic effects” (Reichman, Bellairs & Mulligan, 2006). While the present study confirms
this conclusion for high values of salinity (Table 1) corresponding to osmotic pressure
values greater than —.4 MPa (Fig. 4), no significant differences could be found between
treatments of sodium chloride and PEG (Materials and Methods) for small values of
osmotic pressure corresponding to high salinity (Fig. 4). That said, we conclude that
under low to moderate levels of salinity the osmotic pressure plays the primary role for
germination of A. harpophylla seeds rather than the toxic nature of the predominant salt
(here sodium chloride), whereas salinity becomes the primary environmental stressor
under high salt concentrations. More generally, seeds of A. harpophylla seem to germinate
quite uniformly over a broad range of environmental conditions related to temperature,
salinity, and water availability.

Alternative rehabilitation approaches

Despite the opportunistic germination capability of A. harpophylla seeds, the question
remains whether direct seeding denotes the optimal approach to rehabilitate native
Brigalow ecosystems given the hydropedological,® climatic, and plant physiological
attributes and conditions of the Brigalow Belt Bioregion.

Hydropedological processes are fundamental for the proliferation of Brigalow plant
communities (Arnold et al., in press). The predominant clay soils (Isbell, 2002) comprise
fine-textured non-cracking Grey and Black Dermosols (Lixisols (Rees et al., 2010; IUSS
Working Group WRB, 2006)), and uniform dark cracking Grey and Black Vertosols
(Vertisols (Rees et al., 2010)). The latter form “gilgais” (Cowie, Thornton ¢» Radford, 2007
Radford et al., 2007; Thornton et al., 2007), which denote ephemeral water storages if
filled during intensive storm events. The climate is characterised by erratically distributed
rainfall patterns with short and intensive storm events occurring during summer (Cowie,
Thornton ¢ Radford, 2007 ), associated with the risk of water logging or soil erosion;
whereas the very arid conditions during the winter season generally involve periods of
water deficit (Audet et al., 2013; Audet et al., 2012; Dalton, 1993). In combination with
these erratic climatic conditions the soil properties facilitate rather low soil water
potentials on the long-term (Tunstall ¢» Connor, 1981), and as a consequence, these
landscapes can be colonised by a few plant species only, which is reflected in relatively
low species richness and total vegetative biomass (Isbell, 2002; Johnson, 1980). As
elaborated in the previous section, among the species in the Brigalow Belt Bioregion, A.
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harpophylla developed very well adapted mechanisms to proliferate under these harsh
conditions. The plants flower only sporadically (Benson et al., 2006) and thus seeds and
seedlings are only produced in large numbers during years of extraordinary rainfall
(Butler, 20075 Johnson, 1997). However, A. harpophylla is able to reproduce asexually, i.e.,
through root suckering or sprouting even if aboveground parts of the plant are damaged
dramatically, as long as belowground biomass and hydropedology stay intact (Arnold

et al., in press and references therein). The extent of this vegetative reproduction is most
pronounced if trees are young and severely damaged, and under dry conditions (Johnson,
1964). In Colorado, USA circumstances are similar with regard to the re-establishment of
vegetatively regenerating Aspen (Populus tremuloides) on surface-mined land
(Musselman et al., 2012), which initially failed due to severe damage to the root system
and thus the limited access to water and nutrients (Shepperd ¢» Mata, 2005). However,
rehabilitation was more successful when more comprehensive soil-root compartments
were transplanted from local sources in combination with weed control and light
irrigation with non-saline water (Musselman et al., 2012). In this regard, it seems to be
crucial to keep the delicate balance between soil attributes (depth, compaction, texture)
and root extension in balance. This innovative rehabilitation approach of transplanting
the whole soil-root compartment may also be of interest for restoration ecologists
engaged with re-establishment of Brigalow ecosystems in Central Queensland to achieve
safe, stable, and non-polluting ecosystems (Commonwealth of Australia, 2006). However,
the advantage of direct seeding over asexual propagation such as transplantation is the
gain of genetic diversity — critical if ecosystems are forced to adapt to the projected
changing climate of Central Queensland (Low, 2011).
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