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ABSTRACT

Background. Chromosome conformation capture, coupled with high throughput DNA
sequencing in protocols like Hi-C and 3C-seq, has been proposed as a viable means of
generating data to resolve the genomes of microorganisms living in naturally occuring
environments. Metagenomic Hi-C and 3C-seq datasets have begun to emerge, but the
feasibility of resolving genomes when closely related organisms (strain-level diversity)
are present in the sample has not yet been systematically characterised.

Methods. We developed a computational simulation pipeline for metagenomic 3C and
Hi-C sequencing to evaluate the accuracy of genomic reconstructions at, above, and
below an operationally defined species boundary. We simulated datasets and measured
accuracy over a wide range of parameters. Five clustering algorithms were evaluated
(2 hard, 3 soft) using an adaptation of the extended B-cubed validation measure.
Results. When all genomes in a sample are below 95% sequence identity, all of the
tested clustering algorithms performed well. When sequence data contains genomes
above 95% identity (our operational definition of strain-level diversity), a naive soft-
clustering extension of the Louvain method achieves the highest performance.
Discussion. Previously, only hard-clustering algorithms have been applied to metage-
nomic 3C and Hi-C data, yet none of these perform well when strain-level diversity
exists in a metagenomic sample. Our simple extension of the Louvain method
performed the best in these scenarios, however, accuracy remained well below the
levels observed for samples without strain-level diversity. Strain resolution is also highly
dependent on the amount of available 3C sequence data, suggesting that depth of
sequencing must be carefully considered during experimental design. Finally, there
appears to be great scope to improve the accuracy of strain resolution through further
algorithm development.
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INTRODUCTION

The explicit and complete determination of the genomes present in an environmental
sample is a highly prized goal in microbial community analysis. When combined with their
relative abundances, this detailed knowledge affords a great deal of power to downstream
investigations in such things as: community metabolism inference, functional ecology,
genetic exchange and temporal or inter-community comparison. Unfortunately, the current
standard methodology in high-throughput DNA sequencing is incapable of generating data
of such exquisite detail, and although raw base-pair yield has increased dramatically with
technological progress, a significant methodological source of information loss remains.

The organization of DNA into chromosomes (long-range contiguity) and cells
(localization) is almost completely lost as a direct result of two requirements of high-
throughput library based sequencing; cell lysis (during the process of DNA purification) and
the subsequent shearing (during the sequencing library preparation step). What remains in
the form of direct experimental observation is short-range contiguity information. From
this beginning, the problem of reestablishing long-range contiguity and reconstructing the
original genomic sources is handed over to genome assembly algorithms.

Though the damage done in the steps of purification and fragmentation amounts
to a tractable problem in single-genome studies, in metagenomics the whole-sample
intermingling of free chromosomes of varying genotypic abundance is an enormous blow
to assembly algorithms. Conventional whole-sample metagenome sequencing (Tringe ¢
Rubin, 2005) thus results in a severely underdetermined inverse problem (Venter et al.,
2001; Myers Jr, 2016), where the number of unknowns exceeds the number of observations
and the degree to which a given metagenome is underdetermined depends variously on
community complexity. Accurately and precisely inferring cellular co-locality for this
highly fragmented set of sequences, particularly in an unsupervised de novo setting, and
thereby achieving genotype resolution, remains an unsolved problem.

Recent techniques which repeatedly sample an environment, extracting a signal
based on correlated changes in abundance to identify genomic content that is likely
to belong to individual strains or populations of cells, have confidently obtained species
resolution (Alneberg et al., 2013; Imelfort et al., 2014) and begun to work toward strain
(genotype) resolution (Cleary et al., 2015). Inferring abundance per-sample from contig
coverage (Alneberg et al., 2013; Imelfort et al., 2014) or k-mer frequencies (Cleary et al.,
2015) respectively, the strength of this discriminating signal is a function of community
diversity, environmental variation and sampling depth; and represents a significant
computational task.

Chromosome conformation capture (3C), a technique first introduced to probe
the three-dimensional structure of chromatin (Dekker et al., 2002), has become the
technological basis for a range of 3C-derived genomic strategies, all of which seek to
detect the interaction of spatially proximate genomic loci. The fundamental goal in all
cases is to in some way capture a snapshot of the 3D structure of a DNA target.

The methodology begins by fixation (cross-linking) of DNA within intact cells or nuclei,
often by formaldehyde, to capture in-place native 3D conformational detail. The nuclei or
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cells are lysed and the protein-DNA complexes subjected to restriction digestion to produce
free-ends. The resulting complex-bound free-ends are then religated under very low
concentration, where conditions favour ligation between free-ends that were in close spatial
proximity at the time of fixation. Originally, after this point, signal extraction involved
known-primer locus-specific PCR amplification (3C), posing a significant experimental
challenge (De Wit ¢ De Laat, 2012) and limiting the scale of investigation. To extend

its utility, subsequent advances (4C, 5C, HiC) have successively attempted to address
the issue of scale by replacing PCR-mediated signal extraction with contemporaneous
high-throughput technologies (microarrays, next-generation sequencing (NGS)) (De Wit
& De Laat, 2012).

The genome-wide strategy of HiC (Lieberman-Aiden et al., 2009) exploits NGS to extract
interaction signal between all potential sites. To do so, before ligation the method inserts a
step in which overhangs are filled with biotinylated nucleotides. Blunt-end ligation is then
performed and the DNA purified and sheared. The junction-containing products are then
selected for subsequent sequencing by biotin affinity pull-down.

HiC and the closely related meta3C (HiC/3C) have recently been applied to
metagenomics (Beitel et al., 2014; Burton et al., 2014; Marbouty et al., 2014), intended
as an alternative to purely computational solutions to community deconvolution. Here
conventional metagenomic sequencing is augmented with the information derived from
HiC/3C read-pairs to provide strong experimental evidence of proximity between genomic
loci. This map of interactions greatly increases the power of discrimination between
community member genomes, by measuring which sequences were spatially nearby at the
time of fixation.

Given sufficient sampling depth, HiC/3C read-pairs have the potential to link points of
genomic variation at the genotype level at much longer ranges than has previously been
possible (Selvaraj et al., 2013; Beitel et al., 2014). As with any real experimental process,
the generation HiC/3C read-sets is imperfect. Three complications to downstream
signal processing are: self-self religations which effectively produce local read-pairs,
chimeric read-throughs which span the ligation junction and contain sequence from both
ends, and spurious read-pairs involving non-proximity ligation products. Though not
insurmountable when integrating HiC/3C data with that of conventional sequencing, these
flawed products do at the very least represent a loss of efficiency in generating informative
proximity ligation read-pairs.

Sequencing information generated in this way can recover a portion of the information
lost in conventional whole genome shotgun (WGS) sequencing. It has been shown that
the observational probability of intra-chromosomal read-pairs (cis) follows a long-tailed
distribution decreasing exponentially with increasing genomic separation (Beitel et al.,
2014). Inter-chromosomal read-pairs (trans), modeled as uniformly distributed across
chromosome pairs, typically occur an order of magnitude less frequently than cis pairs,
and inter-cellular read-pairs are an order of magnitude less frequently again (Beitel et al.,
2014). This hierarchy in observational probability has the potential to be a precious source
of information with which to deconvolute assembled sequence fragments derived from
conventionally generated metagenomes into species and perhaps strains.
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Figure 1 Average nucleotide identity from BLAST (ANIb) as a function of branch length scale factor
apr. Sampled on a log-scale, the parametric sweep crosses the operational species definition (95% ANIb)
roughly midway (dashed grey horizontal line). A 95% similarity threshold is also used internally within
IDBA-UD assembler (Peng et al., 2012) to determine whether to merge highly similar contigs and has been
proposed as a pragmatic definition of bacterial species (Konstantinidis, Ramette & Tiedje, 20065 Richter &
Rossell6-Mora, 2009) akin to 97% 16S rRNA identity.

Previous work which leverages 3C data in assembly analysis has yielded algorithms
focused on scaffolding (Burton et al., 2013; Marie-Nelly et al., 2014). In the context of
clonal genome sequencing, 3C directed scaffolding can be applied directly to the entire
draft assembly with reasonable success. Beyond monochromosomal genomes, it has been
necessary to first cluster (group) assembly contigs into chromosome (plasmid) bins, after
which each bin is scaffolded in turn. A move to metagenomics generally entails increased
sample complexity and less explicit knowledge about composition. Effectively clustering
metagenomic assemblies, containing a potentially unknown degree of both species and
strain diversity, represents a challenge that to date has not been thoroughly investigated.

In this work, we describe the accuracy of various analysis algorithms applied to resolving
the genomes of strains within metagenomic sequence data. The accuracy of these algorithms
was measured over a range of simulated experimental conditions, including varying degrees
of evolutionary divergence around our operationally defined species boundary (Fig. 1),
and varying depths of generated sequence data. Finally, we discuss implications for the
design of metagenomic 3C experiments on systems containing strain-level diversity and
describe the limitations of the present work.
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MATERIALS AND METHODS

Representation

A contact map is formed by mapping proximity-ligation read-pairs to an available reference
and counting occurrences between any two genomic regions (Belton et al., 2012); where
the definition of a genomic region is application dependent. Mathematically, the contact
map is a square symmetric matrix .#, whose raw elements m;; represent the set of
observational frequencies between all genomic regions. The removal of experimental bias
by normalization, inference of spatial proximity and finally prediction of chromosome
conformation represents the majority of published work in the field to date (Lieberman-
Aiden et al., 2009; Noble et al., 2011; Yaffe & Tanay, 2011; Imakaev et al., 2012).

Noting that the contact map is equivalent to the weighted adjacency matrix A of
an undirected graph G (Boulos et al., 2013), an alternative graphical representation is
obtained. Here, nodes n; represent genomic regions and weighted edges e(n;,n;, w;;)
represent the observed frequency w;; of 3C read-pairs linking regions n; and n;. Expressing
the sequencing data as such, a host of graph-theoretic analysis methods can be brought to
bear on domain-specific problems.

Possibly the simplest variation, the eponymous 3C-contig graph, defines the genomic
regions (and thereby the nodes) to be the set contigs produced by WGS assembly. Fine
details such as small indels or single nucleotide variants are not considered with this
construction. Even so, the application of the 3C-contig graph to metagenomics (Beitel
et al., 2014; Burton et al., 2014; Marbouty et al., 2014) and multichromosomal genome
scaffolding (Burton et al., 2013) has previously been studied.

The chosen granularity of any construct is a crucial factor in obtaining both sufficiently
detailed answers and tractable problems. Though finer scale representations are possible
when integrating HiC/3C data into conventional metagenomics, the 3C-contig graph is
an effective means of controlling problem scale and can be regarded as a first step toward
deeper HiC/3C metagenomic analyses.

Clustering

Placing entities into groups by some measure of relatedness is often used to reduce a set
of objects O into a set of clusters K and ideally where the number of clusters is much less
than the number of objects (i.e., |K| <« |Ol). When object membership within the set of
clusters K is mutually exclusive and discrete, so that an object o; may only belong to a single
cluster ky, it is termed hard-clustering (i.e., Vi, x; € K|k # 1 — kx Nk; = ). When this
condition on membership is relaxed and objects are allowed to belong to multiple clusters,
it is termed soft-clustering. The outcome of this potential for multiple membership is
cluster overlap, or more formally, that the intersection between clusters ki and «; is no
longer strictly empty (i.e., [kx N&;| > 0).

Possibly motivated by a desire to obtain the plainest answer with maximal contrast, and
for the sake of relative mathematical simplicity, hard-clustering is the more widely applied
approach. Despite this, many problem domains exist in which cluster overlap reflects real
phenomena. For instance, in metagenomes containing closely related species or strains,
there is a tendency for the highly conserved core genome to co-assemble in single contigs
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while more distinct accessory regions do not. Co-assembly implies that uniquely placing
(a 1-to-1 mapping of) contigs into source-genome bins (clusters) is not possible. Rather,
an overlapping model is required, allowing co-assembled contigs to be placed multiple
times in relation to their degree of source-heterogeneity.

From the aspect of prior knowledge, classification and clustering algorithms fall into three
categories (Jajuga, Sokolowski ¢ Bock, 2002). Supervised classification, where for a known
set of classes, a set of class-labelled objects are used to determine a membership function;
semi-supervised classification/clustering, which leverages additional unlabelled data as a
means of improving the supervised membership function; and unsupervised clustering,
where these prerequisites are not required. Unsupervised algorithms, in removing this
a priori condition, are preferable if not necessary in situations where prior knowledge is
unavailable (perhaps due to cost or accessibility) or the uncertainty in this information
is high.

Appropriate validation measures

Simply put, clustering algorithms attempt to group together objects when they are similar
(the same cluster) and separate those objects which differ (different clusters). Although
algorithmic complexity can ultimately dictate applicability to a given problem domain,
the quality of a clustering solution remains a primary concern in assessing an algorithm’s
value. To fully assess the quality of a given clustering solution, multiple aspects must be
considered. Measures that fail to account for one aspect or another may incorrectly rank
solutions. Five important yet often incompletely addressed aspects of clustering quality
have been proposed (Amigé et al., 2009): homogeneity, completeness, size, number and
lastly the notion of a ragbag. Here, a ragbag is when preference is given to placing uncertain
assignments in a single catch-all cluster, rather than spreading them across otherwise
potentially homogeneous clusters or leaving them as isolated nodes.

External measures, which compare a given solution to a gold-standard are a powerful
means of assessing quality and they themselves vary in effectiveness. F;-score, the harmonic
mean (Eq. 1) of the traditional measures precision and recall, is frequently employed in the
assessment of bioinformatics algorithms. For clustering algorithms, it is perhaps not well
known that F;-score fails to properly consider the aspect of completeness (An1igé et al.,
2009) and further is sensitive to a preprocessing step where clusters and class labels must
first be matched (Hirschberg ¢» Rosenberg, 2007). The entropy based V-measure (Hirschberg
¢ Rosenberg, 2007) was conceived to address these shortcomings but does not consider
the ragbag notion nor the possibility of overlapping clusters and classes. The external
validation measure Bcubed (Bagga ¢ Baldwin, 1998) addresses all five aspects and building
from this, extended Bcubed (Am1igé et al., 2009) supports the notion of overlapping clusters
and classes. Analogous to F;-score and V-measure, extended Bcubed is also the harmonic
mean of a form of precision and recall.

Still, all of these measures treat the objects involved in clustering as being equal in value
when assessing correct and incorrect placements. For some problem domains, it could be
argued that correctly classifying object A may be more important than correctly classifying
object B. Conversely, that incorrectly classifying object A may represent a larger error than
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Table 1 Clustering algorithm dependent parameters explored in the sweep, where the base set of com-
binations begins with the fundamental 600 combinations. Only MCL and SR-MCL were swept through

additional runtime parameters.

Number

Total  Values Sampling

parameter

Algorithm Name Description
MCL infl Inflation
SR-MCL infl Inflation

parameter

Louvain-hard
Louvain-soft
OClustR

5

3,000 1.1-2 linear

3,000 1.1-2 linear

600
600
600

incorrectly classifying object B. To this end, we introduce per-object weighting to extended
Bcubed (Eq. 1) and propose using contig length (bp) as the measure of inherent value
when clustering metagenomic contigs.

Clustering algorithm selection

Supervised algorithms require a priori descriptive detail about the subject of study prior to
analysis, while unsupervised algorithms make no such demand. This a priori knowledge
can be of crucial importance scientifically, such as informing a clustering algorithm how
many clusters exist within a dataset under study. For the genome of a single organism,
where cluster count corresponds to chromosome count, independent estimation may be
tenable. Extracting such descriptive information from an uncultured microbial community
in the face of ecological, environmental and historical variation is an onerous requirement.
For this reason, we only consider unsupervised algorithms and focus attention on both
hard and soft clustering approaches.

Four graph clustering algorithms were considered: MCL, SR-MCL, the Louvain method
and OClustR (Van Dongen, 2001; Shih & Parthasarathy, 2012; Blondel et al., 2008; Pérez-
Sudrez et al., 2013). While MCL and Louvain have previously been applied to 3C-contig
clustering (Beitel et al., 2014; Marbouty et al., 2014), to our knowledge SR-MCL and
OClustR have not. We did not consider the clustering algorithm employed by (Burton
et al., 2014) as it requires the number of clusters to be specified a priori.

Runtime parameters particular to each algorithm were controlled in the sweep as
necessary (Table 1). The widely used MCL (Markov clustering) algorithm (Van Dongen,
2001) uses stochastic flow analysis to produce hard-clustering solutions, where cluster
granularity is controlled via a single parameter (“inflation”). For this parameter, a range
of 1.1 to 2.0 was chosen based on prior work (Beitel et al., 2014) and the interval sampled
uniformly in five steps (inflation: 1.1-2.0). A soft-clustering extension of MCL, SR-MCL
(soft, regularized Markov clustering) (Shih ¢ Parthasarathy, 2012) attempts to sample
multiple clustering solutions by iterative re-execution of MCL, penalizing node stochastic
flows between iterations depending on the previous run state. Beyond MCL’s inflation
parameter, SR-MCL introduces four additional runtime parameters (balance, quality,
redundancy and penalty ratio). It was determined that default settings were apparently
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optimal for these additional parameters (results not shown), and therefore only inflation
was varied over the same range as MCL.

The Louvain modularity Q (Newman ¢ Girvan, 2004) quantifies the degree to which
a graph is composed of pockets of more densely interconnected subgraphs. Density is
uniform across a graph when Q =0 and there is essentially no community structure,
while as Q — 1 it indicates significant community structure with a strong contrast in the
degree to which nodes are linked within and between communities. Louvain clustering
builds upon this modularity score (Blondel et al., 2008), following a greedy heuristic to
determine the best partitioning of a graph by the measure of local modularity, identifying
sets of nodes more tightly interconnected with each other than with the remainder of the
graph. Although a hierarchical solution by recursive application of the Louvain method
on the subsequent subgraphs can be obtained, at each step the result is a hard-clustering.
We implemented a one-step Louvain clustering algorithm in Python making use of the
modules python-louvain and Networkx. We further extended this hard-clustering method
(Louvain-hard) to optionally elicit a naive soft-clustering solution (Louvain-soft), where
after producing the hard-clustering, any two nodes in different clusters that are connected
by an edge in the original graph are made members in both clusters.

We implemented the OClustR algorithm (Pérez-Sudrez et al., 2013) in Python. The
algorithm employs a graph covering strategy applied to a thresholded similarity graph
using the notion of node relevance (the average of relative node compactness and density)
(Pérez-Sudrez et al., 2013). The approach functions without the need for runtime
parameters, thus avoiding their optimization, and aims to produce clusters of minimum
overlap and maximal size.

Gold standard

A crucial element of external validation is the gold-standard (ground truth). Particularly
in the treatment of scientific data, what we call the gold-standard is frequently a “best
we can do.” Despite the powerful a priori advantages gained by the explicit nature of
simulation-based studies, practical limitations can introduce uncertainty. In particular,
the loss of read placement information in de Bruijn graph assembly means we must infer
the genomic origin of each contig rather than obtain it explicitly from assembly output
metadata.

In this study, the gold-standard must accurately map the set of assembly contigs C to
the set of community source genomes G, while supporting the notion of one-to-many
associations from contig ¢; to some or all genomes g; € G. It is this one-to-many association
that represents the overlap between genomes at low evolutionary divergence. The mapping
must also contend with spurious overlap signal from significant local alignments due to
such factors as conserved gene content and try to minimize false positive associations.

Weused LAST (v712) (Kietbasa et al., 2011) to align the set of assembly contigs C onto the
respective set of community reference genomes G. For each contig ¢; € C, LAST alignments
were traversed in order of descending bitscore and used to generate a mask matrix M
of contig coverage indexed by both reference genome g € G and contig base position /.
Rather than a binary representation, mask element Mj; was assigned a real value [0, 1]
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proportional to the identity of the maximal covering alignment to reference genome gj
at site /. Lastly, the arithmetic mean p; was calculated over all base positions for each
reference genome g (i.e., Uy = Lk_IZZMId, where Ly is the length of genome gi) and an
association between contig ¢; and reference genome g, was accepted if px > 0.96.

Graph generation

Undirected 3C-contig graphs were generated by mapping simulated 3C read-pairs to
WGS assembly contigs using BWA MEM (v0.7.9a-1r786) (Li, 2013). Read alignments
were accepted only in the case of matches with 100% coverage of each read and zero
mismatches. In general, this restriction to 100% coverage and identity should be relaxed
when working with real data, and we found the iterative strategy employed by (Burton et al.,
2014) effective in this case (results not shown). Assembly contigs defined the nodes #; and
inter-contig read-pairs the edges ((n;,n;) is an edge iff i # j), while intra-contig read-pairs
((n;,nj) < i=j) were ignored. Raw edge weights w;; were defined as the observed number
of read-pairs linking nodes #; and #;.

Validation

To assess the quality of clustering solutions a modification to the Extended Bcubed external
validation measure (Amigo et al., 2009) was made, wherein each clustered object was given
an explicit weight. We call the resulting measure “weighted Bcubed” (Eq. 1). For a uniform
weight distribution, this modification reduces to conventional Extended Bcubed. In our
work, contig length (bp) was chosen as the weight when measuring the accuracy of
clustered assembly contigs. Remaining the harmonic mean of Bcubed precision and recall,
the weights w(o;) are introduced here (Eqs. 2 and 3) and the result normalized. For an
object 0;, the sum is carried out over all members of the set of objects who share at least
one class H (0;) or cluster D(o;) with object o; (Eq. 3).

2(Pp3) (Rp3)
{Pps) + (Rys)

where (Pj3) and (Ry3) are the weighted arithmetic means of Py3(0;) and Ry3(0;) (Eqgs. 2 and

(1)

» =

3) over all objects.

1

Py(0j) = =———— E P*(0;,0; 2

i () Zo]-eD(o,')W(oj)ojeD(o,-)W(O]) ¢ O]) ?
1

Ry (0i) = E w(0;)R*(0i,0;). (3)

ZOJEH(W) W(Oj) 0;€H (0;)

Unchanged from Extended Bcubed, the expressions for the Multiplicity Bcubed precision
P*(0;,0j) (Eq. 4) and recall R*(0;,0;) (Eq. 5) account for the non-binary relationship
between any two items in the set when dealing with overlapping clustering.

min(\K(oi) ﬂK(oj)|, \@(0,-) ﬂ@(oj)D
‘K(oi)ﬂK(Oj)‘

min (|K (o) NK (0})],|©(0)) N O(0})])
|®(0i)ﬂ®(0j)|

P*(0i,0)) = (4)

(5)

R*(0j,0;) =
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where K (0;) is the set of clusters and ®(o;) is the set of classes for which either contains
object o;.

Simulating HiC/3C read-pairs

A tool for simulating HiC/3C read-pairs was implemented in Python (simForward.py).
Read-pairs were generated for a given community directly from its reference genomes,
where the relative proportion of read-pairs from a given taxon adhered to the community’s
abundance profile. Inter-chromosomal (trans) pairs were modeled as uniformly distributed
across the entire chromosomal extent of a given genome. For intra-chromosomal (cis)
pairs, a linear combination of the geometric and uniform distributions was used to
approximate a long-tailed probability distribution as a function of genomic separation
and calibrated by fitting to real experimental data (Beitel et al., 2014). For these 3C reads,
the modeling of experimental/sequencing error was not performed. Variation in intra-
chomosomal probability attributable to 3D chromosomal structure was not included. In
effect, chromosomes were treated as flat unfolded rings. The tool takes as input a seed, read
length, number of read-pairs, abundance profile and inter-chromosomal probability and
outputs reads in either interleaved FastA or FastQ format.

Pipeline design
The chosen workflow (Fig. 2) represents a simple and previously applied (Beitel et al., 2014;
Burton et al., 2014) means of incorporating 3C read data into traditional metagenomics,
via de novo WGS assembly and subsequent mapping of 3C read-pairs to assembled
contigs. Inputs to this core process are 3C read-pairs and WGS sequencing reads.
Outputs are the set of assembled contigs C and the set of “3C read-pairs to contig”
mappings Msc. Although tool choices vary between researchers, we chose to keep the
assembly and mapping algorithms fixed and focus instead on how other parameters
influence the quality of metagenomic reconstructions with 3C read data. The A5-miseq
pipeline (incorporating IDBA-UD, but skipping error correction and scaffolding via the
—metagenome flag) (Coil, Jospin ¢ Darling, 2015) was used for assembly. BWA MEM was
used for mapping 3C read-pairs to contigs (Li, 2013). Parameters placed under control
were: WGS coverage (xfold), the number of 3C read-pairs (n3c) and a random seed (S).
Prepended to this core process are two preceding modules: community generation and
read simulation. The Python implementation of our end-to-end pipeline is available at
https://github.com/koadman/proxigenomics.

From a given phylogenetic tree and an ancestral sequence, the community generation
module produces a set of descendent taxa with an evolutionary divergence defined
by the phylogeny and evolutionary model. The simulated evolutionary process is
implemented by sgEvolver (Darling et al., 2004), which models both local changes (e.g.,
single nucleotide substitutions and indels) and larger genomic changes (e.g., gene gain, loss,
and rearrangement). The degree of divergence is controlled through a single scale factor
apr (Table S1) that uniformly scales tree branch lengths prior to simulated evolution. As
data inputs, the module takes a phylogenetic tree and an ancestral genome. As data outputs,
the module generates a set of descendent genomes G and an accompanying gold-standard.
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Figure 2 The 3C sequencing simulation pipeline used within the parameter sweep. An ancestral se-
quence and phylogenetic tree are used in simulating a process of genome evolution with varying diver-
gence (apr). The resulting evolved genomes are subsequently subjected to in silico high-throughput se-
quencing, producing both WGS and 3C read-sets of chosen depth (Nygs, N3c). WGS reads are assembled
and 3C read-pairs are mapped to the resulting contigs to generate a 3C-contig graph. Finally, the graph is
supplied to a clustering algorithm and the result validated against the relevant gold-standard.

Table 2 Primary parameters under control in the sweep. In total, each clustering algorithm is presented with 600 combinations which may fur-
ther increase depending on whether a clustering algorithm also has runtime parameters under control.

Level Name Description Type Number Total Values

1 tree Phylogenetic tree topology factor 2 2 star, ladder

2 profile Relative abundance profile factor 2 4 uniform, 1/e

3 oL Branch length scale factor numeric 10 40 0.025-1 (log scale)

4 xfold WGS paired-end depth of coverage numeric 3 120 10, 50, 100

5 n3c Number of 3C read-pairs numeric 5 600 10000, 20000, 50000, 100000, 1000000
6 algo Clustering algorithm factor 5 MCL, SM-MCL, Louvain-hard,

Louvain-soft, OClustR

Overall, community generation introduces the following two sweep parameters: branch
length scale factor ap; and random seed (S) (Table 2).

Following community generation, the read-simulation module takes as input the set of
descendent genomes G and generates as output both simulated Illumina WGS paired-end
reads and simulated HiC/3C read-pairs. For WGS reads, variation in relative abundance of
descendent genomes G was produced by wrapping ART _illumina (v1.5.1) (Huang et al.,
2012) within a Python script (metaART.py) with the added dependency of an abundance
profile table as input. HiC/3C read-pairs were generated from community genomes as
outlined above. Generation of the two forms of read-pairs introduces the following sweep
parameters: WGS depth of coverage (xfold) and number of 3C read-pairs (n3c) (Table 2).
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star ladder

Figure 3 Two simple trees of four taxa (A, B, C, D) were used in the parameter sweep. The star; where
all taxa have equal evolutionary distance ¢ to their ancestor and ladder; where the distance to the nearest
ancestor decreases in incremental steps of £/2. For the ladder, the length of the internal branch for taxon B
was set equal to the branch length of the star and therefore possesses both more closely and more distantly
related community members for any value of the scale factor oy relative to the star topology.

After the assembly and mapping module comes the community deconvolution module,
taking as input the set of 3C read mappings Msc. Internally, the first step of the module
generates the 3C-contig graph G(n,e,w(e)). Deconvolution is achieved by application of
graph clustering algorithms, where the set of output clusters K reflect predicted genomes
of individual community members (Beitel et al., 2014; Burton et al., 2014).

Lastly, the validation module takes as inputs: a clustering solution, a gold-standard and
a set of assembly contigs. The first two inputs are compared by way of weighted Bcubed
(Eq. 1), while the set of contigs is supplied to QUAST (v3.1) (Gurevich et al., 2013) for the
determination of conventional assembly statistics. The results from both clustering and
assembly validation are then joined together to form a final output.

Simulation

Variational studies require careful attention to the number of parameters under control and
their sampling granularity, so as to strike a balance between potential value to observational
insight and computational effort. Even so, the combinatorial explosion in the total number
of variations makes a seemingly small number of parameters and steps quickly exceed
available computational resources. Further, an overly ambitious simulation can itself
present significant challenges to the interpretation of fundamental system behaviour under
the induced changes.

End-to-end, the simulation pipeline makes a large number of variables available for
manipulation, and the size and dimensionality of the resulting space is much larger than
can be explored with available computational resources. Therefore we decided to focus
our initial exploration on a small part of this space. We used two simple phylogenetic tree
topologies (a four taxon ladder and a four taxon star) (Fig. 3), to develop insight into the
challenges that face metagenomics researchers choosing to apply 3C to communities which
contain closely related taxa.
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Parameter sweep

A single monochromosomal ancestral genome was used throughout (Escherichia coli K12
substr. MG1655 (acc: NC_000913)). Two simple ultrametric tree topologies of four taxa
(tree: star, ladder) (Fig. 3) were included and evolutionary divergence was varied over ten
values on a log-scale (opr: 1-0.025; mean taxa ANIb 85-99.5%) (Fig. 1). Two community
abundance profiles were tested: uniform abundance and one of decreasing abundance by
factorsof 1/e (i.e., 1,1/e,1/e?,1/¢e?) (profile: uniform and 1/e). WGS coverage was limited
to three depths (xfold: 10, 50, 100), which for uniform abundance represents 0.12, 0.60
and 1.2 Gbp of sequencing data respectively. Being a simple simulated community, greater
depths did not appreciably improve the assembly result. The number of 3C read-pairs
(3C sampling depth) was varied in five steps from ten thousand to one million pairs
(n3c: 10k, 20k, 50k, 100k, 1M), while the remaining parameter variations can be found in
Tables 2 and 1.

From the 40 simulated microbial communities, the resulting 120 simulated metagenome
read-sets were assembled and the assemblies evaluated using QUAST (v3.1) (Gurevich et
al., 2013) against the 20 respective reference genome sets. Both external reference based
(e.g., rates of mismatches, Ns, indels) and internal (e.g., N50, L50) statistics were collected
and later joined with the results from the downstream cluster validation measures. Data
generation resulted in 600 distinct combinations of simulation parameters, forming the
basis for input to the selected clustering algorithms. OClustR results in 600 clusterings;
Louvain clustering was performed both as standard hard-clustering (Louvain-hard)
and our naive soft-clustering modification (Louvain-soft) resulting in 600 clusterings
each; lastly MCL and SR-MCL were both varied over one parameter (infl) in five steps
resulting in 3000 clusterings each. Finally, the quality of the clustering solutions for all four
algorithms was assessed using the weighted Bcubed (Eq. 1) external validation measure.
Other parameters fixed throughout the sweep were: ancestral genome size (seq-len: 3 Mbp),
indel/inversion/HT rate multiplier (sg_scale: 10~*), small HT size (Poisson(200 bp)), large
HT size range (Uniform(10-60 kbp)), inversion size (Geometric(50 kbp)), WGS read
generation parameters (read-length: 150 bp, insert size: 450 bp, standard deviation: 100
bp); HiC/3C parameters (read-length: 150 bp, restriction enzyme: NlalIl [ _CATG" ]). As
simulated genomes were monochromosomal, inter-chromosomal read-pair probability

was not a factor.

Assembly entropy

A normalized entropy based formulation S,ixing (Eq. 6) was used to quantify the degree
to which a contig within an assembly is a mixture of source genomes, averaged over the
assembly with terms weighted in proportion to contig length. For simulated communities,
the maximum attainable value is equal to the logarithm of the sum of the relative abundances
gi» the effective number of genomes N,g (uniform profile Nog =4, 1/e profile Nz ~ 1.37).
Here N¢ is the number of contigs within an assembly, N the number of genomes within
a community and Ly, simply the total extent of an assembly, p;; is the proportion of reads
belonging to ith genome mapping to the jth contig, /; the length of the jth contig, and h
the step size in apy.
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When each contig in an assembly is derived purely from a single genomic source
Smixing = 0, conversely when all contigs possess a proportion of reads equal to the
relative abundance the respective source genome Syixing = 1. A forward finite difference
was used to approximate the first order derivative AS,xing (Eq. 7), where mixing was
regarded as a function of «p; and the difference taken between successive sample points
in the sweep.

1 N¢ Ng Nc¢ Ng
Sixing = ————"———— l; iilog, (pij) Losm = L, Ny = i (6)
g Lasmlogz(Neﬁ)j;]izzlpj gZ p] j;] ﬁ( Izzlq
1
ASmixing (apr) =~ (Smixing (apL+h) — Smixing (aBL)) (7)

h

Graph complexity

Although simple intrinsic graph properties such as order, size and density can provide a
sense of complexity, they do not consider the internal structure or information content
present in a graph. One information-theoretic formulation with acceptable computational
complexity is the non-parametric entropy Hy (Eq. 8) associated with the non-zero

172 where

eigenvalue spectrum of the normalized Laplacian matrix N = D~'/2LD~
L =D — A is the regular Laplacian matrix, D is the degree matrix and A the adjacency
matrix of a graph (Dehmer ¢ Mowshowitz, 2011; Mowshowitz & Dehmer, 2012; Dehmer ¢

Sivakumar, 2012).

Hy= Y [|iillog,lail (8)

rie{r:r>0}

where {A : A > 0} is set the non-zero eigenvalues of the normalized Laplacian N.

RESULTS

Experimental design

We implemented a computational pipeline which is capable of simulating arbitrary
metagenomic HiC/3C sequencing experiments (Fig. 2). The pipeline exposes parameters
governing both the process of sequencing and community composition for control by the
researcher and further, provides the facility for performing parametric sweeps on these
parameters (Table 2).

The pipeline was used to vary community composition, in particular, the degree of
within-community evolutionary divergence, and evaluate its impact on the accuracy of
genomic reconstruction. Starting from an ancestral sequence, a phylogenetic tree and an
abundance profile; 10 communities were generated with varying evolutionary divergence
by scaling branch length (Fig. 3). The range of evolutionary divergence was chosen so
as to go from a region of easily separable species (*85% ANI) to that of very closely
related strains (/299.5% ANI) (Fig. 1). The sweep included variation of both WGS coverage
(xfold: 10x, 50x, 100x ) and the number of HiC/3C read-pairs (n3c: 10*~10°) to assess
the impact of increased sampling on reconstruction.
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Genomic reconstruction was performed using five different graph clustering algorithms
(Table 1) on the 600 3C-contig graphs resulting from the sweep. The quality of each
solution was then evaluated using our weighted Bcubed metric Fps (Eq. 1), where the
relevant gold-standard as also generated by the pipeline. The resulting dataset is publicly
available at http://doi.org/10.4225/59/57b0£832e013c.

Assembly complexity

Along with traditional assembly validation statistics (N50, L50) (Figs. 4A and 4B), assembly
entropy Spixing and its approximate first order derivative AS,ixing (Eqs. 6 and 7) (Fig. 4C)
were calculated for all 120 combinations resulting from the first four levels of the sweep
(parameters: tree, profile, ap, xfold) (Table 2).

As community composition moved from the realm of distinct species (apy = 1.0,
ANI~85%) to well below the conventional definition of strains (ag; = 0.025, ANI~99.5%),
the degree of contig mixing increased more or less monotonically, and was delayed by
increased read-depth. After apy, the only significant continuous variable influencing
mixing was read-depth (Spearman’s p = —0.26, P < 4 x 107°), while abundance profile
was the only significant categorical variable (one-factor ANOVA R?> =0.0774, P < 3 x
1073) (Lé, Josse ¢» Husson, 2008). In all cases, as ap; decreased mixing approached unity;
implying that as genomic sources became more closely related, the resulting metagenomic
assembly contigs were of increasingly mixed origin.

Regarding the assembly process as a dynamic system in terms of evolutionary divergence,
the turning point evident in AS,xine (Fig. 4C dashed lines) could be regarded as the
critical point in a continuous phase transition from a state of high purity (Sixing ~ 0) to
a state dominated by completely mixed contigs (Syixing — 1). This point in evolutionary
divergence coincided with the region where assemblies were the most fragmented (max L50,
min N50) (Figs. 4A and 4B) and AS,ixing Was well correlated with both N50 (Spearman’s
p=0.72,P <1 x 107°) and L50 (Spearman’s p = —0.83, P < 1 X 1077), implying that
as community divergence decreased through this critical point, traditional notions of
assembly quality followed suit.

Graph complexity

The introduction of 3C sampling depth (number of read-pairs) at the next level within
the sweep (parameter: n3c) generated 480 3C-contig graphs (Table 2). To assess how
assembly outcome affects the derived graph: order, size, density, and entropy Hp

(Eq. 8) were calculated and subsequently joined with the associated factors from assembly
(Fig. 4D).

Per the definition of the 3C-contig graph, there was a strong linear correlation
between graph order || and L50 (Pearson’s r = 0.96, P < 3 x 107'®) and a weaker
but still significant linear correlation between graph size |e| and 3C sampling depth
(parameter: n3c) (Pearson’s r = 0.66, P < 3 x 107'6). Graphical density was moderately
linearly correlated with graphical complexity H; (Pearson’s r = —0.63, P < 3 x 1071°),
and strongly correlated with assembly statistics N50 (Spearman’s p = —0.97, P < 3 x
10716), L50 (Spearman’s p =0.96, P < 3 x 107!6) and ASpixing (Spearman’s p = —0.73,
P<1x10716),

DeMaere and Darling (2016), PeerdJ, DOI 10.7717/peer|.2676 15/28


https://peerj.com
http://doi.org/10.4225/59/57b0f832e013c
http://dx.doi.org/10.7717/peerj.2676

Peer

A B
10° 2000
10° 5 1500 5
10* a 1000 a
@ Q
= 10° 500
2 10  ©
= 9
rs) 3000
=2 106
5
10 9 2000 9
4 I O
1o3 g 1000 g
10
102 0
C D
1.00
0.75 _ 10 _
Q Q
0.50 g a
@ 5 Q
0.25
2
= 0.00 . 0
£ T
@D 100
0.75 10
(] wn
0.50 Q g
0.25 S 5
0.00 = L
0
“ o © N
K K K S
ANl

xfold —— 10 —— 50 —— 100

Figure 4 Plotted as a function of evolutionary divergence (measured by ANI,) for the star and lad-
der communities at three depths of WGS coverage (10, 50 and 100 x ); assembly validation statistics
N50 (A) and L50 (B), the degree of genome intermixing S,,ixing and its approximate first order deriva-
tive AS,ixing (dashed lines) (C), lastly graphical complexity H; (D). The vertical grey dashed line in each
panel marks our operationally defined species boundary (ANI, = 95%). As evolutionary divergence de-
creased from easily separable species (ANI, = 85%) to very closely related strains (ANI, — 1), assemblies
went through a transition from a state of high purity (Sixing ~0) to a highly degenerate state (Syixing 1),
where many contigs were composed of reads from all community members. A crisis point was observed
for small evolutionary divergence (ap, < 0.2924, ANI, < 95%), where a sharp change in contiguity (im-
plied by N50 and L50) occured. At very low divergence, N50 and L50 statistics implied that assemblies
were recovering, while source degeneracy (S,,ixing) monotonically increased. Graphical complexity (H;)
exhibited a similar turning point to L50 and was dominated by graph order |#| (number of contigs/nodes).

The knock-on effect of evolutionary divergence on the 3C-contig graphs derived from
metagenomic assemblies was clear; fragmented assemblies comprised of contigs of mixed
heritage resulted in increased 3C-contig graph complexity. As 3C read-pairs are the direct
observations used to infer an association between contigs, it could be expected that the
correlation between 3C sampling depth and graphical size (|e|) would be high (r — 1). In
fact, we observed a more moderate correlation (r = 0.66) and, because spurious read-pairs
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were excluded in our simulations, what might be perceived as a shortfall in efficiency was
simply the accumulation of repeated observations of read pairs linking the same contig
pairs. Therefore by the nature of the experiment, increased 3C sampling depth did not
lead to increased graphical complexity in the same way that a more fragmented assembly
would. Instead, increased 3C sampling depth can significantly improve the quality of
clustering solutions by increasing the probability of observing rare associations and repeat
observations of existing associations.

Clustering validation

The 300 contig graphs resulting from the sweep at uniform abundance were used to assess
the influence of the various parameters on the performance of five clustering algorithms. For
each clustering algorithm, overall performance scores, using F3 (Eq. 1), were joined with
their relevant sweep parameters and PCA performed in R (FactoMineR v1.32) (Lé, Josse &
Husson, 2008). The first three principal components explained 75% of the variation, where
PC1 was primarily involved with factors describing graphical complexity (apr: r =0.91,
P <2 x 10713; density: r =0.67, P < 8 x 107*!; order: r = —0.75, P < 3 x 107°%; ANIb:
r=—091,P<2x 107", H;: r=—0.91, P < 3 x 107'13), PC2 factors described the
sampling of contig-contig associations and overall connectedness of the 3C-contig graph
(size:r=0.84,P <2 x 1077%;n3c: r=0.84, P < 7 x 1078 modularity: r = —0.40, P < 9
x 1071%) and PC3 pertained to local community structure (modularity: r =0.73, P < 1 x
10~%; and xfold: r =0.53, P < 3 x 1072%) (Fig. 5).

Of the five clustering algorithms, the performance of four (MCL, SR-MCL, Louvain-
hard and OClustR) was strongly correlated with PC1 and so their solution quality was
inversely governed by the degree of complexity in the input graph, which in turn was
largely influenced by within-community evolutionary divergence. The fifth algorithm, our
naive Louvain-soft, though also correlated with PC1 and so negatively affected by graphical
complexity, possessed significant correlation with PC2 (r =0.53, P < 5 x 1072%) and thus
noticeably benefited from increasing the number of 3C read-pairs (Fig. 5).

DISCUSSION

By selecting a slice from within the sweep and the best-scoring runtime configuration
for each algorithm, a qualitative per-algorithm comparison of clustering performance
under ideal conditions can be made (Fig. 6). For evolutionary divergence well above the
level of strains and prior to the critical region of assembly (ap; > 0.292, ANI}, < 95%), all
algorithms achieved their best performance (Fys — 1) (Fig. 6C). As evolutionary divergence
decreased toward the level of strains and the assembly process approached the critical region,
a fall-off in performance was evident for all algorithms and this performance drop is largely
attributable to the loss of recall (Fig. 6B). Hard-clustering algorithms (MCL, Louvain-hard)
in general exhibited superior precision (Fig. 6A) to that of soft-clustering algorithms (SR-
MCL, OClustR, Louvain-soft) and the precision of soft-clustering algorithms was worst in
the critical region where graphical complexity was highest.

A hundred-fold increase in the number of 3C read-pairs (10* — 10°) had only a modest
effect on clustering performance for four of the five algorithms, the exception being
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Figure 5 For the 300 3C-contig graphs pertaining to uniform abundance, a PCA biplot is shown for
the two most significant components (PC1, PC2). Respectively, PC1 and PC2 explain 53% and 13.6%

of the variation within the data-set. Here vectors represent sweep variables, while points represent indi-
vidual 3C-contigs graphs and are coloured by 3C sequencing depth (n3c: 10k—1M pairs). Double-sized
points show mean values of these n3c groupings. Vectors labelled after the five clustering algorithms rep-
resent performance as measured by scoring metric Fgs (Eq. 1). PC1 and PC2 explained 53% and 13.6% of
the variation within the data-set respectively. PC1 was most strongly correlated with graphical complexity
(H) and the number of graph nodes (order), which come about with decreasing evolutionary divergence
(ANI, and o) and explained the majority of variation in performance for four out of five clustering al-
gorithms. The notable exception was Louvain-soft which had significant support on PC2. PC2 was related
to HiC/3C sampling depth (#n3c), which correlated strongly with the number of graph edges (size). The
positive response Louvain-soft had to increasing the number of HiC/3C read-pairs (n3c) relative to the re-
maining four algorithms is evident.

our naive Louvain-soft. Louvain-soft made substantial gains in recall from increased
HiC/3C sampling depth at evolutionary divergences well below the level of strains

(apr < 0.085, ANI, < 98%), but sacrificed precision at large and intermediate evolutionary
divergence. The soft-clustering SR-MCL also sacrificed precision but failed to make similar
gains in recall as compared to Louvain-soft. Recall for all three hard-clustering algorithms
(MCL, Louvain-hard, OClustR) decreased with decreasing evolutionary divergence as the
prevalence of degenerate contigs grew. This drop in recall was particularly abrupt for the
star topology where, within the assembly process, all taxa approached the transitional

region simultaneously. Being primarily limited by their inability to infer overlap, increase
in 3C sampling depth for the hard-clustering algorithms had little effect on recall.
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Figure 6 Performance of the five clustering algorithms (MCL, Louvain-hard, OClustR, SR-MCL,
Louvain-soft), as measured by weighted extended Bcubed precision P;; (A), recall Ry (B) and their
harmonic mean F;; (C) (Egs. 1-3). The slice from the sweep pertained to uniform abundance and

100x WGS coverage and the best performing runtime parameters specific to algorithms (i.e., for MCL and
SR-MCL inflation = 1.1). (A) Louvain-hard demonstrated high precision throughout, while our simple
modification Louvain-soft lead to a drop, particular in the region of intermediate evolutionary divergence.
(B) All algorithms struggled to recall the four individual genomes as evolutionary divergence decreased
and cluster overlap grew. Within the region of overlap, Louvain-soft performed best and clearly benefited
from increasing the number of HiC/3C read-pairs (n3c: 10* — 10°). (C) In terms of Fys, the harmonic
mean of Recall and Precision, only Louvain-soft appeared to be an appropriate choice when it might be
expected that strain-level diversity exists within a microbial community.
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Our results have implications for the design of metagenomic 3C sequencing experiments.
When genomes with >95% ANI exist in the sample, the power to resolve differences among
those genomes can benefit greatly from the generation of additional sequence data beyond
what would be required to resolve genomes below 95% ANI. In our experiments, the
best results were achieved with 100x WGS coverage and 1 million HiC/3C read-pairs.
For the simple communities of four genomes each of roughly 3 Mbp considered here,
100x coverage corresponds to generating approximately 1.2 Gbp of Illumina shotgun
data. In a metagenomic 3C protocol (Marbouty et al., 2014), obtaining 100,000 proximity
ligation read-pairs would require approximately 107 read-pairs in total; when we assume
a proximity ligation read-pair rate of 1% (Liu ¢ Darling, 2015). We note that current
Illumina MiSeq V3 kits are specified to produce up to ~2x 10’ read-pairs, while HiSeq
2500 V4 lanes are specified to yield up to ~5x 103 read-pairs per lane. Therefore, while it
may be possible to resolve closely related genomes in very simple microbial communities
with the capacity of a MiSeq, the scale of the HiSeq is likely to be required in many cases.
Alternatively, the more technically complicated HiC protocol (Beitel et al., 2014) may be
advantageous to achieve higher proximity ligation read rates, with up to 50% of read pairs
spanning over 1kbp.

Limitations and future work

Our simulation of 3C read-pairs did not include modeling of experimental noise in
the form basic sequencing error nor spurious ligation products that do not reflect true
DNA:DNA interactions. Such aberrant products have been estimated to occur in real
experiments at levels up to 10% of total yield in 3C read-pairs (Liu ¢ Darling, 2015). As a
first approximation, we feel it reasonable to assume that these erroneous read-pairs are a
result of uniformly random ligation events between any two DNA strands present in the
sample. The sampling of any such spurious read-pair will be sparse in comparison to the
spatially constrained true 3C read-pairs and therefore amount to weak background noise.
As currently implemented, the Louvain-soft clustering method would be prone to creating
false cluster joins in the presence of such noise, but a simple low-frequency threshold
removal (e.g., requiring some constant number N links to join communities instead of 1)
could in principle resolve the problem.

Only 3C read-pairs were used when inferring the associations between contigs, while
conventional WGS read-pairs were used exclusively in assembly. It could be argued
that also including WGS read-pairs during edge inference would have had positive
benefits, particularly when assemblies were highly fragmented in the critical region.
Simulated communities were chosen to be particularly simple for the sake of downstream
comprehension. Larger and more complex phylogenetic topologies are called for in
fully assessing real-world performance. For the entire sweep, only a single ancestral
genome (Escherichia coli K12 substr. MG1655) was used in generating the simulated
communities and its particular characteristics will have biased genome assembly and
sequence alignment tasks within the work-flow. As future work, a more thorough sampling
of available microbial genomes and more complicated community structures could be
investigated.
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Only raw edge weights were used in our analysis because normalization procedures,
such as have been previously employed (Beitel et al., 2014; Marbouty et al., 2014; Burton et
al., 2014), proved only weakly beneficial at higher 3C sampling depths and occasionally
detrimental in situations of low sampling depth (results not shown). For higher sampling
depth, the weak response can likely be attributed to a lack of complexity and the low noise
environment inherent in the simulation. For low sampling depth, observation counts
are biased to small values (mode [w(ni, n]-)] — 1) and simple counting statistics would
suggest there is high uncertainty (:i:\/w(T,nj) ) in these values. As such, this uncertainty is
propagated via any normalization function f (w(#n;,n;)) that attempts to map observation
counts to the real numbers (f : N— R). Even under conditions for high sampling depth,
pruning very infrequently observed low-weight edges can prove beneficial to clustering
performance as, beyond this source of uncertainty, some clustering algorithms appear to
unduly regard the mere existence of an edge even when its weight is vanishingly small
relative to the mean.

For the sake of standardization and to focus efforts on measuring clustering algorithm
performance we elected to use a single assembly and mapping algorithm. However, many
alternative methods for assembly and mapping exist. In the case of assembly, there are
a growing number of tools intended explicitly for metagenomes, such as metaSPAdes
(Bankevich et al., 2012), MEGAHIT (Li et al., 2015), or populations of related genomes
(Cortex) (Igbal, Turner ¢ McVean, 2013), while the modular MetAMOS suite (Treangen
et al., 2013) at once offers tantalising best-practice access to the majority of alternatives.
For HiC/3C analysis, a desirable feature of read mapping tools is the capability to report
split read alignments (e.g., BWA MEM) (Li, 2013). Because of the potential for 3C reads
to span the ligation junction, mappers reporting such alignments permit the experimenter
the choice to discard or otherwise handle such events. Though we explored the effects of
substituting alternative methods to a limited extent (not shown), both in terms of result
quality and practical runtime considerations, a thorough investigation remains to be made.

The present implementation state of the simulation pipeline does not meet our desired
goal for ease of configuration and broader utility. Of the numerous high-throughput
execution environments (SLURM, PBS, SGE, Condor) in use, the pipeline is at present
tightly coupled to PBS and SGE. It is our intention to introduce a grid-agnostic layer so that
redeployment in varying environments is only a configuration detail. Although a single
global seed is used in all random sampling processes, the possibility for irreproducibility
remains due to side-effects brought on by variance in a deployment target’s operating
system and codebase. Additionally, though the pipeline and its ancillary tools are under
version control, numerous deployment-specific configuration settings are required post
checkout. Preparation of a pre-configured instance within a software container such as
Docker would permit the elimination of many such sources of variance and greatly lower
the configurational barrier to carrying out or reproducing an experiment.

Many commonly used external validation measures (e.g., F-measure, V-measure)
have traditionally not handled cluster overlap and were inappropriate for this study.
Ongoing development within the field of soft-clustering (also known as community
detection in networks) has, however, led to the reformulation of some measures to support
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overlap (Lancichinetti, Fortunato ¢ Sz, 2009) or re-expression of soft-clustering solutions
into a non-overlapping context (Xie, Szymanski ¢ Liu, 2011). While a soft-clustering
reformulation of normalized mutual information (NMI) (Lancichinetti, Fortunato ¢ Sz,
2009) has become frequently relied on in clustering literature (Xie, Kelley ¢ Szymanski,
2013), alongside Bcubed the two have been shown to be complementary measures (Jurgers
& Klapaftis, 2013). Therefore, although the choice to rely on the single measure we proposed
here (Eq. 1) is a possible limitation, it simultaneously avoids doubling the number of results
to collate and interpret.

We chose to limit the representation of the combined WGS and 3C read data to a
3C-contig graph. While other representations built around smaller genomic features, such
as SNVs, could in principle offer greater power to resolve strains, they bring with them
a significant increase in graphical complexity. How more detailed representations might
impact downstream algorithmic scaling, or simply increase the difficulty in accurately
estimating a gold-standard remains to be investigated.

Benchmark graph generators (so called LFR benchmarks) have been developed that
execute in the realm of seconds (Lancichinetti, Fortunato ¢ Radicchi, 2008; Lancichinetti
¢ Fortunato, 2009). Parameterizing the mesoscopic structure of the resulting graph, their
introduction is intended to address the inadequate evaluation of soft-clustering algorithms,
which too often relied on unrepresentative generative models or ad hoc testing against real
networks. Our pipeline may suffice as a pragmatic, albeit much more computationally
intensive means of generating a domain specific benchmark on which to test clustering
algorithms. Whether it is feasible to calibrate the LFR benchmarks so as to resemble 3C
graphs emitted by our pipeline could be explored. Ultimately, the parameter set we defined
for the pipeline (Table 2) has the benefit of being domain-specific and therefore meaningful
to experimental researchers.

Detection of overlapping communities in networks is a developing field and much
recent work has left the performance of many clustering algorithms untested for the
purpose of deconvolving microbial communities via 3C read data. Not all algorithms are
wholly unsupervised. Individually they fall into various algorithmic classes (i.e., clique
percolation, link partitioning, local expansion, fuzzy detection and label propagation).
Label propagation methods have shown promise with respect to highly overlapped
communities (Xie, Szymanski ¢ Liu, 2011; Chen et al., 2010; Gaiteri et al., 2015), which
we might reasonably expect to confront when resolving microbial strains. Empirically
determined probability distributions, such as those governing the production of intra-
chromosomal (cis) read-pairs as a function of genomic separation, might naturally lend
themselves to methods from within the fuzzy-detection class. With a generative community
model in hand, exploring the performance of gaussian mixture models (GMM), mixed-
membership stochastic block models (SBM) or non-negative matrix factorization (NMF)
could be pursued.

The incomplete nature of graphs derived from experimental data can result in edge
absence or edge weight uncertainty for rare interactions, with the knock-on effect that
clustering algorithms can then suffer. We have shown that increasing 3C sampling depth
(Fig. 6) can significantly improve the quality of the resulting clustering solutions. A
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computational approach, which could potentially alleviate some of the demand for
increased depth has been proposed (EdgeBoost) (Burgess, Adar ¢ Cafarella, 2015) and
shown to improve both Louvain and label propagation methods, is a clear candidate for
future assessment.

CONCLUSION

For a microbial community, as evolutionary divergence decreases within the community,
contigs derived from WGS metagenomic assembly increasingly become a mixture of
source genomes. When combined with 3C information to form a 3C-contig graph,
evolutionary divergence is directly reflected by the degree of community overlap. We tested
the performance of both hard and soft clustering algorithms to deconvolute simulated
metagenomic assemblies into their constituent genomes from this most simple 3C-
augmented representation. Performance was assessed by our proposed weighted variation
of extended Bcubed validation measure (Eq. 1), where here weights were set proportional to
contig length. We have shown that soft-clustering algorithms can significantly outperform
hard-clustering algorithms when intra-community evolutionary divergence approaches

a level traditionally regarded as existing between microbial strains. In addition, although
increasing sampling depth of 3C read-pairs does little to improve the quality of hard-
clustering solutions, it can noticeably improve the quality of soft-clustering solutions.
Of the tested algorithms, the precision of the hard-clustering algorithms often equalled
or exceeded that of the soft-clustering algorithms across a wide range of evolutionary
divergence. However, the poor recall of hard-clustering algorithms at low divergence
greatly reduces their value in genomic reconstruction. We recommend that future work
focuses on the application of recent advances in soft-clustering methods.

ACKNOWLEDGEMENTS

We thank Steven P. Djordjevic for his support and helpful discussions. This work was
made possible by the AusGEM initiative, a collaboration between the NSW Department of
Primary Industries and the ithree institute. We acknowledge the use of computing resources
from the NeCTAR Research Cloud, an Australian Government project conducted as part
of the Super Science initiative and supported by the EIF and NCRIS.

ADDITIONAL INFORMATION AND DECLARATIONS

Funding

This work was supported under Australian Research Council’s Discovery Projects funding
scheme (project number LP150100912). The funders had no role in study design, data
collection and analysis, decision to publish, or preparation of the manuscript.

Grant Disclosures
The following grant information was disclosed by the authors:
Australian Research Council’s Discovery Projects funding scheme: LP150100912.

DeMaere and Darling (2016), PeerJ, DOI 10.7717/peerj.2676 23/28


https://peerj.com
http://www.nectar.org.au
http://dx.doi.org/10.7717/peerj.2676

Peer

Competing Interests

The authors declare there are no competing interests.

Author Contributions

e Matthew Z. DeMaere conceived and designed the experiments, performed the
experiments, analyzed the data, contributed reagents/materials/analysis tools, wrote
the paper, prepared figures and/or tables, reviewed drafts of the paper.

e Aaron E. Darling conceived and designed the experiments, contributed reagents/mate-
rials/analysis tools, reviewed drafts of the paper.

Data Availability
The following information was supplied regarding data availability:
Source code hosted on Github: https://github.com/koadman/proxigenomics.git
Data hosted by our institutions longterm archival service UTS Research Data. DOI
10.4225/59/57b0£832e013c.

Supplemental Information
Supplemental information for this article can be found online at http://dx.doi.org/10.7717/
peerj.2676#supplemental-information.

REFERENCES

Alneberg J, Bjarnason BS, De Bruijn I, Schirmer M, Quick J, Ijaz UZ, Loman NJ,
Andersson AF, Quince C. 2013. CONCOCT: clustering cONtigs on COverage and
ComposiTion. ArXiv preprint. arXiv:1312.4038v1.

Amigé E, Gonzalo J, Artiles J, Verdejo F. 2009. A comparison of extrinsic clustering
evaluation metrics based on formal constraints. Information Retrieval 12(4):461-486.

Bagga A, Baldwin B. 1998. Algorithms for scoring coreference chains. In: The first
international conference on language resources and evaluation workshop on linguistics
conference, 563—566.

Bankevich A, Nurk S, Antipov D, Gurevich AA, Dvorkin M, Kulikov AS, Lesin VM,
Nikolenko SI, Pham S, Prjibelski AD, Pyshkin AV, Sirotkin AV, Vyahhi N, Tesler
G, Alekseyev MA, Pevzner PA. 2012. SPAdes: a new genome assembly algorithm and
its applications to single-cell sequencing. Journal of Computational Biology: A Journal
of Computational Molecular Cell Biology 19(5):455-477 DOI 10.1089/cmb.2012.0021.

Beitel CW, Lang JM, Korf IF, Michelmore RW, Eisen JA, Darling AE. 2014. Strain- and
plasmid-level deconvolution of a synthetic metagenome by sequencing proximity
ligation products. Peer] 2(12):e415 DOI 10.7717/peerj.415.

Belton J-M, McCord RP, Gibcus JH, Naumova N, Zhan Y, Dekker J. 2012. Hi-C:

a comprehensive technique to capture the conformation of genomes. Methods
58(3):268-276 DOI 10.1016/j.ymeth.2012.05.001.

Blondel VD, Guillaume J-L, Lambiotte R, Lefebvre E. 2008. Fast unfolding of com-
munities in large networks. Journal of Statistical Mechanics: Theory and Experiment
2008(10):P10008 DOI 10.1088/1742-5468/2008/10/P10008.

DeMaere and Darling (2016), PeerJ, DOI 10.7717/peerj.2676 24/28


https://peerj.com
https://github.com/koadman/proxigenomics.git
http://dx.doi.org/10.4225/59/57b0f832e013c
http://dx.doi.org/10.7717/peerj.2676#supplemental-information
http://dx.doi.org/10.7717/peerj.2676#supplemental-information
http://arXiv.org/abs/1312.4038v1
http://dx.doi.org/10.1089/cmb.2012.0021
http://dx.doi.org/10.7717/peerj.415
http://dx.doi.org/10.1016/j.ymeth.2012.05.001
http://dx.doi.org/10.1088/1742-5468/2008/10/P10008
http://dx.doi.org/10.7717/peerj.2676

Peer

Boulos RE, Arneodo A, Jensen P, Audit B. 2013. Revealing long-range interconnected
hubs in human chromatin interaction data using graph theory. Physical Review
Letters 111(11):118102 DOI 10.1103/PhysRevLett. 111.118102.

Burgess M, Adar E, Cafarella M. 2015. Link-prediction enhanced consensus clustering
for complex networks. PLoS ONE 11(5):e0153384 DOT 10.1371/journal.pone.0153384.

Burton JN, Adey A, Patwardhan RP, Qiu R, Kitzman JO, Shendure J. 2013.
Chromosome-scale scaffolding of de novo genome assemblies based on chromatin
interactions. Nature Biotechnology 31(12):1119-1125 DOI 10.1038/nbt.2727.

Burton JN, Liachko I, Dunham M], Shendure J. 2014. Species-level deconvolution of
metagenome assemblies with Hi-C-based contact probability maps. G3 (Bethesda,
Md.) 4(7):1339-1346 DOI 10.1534/g3.114.011825.

Chen W, Liu Z, Sun X, Wang Y. 2010. A game-theoretic framework to identify over-
lapping communities in social networks. Data Mining and Knowledge Discovery
21(2):224-240 DOI 10.1007/s10618-010-0186-6.

Cleary B, Brito IL, Huang K, Gevers D, Shea T, Young S, Alm EJ. 2015. Detection
of low-abundance bacterial strains in metagenomic datasets by eigengenome
partitioning. Nature Biotechnology 33(10):1053—1060 DOI 10.1038/nbt.3329.

Coil D, Jospin G, Darling AE. 2015. A5-miseq: an updated pipeline to assemble
microbial genomes from Illumina MiSeq data. Bioinformatics 31(4):587-589
DOI 10.1093/bioinformatics/btu661.

Darling AE, Craven M, Mau B, Perna NT. 2004. Multiple alignment of rearranged
genomes. In: Computational systems bioinformatics conference. Piscataway: IEEE.

Dehmer M, Mowshowitz A. 2011. A history of graph entropy measures. Information
Sciences 181(1):57-78 DOI 10.1016/j.ins.2010.08.041.

Dehmer M, Sivakumar L. 2012. Uniquely discriminating molecular structures using
novel eigenvalue—based descriptors. Match-Communications in Mathematical and
Computer Chemistry 67(1):147—172.

Dekker J, Rippe K, Dekker M, Kleckner N. 2002. Capturing chromosome conformation.
Science 295(5558):1306—1311 DOI 10.1126/science.1067799.

De Wit E, De Laat W. 2012. A decade of 3C technologies: insights into nuclear organiza-
tion. Genes & Development 26(1):11-24 DOI 10.1101/gad.179804.111.

Gaiteri C, Chen M, Szymanski B, Kuzmin K, Xie J, Lee C, Blanche T, Neto EC, Huang
S-C, Grabowski T, Madhyastha T, Komashko V. 2015. Identifying robust com-
munities and multi-community nodes by combining top-down and bottom-up
approaches to clustering. Scientific Reports 5:16361 DOI 10.1038/srep16361.

Gurevich A, Saveliev V, Vyahhi N, Tesler G. 2013. QUAST: quality assessment tool for
genome assemblies. Bioinformatics 29(8):1072—-1075
DOI 10.1093/bioinformatics/btt086.

Hirschberg JB, Rosenberg A. 2007. V-Measure: a conditional entropy-based external
cluster evaluation. In: Proceedings of the 2007 joint conference on empirical methods in
natural language processing and computational natural language learning (EMNLP-
CoNLL), 410-420.

DeMaere and Darling (2016), PeerJ, DOI 10.7717/peerj.2676 25/28


https://peerj.com
http://dx.doi.org/10.1103/PhysRevLett.111.118102
http://dx.doi.org/10.1371/journal.pone.0153384
http://dx.doi.org/10.1038/nbt.2727
http://dx.doi.org/10.1534/g3.114.011825
http://dx.doi.org/10.1007/s10618-010-0186-6
http://dx.doi.org/10.1038/nbt.3329
http://dx.doi.org/10.1093/bioinformatics/btu661
http://dx.doi.org/10.1016/j.ins.2010.08.041
http://dx.doi.org/10.1126/science.1067799
http://dx.doi.org/10.1101/gad.179804.111
http://dx.doi.org/10.1038/srep16361
http://dx.doi.org/10.1093/bioinformatics/btt086
http://dx.doi.org/10.7717/peerj.2676

Peer

Huang W, Li L, Myers JR, Marth GT. 2012. ART: a next-generation sequencing read
simulator. Bioinformatics 28(4):593-594
DOI 10.1093/bioinformatics/btr708.

Imakaev M, Fudenberg G, McCord RP, Naumova N, Goloborodko A, Lajoie BR,
Dekker J, Mirny LA. 2012. Iterative correction of Hi-C data reveals hallmarks of
chromosome organization. Nature Methods 9(10):999-1003
DOI10.1038/nmeth.2148.

Imelfort M, Parks D, Woodcroft BJ, Dennis P, Hugenholtz P, Tyson GW. 2014.
GroopM: an automated tool for the recovery of population genomes from related
metagenomes. Peer] 2:e603 DOI 10.7717/peerj.603.

Igbal Z, Turner I, McVean G. 2013. High-throughput microbial population ge-
nomics using the Cortex variation assembler. Bioinformatics 29(2):275-276
DOI 10.1093/bioinformatics/bts673.

Jajuga K, Sokolowski A, Bock H-H. 2002. Classification, clustering, and data analysis. In:
Recent Advances and Applications. Berlin, Heidelberg: Springer.

Jurgens D, Klapaftis I. 2013. Semeval-2013 task 13: word sense induction for graded and
non-graded senses. In: Second joint conference on lexical and computational semantics,
290-299.

Kielbasa SM, Wan R, Sato K, Horton P, Frith MC. 2011. Adaptive seeds tame genomic
sequence comparison. Genome Research 21(3):487—-493 DOI 10.1101/gr.113985.110.

Konstantinidis KT, Ramette A, Tiedje JM. 2006. The bacterial species definition in the
genomic era. 361(1475):1929-1940.

Lancichinetti A, Fortunato S. 2009. Benchmarks for testing community detection
algorithms on directed and weighted graphs with overlapping communities.
Physical Review. E, Statistical, Nonlinear, and Soft Matter Physics 80(1 Pt 2):016118
DOI 10.1103/PhysRevE.80.016118.

Lancichinetti A, Fortunato S, Radicchi F. 2008. Benchmark graphs for testing commu-
nity detection algorithms. Physical Review E 78(4):046110.

Lancichinetti A, Fortunato S, Sz JNK. 2009. Detecting the overlapping and hierarchical
community structure in complex networks. New Journal of Physics 11(3):033015
DOI 10.1088/1367-2630/11/3/033015.

Lé S, Josse J, Husson F. 2008. FactoMineR: an R package for multivariate analysis.
Journal of Statistical Software 25(1):1-18.

Li D, Liu C-M, Luo R, Sadakane K, Lam T-W. 2015. MEGAHIT: an ultra-fast single-
node solution for large and complex metagenomics assembly via succinct de Bruijn
graph. Bioinformatics 31(10):1674-1676 DOI 10.1093/bioinformatics/btv033.

Li H. 2013. Aligning sequence reads, clone sequences and assembly contigs with BWA-
MEM. ArXiv preprint. arXiv:1303.3997v2.

Lieberman-Aiden E, Van Berkum NL, Williams L, Imakaev M, Ragoczy T, Telling A,
Amit I, Lajoie BR, Sabo PJ, Dorschner MO, Sandstrom R, Bernstein B, Bender MA,
Groudine M, Gnirke A, Stamatoyannopoulos J, Mirny LA, Lander ES, Dekker J.
2009. Comprehensive mapping of long-range interactions reveals folding principles
of the human genome. Science 326(5950):289-293 DOI 10.1126/science.1181369.

DeMaere and Darling (2016), PeerJ, DOI 10.7717/peerj.2676 26/28


https://peerj.com
http://dx.doi.org/10.1093/bioinformatics/btr708
http://dx.doi.org/10.1038/nmeth.2148
http://dx.doi.org/10.7717/peerj.603
http://dx.doi.org/10.1093/bioinformatics/bts673
http://dx.doi.org/10.1101/gr.113985.110
http://dx.doi.org/10.1103/PhysRevE.80.016118
http://dx.doi.org/10.1088/1367-2630/11/3/033015
http://dx.doi.org/10.1093/bioinformatics/btv033
http://arXiv.org/abs/1303.3997v2
http://dx.doi.org/10.1126/science.1181369
http://dx.doi.org/10.7717/peerj.2676

Peer

Liu M, Darling A. 2015. Metagenomic chromosome conformation capture (3C):
techniques, applications, and challenges. F1000Research 4:1377
DOI 10.12688/f1000research.7281.1.

Marbouty M, Cournac A, Flot J-F, Marie-Nelly H, Mozziconacci J, Koszul R. 2014.
Metagenomic chromosome conformation capture (meta3C) unveils the diversity
of chromosome organization in microorganisms. eLife 3:e03318.

Marie-Nelly H, Marbouty M, Cournac A, Flot J-F, Liti G, Parodi DP, Syan S,

Guillén N, Margeot A, Zimmer C, Koszul R. 2014. High-quality genome
(re)assembly using chromosomal contact data. Nature Communications 5:5695
DOI 10.1038/ncomms6695.

Mowshowitz A, Dehmer M. 2012. Entropy and the complexity of graphs revisited.
Entropy 14:559-570.

Myers Jr EW. 2016. A history of DNA sequence assembly. It-Information Technology
58(3):126—132 DOI 10.1515/itit-2015-0047.

Newman M, Girvan M. 2004. Finding and evaluating community structure in networks.
Physical Review E 69:026113.

Noble W, Duan Z-j, Andronescu M, Schutz K, McIlwain S, Kim YJ, Lee C, Shendure
J, Fields S, Blau CA. 2011. A three-dimensional model of the yeast genome. In:
Algorithms in Bioinformatics. Berlin Heidelberg: Springer, 320-320.

Peng Y, Leung HCM, Yiu SM, Chin FYL. 2012. IDBA-UD: a de novo assembler for
single-cell and metagenomic sequencing data with highly uneven depth. Bioinfor-
matics 28(11):1420-1428 DOI 10.1093/bioinformatics/bts174.

Pérez-Suérez A, Martinez-Trinidad JF, Carrasco-Ochoa JA, Medina-Pagola JE. 2013.
OClustR: a new graph-based algorithm for overlapping clustering. Neurocomputing
121:234-247 DOI 10.1016/j.neucom.2013.04.025.

Richter M, Rossell6-Mora R. 2009. Shifting the genomic gold standard for the prokary-
otic species definition. Proceedings of the National Academy of Sciences of the United
States of America 106(45):19126-19131 DOI 10.1073/pnas.0906412106.

Selvaraj S, R Dixon ], Bansal V, Ren B. 2013. Whole-genome haplotype reconstruc-
tion using proximity-ligation and shotgun sequencing. Nature Biotechnology
31(12):1111-1118 DOI 10.1038/nbt.2728.

Shih Y-K, Parthasarathy S. 2012. Identifying functional modules in interaction net-
works through overlapping Markov clustering. Bioinformatics 28(18):i1473-i479
DOI 10.1093/bioinformatics/bts370.

Treangen TJ, Koren S, Sommer DD, Liu B, Astrovskaya I, Ondov B, Darling
AE, Phillippy AM, Pop M. 2013. MetAMOS: a modular and open source
metagenomic assembly and analysis pipeline. Genome Biology 14(1):R2
DOI'10.1186/gb-2013-14-1-r2.

Tringe SG, Rubin EM. 2005. Metagenomics: DNA sequencing of environmental samples.
Nature Reviews Genetics 6(11):805-814 DOI 10.1038/nrg1709.

Van Dongen S. 2001. Graph clustering by flow simulation. PhD thesis, Utrecht Univer-
sity Repository, Utrecht University.

DeMaere and Darling (2016), PeerJ, DOI 10.7717/peerj.2676 27/28


https://peerj.com
http://dx.doi.org/10.12688/f1000research.7281.1
http://dx.doi.org/10.1038/ncomms6695
http://dx.doi.org/10.1515/itit-2015-0047
http://dx.doi.org/10.1093/bioinformatics/bts174
http://dx.doi.org/10.1016/j.neucom.2013.04.025
http://dx.doi.org/10.1073/pnas.0906412106
http://dx.doi.org/10.1038/nbt.2728
http://dx.doi.org/10.1093/bioinformatics/bts370
http://dx.doi.org/10.1186/gb-2013-14-1-r2
http://dx.doi.org/10.1038/nrg1709
http://dx.doi.org/10.7717/peerj.2676

Peer/

Venter JC, Adams MD, Myers EW, Li PW, Mural R], Sutton GG, Smith HO, Yandell M,
Evans CA, Holt RA, Gocayne JD, Amanatides P, Ballew RM, Huson DH, Wortman
JR, Zhang Q, Kodira CD, Zheng XH, Chen L, Skupski M, Subramanian G, Thomas
PD, Zhang J, Gabor Miklos GL, Nelson C, Broder S, Clark AG, Nadeau J, McKusick
VA, Zinder N, Levine AJ, Roberts R], Simon M, Slayman C, Hunkapiller M,
Bolanos R, Delcher A, Dew I, Fasulo D, Flanigan M, Florea L, Halpern A, Han-
nenhalli S, Kravitz S, Levy S, Mobarry C, Reinert K, Remington K, Abu-Threideh
J, Beasley E, Biddick K, Bonazzi V, Brandon R, Cargill M, Chandramouliswaran I,
Charlab R, Chaturvedi K, Deng Z, Di Francesco V, Dunn P, Eilbeck K, Evangelista
C, Gabrielian AE, Gan W, Ge W, Gong F, Gu Z, Guan P, Heiman TJ, Higgins ME,
JiRR, Ke Z, Ketchum KA, Lai Z, Lei Y, Li Z, Li ], Liang Y, Lin X, Lu F, Merkulov
GV, Milshina N, Moore HM, Naik AK, Narayan VA, Neelam B, Nusskern D, Rusch
DB, Salzberg S, Shao W, Shue B, Sun J, Wang Z, Wang A, Wang X, Wang J, Wei
M, Wides R, Xiao C, Yan C, Yao A, Ye J, Zhan M, Zhang W, ZHANG H, Zhao
Q, Zheng L, Zhong F, Zhong W, Zhu S, Zhao S, Gilbert D, Baumhueter S, Spier
G, Carter C, Cravchik A, Woodage T, Ali F, An H, Awe A, Baldwin D, Baden H,
Barnstead M, Barrow I, Beeson K, Busam D, Carver A, Center A, Cheng ML, Curry
L, Danaher S, Davenport L, Desilets R, Dietz S, Dodson K, Doup L, Ferriera S, Garg
N, Gluecksmann A, Hart B, Haynes J, Haynes C, Heiner C, Hladun S, Hostin D,
Houck J, Howland T, Ibegwam C, Johnson J, Kalush F, Kline L, Koduru S, Love A,
Mann F, May D, McCawley S, McIntosh T, McMullen I, Moy M, Moy L, Murphy
B, Nelson K, Pfannkoch C, Pratts E, Puri V, Qureshi H, Reardon M, Rodriguez
R, Rogers YH, Romblad D, Ruhfel B, Scott R, Sitter C, Smallwood M, Stewart E,
Strong R, Suh E, Thomas R, Tint NN, Tse S, Vech C, Wang G, Wetter J, Williams
S, Williams M, Windsor S, Winn-Deen E, Wolfe K, Zaveri J, Zaveri K, Abril JF,
Guigoé R, Campbell M]J, Sjolander KV, Karlak B, Kejariwal A, Mi H, Lazareva B,
Hatton T, Narechania A, Diemer K, Muruganujan A, Guo N, Sato S, Bafna V,
Istrail S, Lippert R, Schwartz R, Walenz B, Yooseph S, Allen D, Basu A, Baxendale
J, et al. 2001. The sequence of the human genome. Science 291(5507):1304—1351
DOI 10.1126/science.1058040.

Xie ], Kelley S, Szymanski BK. 2013. Overlapping community detection in networks:
the state-of-the-art and comparative study. ACM Computing Surveys 45(4):43-35
DOI10.1145/2501654.2501657.

Xie J, Szymanski BK, Liu X. 2011. SLPA: uncovering overlapping communities in social
networks via a speaker-listener interaction dynamic process. Piscataway: I[EEE.

Yaffe E, Tanay A. 2011. Probabilistic modeling of Hi-C contact maps eliminates
systematic biases to characterize global chromosomal architecture. Nature Genetics
43(11):1059-1065 DOI 10.1038/ng.947.

DeMaere and Darling (2016), PeerdJ, DOI 10.7717/peer|.2676 28/28


https://peerj.com
http://dx.doi.org/10.1126/science.1058040
http://dx.doi.org/10.1145/2501654.2501657
http://dx.doi.org/10.1038/ng.947
http://dx.doi.org/10.7717/peerj.2676

