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ABSTRACT
Evidence suggests that animal patterns (motifs) function in camouflage. Irregular
mottled patterns can facilitate concealment when stationary in cluttered habitats,
whereas regular patterns typically prevent capture during movement in open habitats.
Bird plumage patterns have predominantly converged on just four types—mottled
(irregular), scales, bars and spots (regular)—and habitat could be driving convergent
evolution in avian patterning. Based on sensory ecology, we therefore predict that
irregular patterns would be associated with visually noisy closed habitats and that
regular patterns would be associatedwith open habitats. Regular patterns have also been
shown to function in communication for sexually competing males to stand-out and
attract females, so we predict that male breeding plumage patterns evolved in both open
and closed habitats. Here, taking phylogenetic relatedness into account, we investigate
ecological selection for bird plumage patterns across the class Aves. We surveyed
plumage patterns in 80%of all avian species worldwide.Of these, 2,756 bird species have
regular and irregular plumage patterns as well as habitat information. In this subset,
we tested whether adult breeding/non-breeding plumages in each sex, and juvenile
plumages, were associated with the habitat types found within the species’ geographical
distributions. We found no evidence for an association between habitat and plumage
patterns across the world’s birds and little phylogenetic signal. We also found that
species with regular and irregular plumage patterns were distributed randomly across
the world’s eco-regions without being affected by habitat type. These results indicate
that at the global spatial and taxonomic scale, habitat does not predict convergent
evolution in bird plumage patterns, contrary to the camouflage hypothesis.

Subjects Biodiversity, Ecology, Evolutionary Studies, Zoology
Keywords Ecological selection, Camouflage, Plumage patterns, Signalling, Macroevolution,
Natural selection

INTRODUCTION
Selection for optimal camouflage and sexual signals in the different habitats of animals
can drive phenotypic variation (e.g., Endler, 1978; Stuart-Fox & Ord, 2004; Hoekstra et al.,
2006; Rosenblum, 2006; Seehausen et al., 2008; reviewed in Stevens, 2013). Animals exhibit a
diversity of pigmentation patterns or motifs (i.e., stipples) that are predominantly thought
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to function in camouflage, such as by generally matching the background or by breaking
up (disrupting) the prey outline and creating false edges to prevent detection by predators
(Thayer, 1909; Cott, 1940; Pough, 1976; Stevens & Merilaita, 2009). Under sensory ecology
theory, the likelihood of a predator being able to detect its prey depends on how effectively
the visual cue is transmitted to the predator’s eye, and on how well the predator’s specific
visual system can detect/recognise its prey against the background on which it is viewed
(e.g., Endler, 1992). Past studies have shown that genetic adaptation of camouflage appears
to enhance backgroundmatching in local environments and increase survival against visual
predators (e.g., Hoekstra, Krenz & Nashman, 2005; Vignieri, Larson & Hoekstra, 2010).
Crucially, visual modelling studies have shown that such local adaptation can prevent
detection by the actual visual systems of predators, such as hunting birds (e.g., Stuart-Fox
et al., 2004;Marshall et al., 2015a;Marshall, Philpot & Stevens, 2015b), thus indicating that
camouflage tends to be optimised to local habitats under natural selection.

Across animals, different types of visual patterns made up of different patches of
pigmentation to make up an overall pattern or ‘motif’ have been linked to different
functions in camouflage. Specifically, irregular patterns (mottled) tend to function in
stationary camouflage while those that regularly repeat a pattern or motif (bars, spots)
function in motion camouflage, which are in turn predicted to be more effective in closed
and open habitats, respectively (Marshall & Gluckman, 2015). Birds are the most well
described taxonomic group of animal and can be found in all types of habitats on all major
landmasses (Gluckman & Cardoso, 2010; Jetz et al., 2012), making them particularly well
suited for investigating sensory ecology hypotheses. Recent studies on bird colouration
across a large number of species and at large spatial scale revealed that islands are associated
with reduced signal intensity (Doutrelant et al., 2016) and that colour heterogeneity
decreases with body size (Galvan et al., 2013), but also showed distinct effects of habitat,
life history and sexual selection on the evolution of colouration that lacks patterning
(an absence of patterns or uniform colouration), such as bright red carotenoid and dull
brown melanins (Dale et al., 2015; Dunn, Armenta & Whittingham, 2015). However, no
study has yet explicitly examined the role of habitat and camouflage on avian feather
patterns type at the global scale (but see Riegner, 2008; Gluckman & Cardoso, 2010).

In spite of the spectacular diversity in phenotypes across the class Aves, bird plumage
patterns have predominantly converged on just four types: mottled, scales, bars and spots
(Fig. 1; Gluckman, 2014; Marshall & Gluckman, 2015; Gluckman & Mundy, 2016). Most
studies of camouflage focus on single or few species (Marshall & Gluckman, 2015) that
may not be representative of broad scale selection pressures. Here, we investigated whether
sensory ecology theory could explain convergent evolution in the camouflage plumage
patterns of birds at the global spatial and taxonomic scale, i.e., with a global spatial extent,
using large spatial units, and data on most land bird species.

It is thought that irregular patterns function in the camouflage of stationary animals
through background matching and disruptive camouflage, in order to evade detection
by predators (Thayer, 1909; Cott, 1940; Endler, 1978; Bradbury & Vehrencamp, 1998).
Accordingly, static irregular camouflage patterns are harder to detect when viewed against
more cluttered backgrounds containing distractors (e.g., Dimitrova & Merilaita, 2009).
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Figure 1 The predominant types of plumage patterns in birds. (A) Irregular mottled plumage con-
sists of feathers that are heterogeneously pigmented (Jungle Nightjar–Caprimulgus indicus indicus). Reg-
ular plumage patterns can be comprised of (B) scales where pigmentation follows the edge of the vane
(Mallard–Anas platyrhynchos), (C) bars that are made of alternating dark and light pigmentation transver-
sal to the feathers axis (Andean flicker–Colaptes rupicola), and (D) spots where one or more spots pigment
each feather (Guineafowl–Numida meleagris). Photos: Grey Nightjar.jpg by Koshy Koshy (retrieved from
https://commons.wikimedia.org/wiki/File:Grey_Nightjar.jpg CC BY 2.0 license); Female Mallard Duck
Rest.jpg by Alain Carpentier (retrieved from https://commons.wikimedia.org/wiki/File:Female_Mallard_
Duck_Rest.jpg under a CC-BY-SA 3.0 license); Colaptes rupicola 20070123.jpg by Adam Kumiszcza (re-
trieved from https://en.wikipedia.org/wiki/Andean_flicker#/media/File:Colaptes_rupicola_20070123.
jpg under a CC-BY-SA 3.0 license) and Pintade de Numidie.jpg by JP Hamon (retrieved from https://
commons.wikimedia.org/wiki/File:Pintade_de_Numidie.jpg under a CC BY-SA 3.0 license), respectively.

Therefore, irregular patterns should be favoured in visually complex closed environments
that provide backgrounds where a prey animal can easily blend in. Irregular mottled
patterns are common in avian species, and are more frequently found in females and
juveniles in comparison to regular barred plumage patterns (Gluckman & Cardoso, 2010).

Current evidence suggests that regular patterns, such as bars and spots, typically
facilitate camouflage during movement and therefore function as a secondary defence
during the escape of prey by exploiting specific features of receiver visual acuity. This type
of camouflage would include motion dazzle, whereby highly contrasting patterns prevent
predators from estimating the speed and direction of moving prey (e.g., Scott-Samuel
et al., 2011; Stevens, Yule & Ruxton, 2008; Stevens et al., 2011; Von Helversen, Schooler &
Czienskowski, 2013; How & Zanker, 2014; Hughes, Troscianko & Stevens, 2014) as well as
flicker-fusion camouflage, in which the patterns of a moving animal become blurred

Somveille et al. (2016), PeerJ, DOI 10.7717/peerj.2658 3/22

https://peerj.com
https://commons.wikimedia.org/wiki/File:Grey_Nightjar.jpg
https://commons.wikimedia.org/wiki/File:Female_Mallard_Duck_Rest.jpg
https://commons.wikimedia.org/wiki/File:Female_Mallard_Duck_Rest.jpg
https://en.wikipedia.org/wiki/Andean_flicker#/media/File:Colaptes_rupicola_20070123.jpg
https://en.wikipedia.org/wiki/Andean_flicker#/media/File:Colaptes_rupicola_20070123.jpg
https://commons.wikimedia.org/wiki/File:Pintade_de_Numidie.jpg
https://commons.wikimedia.org/wiki/File:Pintade_de_Numidie.jpg
http://dx.doi.org/10.7717/peerj.2658


to the predator’s vision so that it appears to match the background against which it is
moving (e.g., Brodie, 1989; Brodie, 1992; Brodie, 1993; Lindell & Forsman, 1996). Given
that escape by flight requires space and that motion camouflage is dependent on effective
transmission to the predator’s eye, regular patterns in birds should be more common
in open habitats where patterns are easily visible and escape by flight is unencumbered.
Additionally, regular patterns may have a dual function in both camouflage and visual
communication with conspecifics (Marshall, 2000; Gluckman & Cardoso, 2010) and, due
to multiple functions, may evolve independently of habitat in adult males (Bradbury &
Vehrencamp, 1998; Endler, 1992; Kenward et al., 2004; Leal & Fleishman, 2004; Seehausen et
al., 2008;McLean, Moussalli & Stuart-Fox, 2014).

Across the world, habitats differ in their structural composition, e.g., forested habitats are
cluttered and visually noisy, while desert habitats are not. The dorsal plumage patterns of
birds are likely to function in camouflage in adults of both sexes, as well as juveniles, whereas
a communication function is likely to evolve on the ventral surface of sexually competing
males (Stuart-Fox & Ord, 2004; Gluckman & Cardoso, 2010; Garcia, Rohr & Dyer, 2013).

In this study, we investigated whether habitat selects for convergent evolution in the
plumage patterns of terrestrial birds at the global scale, using the geographical distribution
of all known avian species (excluding sea birds). Firstly, we looked for an association
between plumage patterns type and habitat type across avian species; and secondly, we
investigated whether patterned species were distributed at random across the world. We
expected to find a significant association between closed and open habitats with irregular
and regular patterns, respectively, in the plumage of adults as well as juveniles. In the
sexually selected ventral plumage of breeding males, we expected that plumage pattern
evolution would be independent of habitat due to its function in communication. In
addition, we expected the distribution of irregularly and regularly patterned species across
geographical space to differ from random and be affected by habitat.

MATERIAL AND METHODS
Data collection
We focused on the most prominent aspect of patterning: the four different types of spatial
arrangement of pigmentation (Fig. 1). To collect plumage pattern information we referred
to field guides covering all major landmasses: North and Central America (Sibley, 2000;Van
Perlo, 2006), South America and Antarctica (De La Pena & Rumboll, 1998; Restall, Rodner
& Lentino, 2007), sub-Saharan Africa and Madagascar (Langrand, 1990; Sinclair & Ryan,
2003), Europe, North Africa and Central Asia (Heinzel, Fitter & Parslow, 1995; Grimmett,
Inskipp & Inskipp, 1999; Arlott, 2007; Arlott, 2009; Brazil, 2009), East and South-East Asia
(MacKinnon & Phillips, 1993; Coates & Bishop, 1997; Robson, 2005), and Oceania (Beehler,
Pratt & Zimmerman, 1986; Pratt, Bruner & Berrett, 1987; Simpson & Day, 2004; Robertson
& Heather, 2005). Where multiple subspecies were present, we collected information on
the nominate subspecies. Overall, we examined 8006 avian species (80% of class Aves) to
categorize their patterning. Juvenile plumages are less frequently drawn in field guides so
we were only able to categorise juvenile plumage information in 2,603 species (26% of class
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Aves). Species that were unpatterned and/or without habitat information were excluded
from further statistical analyses, giving an overall sample size of 2,756 avian species (34%
of the species considered), providing information for 2,593 adult and 2,104 juvenile avian
species (see the list of species in Appendix S1).

We scored the plumage of both sexes as well as juveniles of each species for: an absence
of patterns, mottled, scaled, barred and spotted patterns, both on the ventral and dorsal
surface, separately (Fig. 1). Irregular mottled patterns were defined as pigmentation that
did not have a clearly discernible motif or the putative motif had irregular borders, as
frequently found on the dorsum of sparrows (in contrast with the stripes of species from
the genus Gavia that have clear and neat boundaries in the stripes on the neck). Regular
patterns had a motif with regular borders and were repeated across a patch of patterning
(Fig. 1). Some species havemultiple patterns on either the ventral or dorsal surface (e.g., the
male zebra finch, Taeniopygia guttata, has barred patterns on the breast and spotted flanks):
on the ventral surface, 62 and 64 species for males during the non-breeding and breeding
seasons respectively, 70 and 72 species for females during the non-breeding and breeding
seasons respectively, and 63 species for juveniles; and on the dorsal surface, 229 and 222
species for males during the non-breeding and breeding seasons respectively, 231 and 233
species for females during the non-breeding and breeding seasons respectively, and 102
species for juveniles. In these types of species, all of the different types of plumage patterns
on each surface were scored and each pattern type was analysed separately. Where species
exhibited variable patterns between moults, we collected the breeding and non-breeding
plumage given that there may be variation in selection pressure on the different types of
patterns exhibited. Squares, triangles and stripes also occur within the plumage of birds, but
are comparatively rare (e.g., out of these three rare patterns stripes are the most common:
43 species). Stripes are comprised of regular longitudinal lines (unlike bars, which are
pigmented transversal to the feathers axis). These rare types of patterns were excluded from
the analysis due to low statistical power.

We examined all of the combinations of gender/age (male/female/juvenile), season
(breeding/non-breeding), and body part (ventral/dorsal), individually. Herein we refer to
each as biological combinations.

Species geographical distributions
Global geographical distributions of all avian species were obtained from Birdlife
International & NatureServe (2012) for all species in the plumage dataset and treated
as described in Somveille et al. (2013). Briefly, the polygons in the dataset represent the
global distribution of species and we included only the polygons for which species presence
was coded as extant or probably extant and the species origin was coded as native or
reintroduced, and we excluded the polygons corresponding to species in passage (i.e.,
during migration). In addition, breeding distributions (defined as polygons corresponding
to the areas where they are present only during the breeding season) were analysed
separately from non-breeding distributions (defined as polygons where they are present
only during the non-breeding season). We focused solely on land birds, as the geographical
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distribution ofmarine species is not well known and represents less than 3%of avian species.
We statistically examined our data for an association between habitat and plumage

patterns for each biological combination. For adult breeding and non-breeding plumages, we
used the breeding and non-breeding geographical distributions of bird species, respectively.
For juvenile plumages, we used the breeding geographical distributions as this life stage
occurs predominantly during the adult breeding season. Note that for resident species
(i.e., non-migrants; 85% of avian species), the breeding and non-breeding geographical
distributions are the same. Irregular patterning is found in 24% of the 8,006 avian species
analysed (1,887 species) whereas regular patterning is found in 23% (1,858 species). Of the
regular patterns (scaled, barred and spotted), scaled and spotted patterns are prevalent in
25% (470 species) and 30% (549 species) of avian species (across biological combinations)
respectively, whereas barring is observed in 66% (1,220 species) of avian species (across
biological combinations)–percentages are relative to the number of species with regular
plumage patterns in at least one biological combination.

To avoid an underestimation or overestimation of ecological signal for regular patterns,
we categorized regular patterns in twoways for our analyses: (1) all regular patterns grouped
together as a single category, and (2) just barred plumage patterns due to these being the
most frequent type of regular pattern occurring in bird plumage patterns (Gluckman &
Cardoso, 2009; Gluckman & Cardoso, 2010). The results were qualitatively the same for the
analyses of regular patterns together and barred plumage patterns alone, and we present
the results for the category of all regular patterns together (a comparison of mottled versus
barred patterns for all analyses are available in the Supplemental Information 1).

Phylogenetic comparative analysis
To examine the habitat in which species live, we analysed the habitat types found within
their geographical distributions. For each species with irregular or regular plumage patterns,
we quantified how open or closed is the habitat in which they live, a measure herein called
habitat coverage. Information on habitat was obtained from the global MODIS land cover
dataset (Channan, Collins & Emanuel, 2014). We coded forests pixels as closed habitat with
a value of 1; savannas, grasslands, wetlands, croplands, snow and ice and barren or sparsely
vegetated pixels as open habitat with a value of 0; and shrublands, woody savannas and
cropland/natural vegetation mosaic pixels as partially closed habitat with a value of 0.5.
For each species, we then quantified habitat coverage as the average habitat value across
the pixels found within the species’ geographical distribution. This allowed us to obtain a
continuous measure of habitat for each species during both its breeding and non-breeding
seasons–which can be very different for migrants, representing ∼16% of avian species
(Somveille et al., 2013). We then removed species for which no habitat information were
available and no plumage patterns were present.

Plumage patterns may be phylogenetically conserved, resulting in similar plumage
patterns occurring in closely related species due to phylogenetic inertia (Felsenstein, 1985;
Revell, Harmon & Collar, 2008) rather than caused by habitats selection. In addition, the
tendency of species to resemble related species more so than randomly selected species
from a tree breaks the assumption of independence of ordinary least square models (Revell,
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2010). We therefore examined the association between plumage patterns and habitat by
performing comparative analyses that take phylogenetic relatedness into account.

For each biological combination, we computed a phylogenetic logistic regression model
(Ives & Garland Jr, 2010) with plumage pattern type (regular vs irregular; regular pattern
= 0 and irregular pattern = 1) as the dependent variable and habitat coverage as the
explanatory variable (R code: phyloglm(plumage pattern type ∼ habitat coverage, phy
= tree, method = ‘‘logistic_IG10’’)). For each biological combination, the analysis was
performed only using species with plumage patterns (regular or irregular). As no
phylogenetic signal was detected in the models, we also employed standard generalized
linear models (GLMs) for comparison (R code: glm(plumage pattern type ∼ habitat
coverage, family= ‘‘binomial’’)). At large sample sizes, trivially small effects can be detected.
Therefore, to examine the statistical significance of the relationship for the GLMs, we
evaluated this significance by assessing the goodness-of-fit using the McFadden’s pseudo-
R2 (McFadden, 1974). All statistical analyses were performed in R (R Development Core
Team, 2012); phylogenetic logistic regressions were performed using the phylolmR package.

Phylogenetic information for bird species was obtained from http://BirdTree.org (Jetz et
al., 2012). This phylogeny randomly resolves species with missing data by assuming mono-
phyletic genera. To account for phylogenetic uncertainties, we performed our statistical
analyses (i.e., phylogenetic logistic regression models) on 100 randomly selected trees and
reported the observed variation in the parameter estimates. Branch lengths were computed
using the Grafen method (Grafen, 1989; R function: compute.brlen). In phylogenetic
logistic regressions, a captures the phylogenetic signal in the data and can vary between
−4 (no phylogenetic signal) and 4 (strong phylogenetic signal; Ives & Garland Jr, 2010).

Eco-region avian assemblage analysis
To investigate whether species with regular and irregular plumage patterns were distributed
randomly across the world, we examined avian assemblages at the scale of the eco-region
(Olson et al., 2001), using a global map of the world’s terrestrial eco-regions made available
by The Nature Conservancy (2009) (Fig. S1B). The physical component that defines habitat
type are the individual units of land (eco-regions) containing habitat type specific plant
communities and species, nested within biomes (Olson et al., 2001). We categorized
habitat into two main types: closed and open. Closed habitat was defined as broadleaf
and coniferous forests as well as Mediterranean forests and the Taiga; and open habitat
comprised the various types of grasslands, deserts and tundra as well as the scarce habitats
of Inland water, Rock and ice. Mangrove habitat was not considered in our analysis, as it
is not clearly composed of solely closed or open habitat.

A bird species was classed as occurring in a given eco-region if its mapped range
overlapped with any part of the eco-region. Although this is a coarse species geographical
distribution, it represents a good approximation of occurrence given the spatial resolution
of the eco-regions (Hurlbert & Jetz, 2007). Species richness was measured as the number
of species occurring in a given eco-region. After removing eco-regions in which no bird
species occur, 791 eco-regions remained, of which 293 (37%) were composed of open
habitat and 498 (63%) of closed habitat.
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To examine whether the composition of plumage patterns in avian assemblages across
the world’s eco-regions was random or affected by habitat type, we quantified the ratio of
regular to irregular patterns in each eco-region and compared it to a null expectation based
on random distribution of the species. The ratio was calculated as the number of species
with regular patterns divided by the number of species with irregular patterns (herein
referred to as ratio regular-irregular). For the analysis comparing barred and mottled
patterns, the ratio was calculated as the number of barred species divided by the number of
mottled species (results are presented in Supplemental Information 1). To avoid a skew in
the distribution, we log transformed this ratio for all of the analyses. Eco-regions without
any species with an irregular plumage pattern (2.6% of the eco-regions on average across
the biological combinations) were excluded from this analysis because the ratio could not
be calculated.

The null distribution of plumage pattern ratios across the world’s eco-regions was
generated by drawing species without replacement 100 times from the hemispherical
species pool (i.e., treating Western and Eastern Hemispheres separately). In each eco-
region, we drew a number of species corresponding to the observed species richness of the
local assemblage, and identified eco-regions with significantly high or low values to the
null expectation.

To take spatial autocorrelation into account –whereby species occurring in the local
pool of species (i.e., in the neighbouring eco-regions) are more likely to occur in the focal
eco-region –we weighted the probability of sampling species based on their degree of
occurrence in the local pool. In each avian assemblage (i.e., eco-region), for each species
in the hemispherical pool, we determined the proportion of neighbouring eco-regions in
which it occurs. Then, for each discrete proportion (i.e., because each eco-region has a
discrete number of direct neighbours), we calculated the proportion of species occurring
in the focal eco-region. For example, for a given focal eco-region, among all of the species
occurring in 50% of the adjoining neighbours, 30% of these species also occur in the focal
eco-region. We then fitted a non-linear model (using the nls function in R) to estimate the
parameters of this relationship across all the eco-regions (treating the western and eastern
hemispheres separately). The fitted curve was then used to determine the probability of a
species to occur in a focal eco-region given its occurrence in the neighbouring eco-regions
(i.e., the local pool).

We examined the species of theWestern hemisphere (the Americas; defined as longitude
<−30◦W) separately from the Eastern hemisphere (the Old World; defined as longitude
>−30◦W) as they have distinctive avian species pools. For example, the total ratio
regular–irregular (as well as the total ratio barred–mottled) is different between these
two hemispheres (see Table S2 and Fig. S3). The global species pool from which species
were drawn was therefore separated into two species pools representing each hemisphere.

Following the camouflage hypothesis, we expect the ratio regular–irregular to be higher
in open habitats than the expected null values (e.g., regular patterns dominate), and to
be smaller than the null expectation in closed habitats (e.g., irregular patterns dominate).
To test this hypothesis, we computed a p-value by comparing the observed value to the
distribution of null values. If the eco-region was composed of open habitat, we used
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1 minus the cumulative probability because we expect the ratio regular-irregular to
be higher than the null expectation. To account for multiple testing (i.e., one test for
each eco-region) we controlled the false discovery rate using the method developed by
Benjamini & Hochberg (1995).

RESULTS
All types of plumage patterns are found in all biological combinations of females, males
and juveniles, for non-breeding and breeding plumage on both the ventral and dorsal
surface (Table S1). Mottled plumage is the most prevalent plumage pattern and is found
on the dorsal surface more frequently than on the ventral surface in all sex/age classes,
and is least frequent in males. Barred patterns are also common and are frequently found
on the ventral surface of breeding adult males, but also in juveniles. Scaled and spotted
patterns are less prevalent and are frequently biased towards the dorsal surface of adults
and the ventral surface of juveniles. However, spotted patterns are also frequently found
on the ventral surface of breeding males and females.

Phylogenetic comparative analysis
Figure 2 shows very little difference in habitat coverage between species with regular versus
irregular plumage patterns for all biological combinations, which was confirmed by the
statistical models (Table 1). Phylogenetic uncertainty due to randomly resolving species
with missing data by assuming monophyletic genera did not meaningfully affect the results
(Table 1). For all biological combinations of plumage patterns, a was very nearly −4
indicating that almost no phylogenetic signal could be detected in the data for plumage
patterns. Due to the lack of phylogenetic signal, estimates of intercepts and slopes were
almost identical between phylogenetic logistic regressions and GLMs (Table 1). Although
most slopes were significantly different from the null hypothesis for both phylogenetic
logistic regressions and GLMs, the association between plumage pattern type and habitat
coverage using GLMs yielded extremely low R2 values (0.001–0.039) with a median R2

of 0.0065 (Table 1). In addition to the low explanatory power, all the models showed a
negative relationship between plumage patterns and habitat coverage, indicating that regular
patterns are more associated with closed environments relatively to irregular patterns that
are more associated with open environments, contrary to the camouflage hypothesis.

Eco-region avian assemblage analysis
Across the world’s eco-regions, and age, sex and breeding combinations, avian assemblages
had similar proportions of species with regular and irregular plumage patterns, regardless
of habitat type (Fig. 3; Fig. S2). In addition, all eco-regions contained qualitatively the
same ratio of species with and without plumage patterns for each biological combination,
regardless of habitat type (Fig. 3; Fig. S3).

The observed ratio regular–irregular in the eco-regions of both open and closed habitats
rarely differed from the null expectation (Table 2; similar results were obtained for the ratio
barred-mottled ; Table S4). Less than 1% of eco-regions with species of birds with patterns
had a ratio regular–irregular significantly lower than the null expectation for any biological
combination (Table 2), and most of these eco-regions were located on islands.
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Table 1 Relationship between plumage pattern type (regular versus irregular) and habitat (using our habitat coverage measure) across the
class Aves using Phylogenetic Logistic Regressions (PhyLoRegs) and Generalized Linear Models (GLMs). We present the estimate of the intersect
as well as the slope and its associated p-value for both PhyLoRegs and GLMs. For PhyLoRegs, values correspond to the mean of 100 runs using ran-
domly sampled phylogenetic trees from Jetz et al. (2012), and values in brackets correspond to the standard deviation. Positive slopes indicate that
regular patterns are more associated with open habitat while irregular patterns are more associated with closed habitat, and negative slopes indicate
the opposite. a is the phylogenetic correlation parameter calculated from the PhyLoRegs. R2 values were computed for the GLMs and correspond to
the McFadden’s pseudo-R2.

Biological combination PhyLoRegs results GLMs results

Sex Body part Season Raw
number of
species

Intercept Slope P-value a Intercept Slope P-value McFadden’s
pseudo-r2

Female Ventral NB 1,655 0.058
(<10−4)

−0.298
(<10−4)

0.001
(<10−4)

−3.993
(0.016)

0.058 −0.298 0.067 0.001

BR 1,658 0.102
(<10−4)

−0.375
(<10−4)

<0.001
(<10−4)

−3.984
(0.026)

0.101 −0.375 0.022 0.002

Dorsal NB 1,643 0.769
(<10−4)

−1.127
(<10−4)

<0.001
(<10−4)

−3.986
(0.018)

0.769 −1.127 <0.001 0.021

BR 1,648 0.786
(<10−4)

−1.163
(<10−4)

<0.001
(<10−4)

−3.983
(0.026)

0.786 −1.163 <0.001 0.022

Male Ventral NB 1,336 0.171
(<10−4)

−0.532
(<10−4)

<0.001
(<10−4)

−3.983
(0.022)

0.171 −0.532 0.003 0.005

BR 1,334 0.147
(<10−4)

−0.575
(<10−4)

<0.001
(<10−4)

−3.973
(0.032)

0.147 −0.575 0.002 0.005

Dorsal NB 1,502 0.843
(<10−4)

−1.457
(<10−4)

<0.001
(<10−4)

−3.993
(0.016)

0.843 −1.457 <0.001 0.036

BR 1,478 0.901
(<10−4)

−1.553
(<10−4)

<0.001
(<10−4)

−3.989
(0.023)

0.901 −1.553 <0.001 0.039

Juvenile Ventral 1,443 0.384
(<10−4)

−0.347
(<10−4)

<0.001
(<10−4)

−3.981
(0.029)

0.384 −0.347 0.047 0.002

Dorsal 1,394 0.700
(<10−4)

−0.676
(<10−4)

<0.001
(<10−4)

−3.985
(0.016)

0.7 −0.676 <0.001 0.008

Notes.
Season
NB, Non-breeding; BR, Breeding.

DISCUSSION
All types of plumage patterns have evolved in juveniles, females and males in non-breeding
and breeding plumage, on both the ventral and dorsal surface (Table S1), and species with
regular plumage patterns did not differ on average in the type of habitat in which they
occur from species with irregular plumage patterns (Table 1; Fig. 2). In fact, contrary to
prevailing sensory ecology based hypotheses of the function of patterns in camouflage, we
did not find convincing evidence of an association between habitat type and bird plumage
patterns at the global spatial and taxonomic scale (Table 1; Table S2). In addition, we found
that species with regular and irregular plumage patterns are distributed at random across
the world’s eco-regions with respect to one another without any significant effect of the
eco-regions’ habitat type.

Irregular patterns, which tend to function in stationary camouflage, are unexpectedly
found in similar proportion in both closed as well as open habitats that have uniform
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Table 2 Assemblage-level test of an association with habitat type for the ratio regular-irregular. For each biological combination, we present the
total number of eco-regions that have avian species with plumage patterns, and the number, proportion and habitat type of eco-regions that have an
observed ratio regular-irregular significantly different from the null expectation.

Biological combination Significant eco-regions

Sex Body part Season Number of eco-
regions

Number Proportion Name

Female Ventral NB 766 2 0.003 Antipodes Subantarctic Islands
Tundra (Tundra–Australasia),
Pantanal (FGS–Neotropics)

BR 759 0 0 –
Dorsal NB 769 0 0 –

BR 759 1 0.001 New Caledonia Rain Forests
(TMBF–Australasia)

Male Ventral NB 773 0 0 –
BR 767 2 0.003 Victoria Basin Forest-Savanna

Mosaic (TMBF–Afrotropics),
Kinabalu Montane Alpine Mead-
ows (MGS–Indo-Malay)

Dorsal NB 773 2 0.003 Banda Sea Islands Moist
Deciduous Forests (TMBF–
Australasia), New Britain-New
Ireland Montane Rain Forests
(TMBF–Australasia)

BR 767 6 0.008 Admiralty Islands Lowland Rain
Forests (TMBF–Australasia),
Banda Sea Islands Moist
Deciduous Forests (TMBF–
Australasia), New Caledonia
Dry Forests (TDBF–Australasia),
Kinabalu Montane Alpine
Meadows (MGS–Indo-Malay),
Fiji Tropical Moist Forests
(TMBF–Oceania), Bohai Sea
Saline Meadow (FGS–Palearctic)

Juvenile Ventral 763 1 0.001 Antipodes Subantarctic Islands
Tundra (Tundra–Australasia)

Dorsal 761 2 0.001 Zambezian Halophytics (FGS–
Afrotropics), Kinabalu Montane
Alpine Meadows (MGS–Indo-
Malay)

Notes.
Habitat type
TMBF, Tropical and Subtropical Moist Broadleaf Forests; TDBF, Tropical and Subtropical Dry Broadleaf Forests; MGS, Montane Grasslands and Shrublands; MFWS,
Mediterranean Forests, Woodlands and Scrub; FGS, Flooded Grasslands and Savannas; DXS, Deserts and Xeric Shrublands.
Season
NB, Non-breeding; BR, Breeding.

backgrounds (e.g., deserts) where irregular patterns would probably be easier to detect (e.g.,
Bradbury & Vehrencamp, 1998; Dimitrova & Merilaita, 2009; Hall et al., 2013). Contrary to
our predictions, regular patterns are also found in similar proportion inmore visually noisy
closed habitats where limited space and obstructed transmission would make it difficult to
invoke their function inmotion dazzle/flicker-fusion camouflage (e.g., Brodie, 1989; Brodie,
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1992; Brodie, 1993; Lindell & Forsman, 1996; Stevens, Yule & Ruxton, 2008; Scott-Samuel et
al., 2011; Von Helversen, Schooler & Czienskowski, 2013; How & Zanker, 2014).

The finding that habitat had no effect on the presence of regular patterns on the ventral
(breeding) surface of males (in particular barred patterns; Gluckman & Cardoso, 2010)
would be expected under sexual selection, if regular patterns function solely to maximise
conspicuousness to conspecifics. However, visual signals should diverge in biological
hotspots due to species recognition/sexual selection (Bradbury & Vehrencamp, 1998).
Habitat may influence whether the pattern stands out against its background, for example
by being conspicuous against a uniform background or opposing the geometric pattern of
the background. Indeed, signalling traits can be correlated with ecological characteristics to
drive signal divergence, such as in African cichlid fish and Anolis lizards (Leal & Fleishman,
2004; Seehausen et al., 2008) as well as in birds (Doutrelant et al., 2016). Other factors, such
as whether the pattern is able to convey aspects of individual quality, would influence their
evolution independent of the viewing background. This perhaps may explain why barred
patterns have repeatedly evolved independently on the ventral surface of males (Gluckman
& Cardoso, 2010). Conceivably, the same forces of sexual selection/species recognition may
have shaped the evolution of the other types of patterns in males, such as spotted patterns
(Roulin et al., 2000; b; Petrie & Halliday, 2008; Muck & Goymann, 2011; Pérez-Rodríguez,
Jovani & Mougeot, 2013).

Several factors could explain the seemingly random distribution of regular and irregular
plumage patterns from deserts to tropical forests. First, it could be due to the coarse scale
at which we investigated the association between habitat and plumage patterns. Many of
the empirical studies that demonstrate a camouflage function of patterns in non-colour
changing animals show an association in one or a limited number of species (e.g., Lovell
et al., 2013; Kang et al., 2014; Marshall, Philpot & Stevens, 2015b.; Wilson-Aggarwal et al.,
2016) or were found via predator–prey computer simulations (e.g., Stevens, Yule & Ruxton,
2008; Stevens et al., 2011; Scott-Samuel et al., 2011; Troscianko et al., 2013; How & Zanker,
2014; Hughes, Troscianko & Stevens, 2014; reviewed in Marshall & Gluckman, 2015). At the
level of microhabitats, some studies demonstrate that individual behaviours may facilitate
camouflage, such as a behavioural choice to rest on backgrounds that enhance camouflage
(Tsurui, Honma & Nishida, 2010; Lovell et al., 2013; Kang et al., 2014; Marshall, Philpot
& Stevens, 2015b.; Troscianko et al., 2016; Wilson-Aggarwal et al., 2016). Under current
camouflage theory,microhabitat usage in closed and open habitats should result in irregular
patterning being associated with all habitats, as it is typically invoked in static camouflage.
However, as regular patterns in camouflage are activated by motion, they would very
likely need to be associated with only open habitats. Yet, no association was found at the
scale we investigated and both irregular and regular patterns were randomly distributed
and showed no difference in their geographic distribution with uniformly coloured avian
species and no difference between any biological combination (Figs. 2 and 3; Table 1).

In addition, the visual sensitivities of potential observers can alter the visual affect of
patterns in different environments, which we did not consider here. For example, in reef
fish, regular patterns become blurred at a distance and match the background to prevent
detection by fish predators (Marshall, 2000), and certain patterns are imperceptible to some
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visual systems and may be highly visible to others in certain environments (e.g., Cummings,
Rosenthal & Ryan, 2003; Siebeck et al., 2010). Thus, avian camouflage patternsmay be tuned
to deceive predators’ visual systems in certain environments by distance-dependent effects
and by exhibiting signals that predator visual systems cannot detect (private communication
channels). However, to create a distance-dependent effect, regular patterns would require
space to blur the pattern and should therefore have been associatedwithmore open habitats,
especially on the dorsal surface of females and juveniles, which was not what we found.

Perhaps the use of different strata in the vegetation, e.g., ground-dwelling vs. arboreal,
may present different visual microhabitat backgrounds that alter the selection for pattern
type. The tops of trees are more open and may allow for more movement required for
motion-dazzle/flicker-fusion regular patterns whereas ground-dwelling species may benefit
from background matching irregular patterning. Similarly, open habitat such as savannahs
and grasslands contain patches of closed environment such as bushes and isolated trees in
which static camouflage via irregular plumage patterning might be favoured. Moreover,
more closed habitats will be darker due to shade, and predator risk might be lower due to
reduced visual perception and increased clutter, so perhaps camouflage in highly cluttered
environments is less likely to be favoured by selection. Conversely, in open environments,
both regular and irregular patterns are likely to be found for dual functions in camouflage
and communication.

Developmental constraint may also explain repeated convergence of the four types of
plumage patterns independent of function. For example, white patches of plumage can
be attributed to morphogen production (Price & Pavelka, 1996) and body size may be
negatively related to plumage colour heterogeneity in birds (Galvan et al., 2013). Riegner
(2008) was the first to study the recurrence of plumage pattern elements across the class
Aves and emphasised developmental constraint as a mechanism of parallelism rather than
convergence. However, patches of pigmentation over the body (e.g., counter shading)
were the major focus of this study, and so scales were not included and spots were largely
groupedwith drab/blended plumage. The results of Riegner’s study demonstrated that some
plumage patterns shift along a trajectory correlated with body size and that neither habitat
nor common descent adequately predicted the evolution of patches of bold pigmentation
over the body in aquatic or marine habitats. Also, striped (mottled) patterns appeared to be
more frequent in Passerines whereas bars are more prevalent in large bodied species, e.g.,
Galliformes, raptors, etc. However, Riegner’s (2008) analysis did not control for phylogeny.
Based on a theoretical model of reaction–diffusion based plumage pattern formation
(Prum &Williamson, 2002), the evolutionary trajectory of plumage in Anseriformes and
Galliformes followed the same pathways within and between patches of plumage over the
body (Gluckman & Mundy, 2016). Given that Anseriformes and Galliformes are diverse in
life history attributes, this result warrants further investigation at the macroevolutionary
scale. Nevertheless, these studies indicate that there may be developmental constraint in
plumage pattern evolution that may have implications for natural selection.

Few patterns may be enough to reduce predation by increasing the number of predator
search images, which may also favour polymorphisms within species. For example, there
is frequency-dependent selection on alternative morphs of Tetrix subulata grasshoppers,
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where each morph has varying amounts of mottled patterns in varying colours. However,
when all morphs are present in a population, all morphs benefit by providing variation in
the search image of predators (Karpestam, Merilaita & Forsman, 2014). In the case of birds,
perhaps the four different types of patterns, in the context of a community of avian species
that may also comprise uniform coloration without patterns, may benefit all member
species. Although intraspecific polymorphism is quite different to interspecific variation,
intraspecific polymorphism via adaptation to different habitats may be the first step to
speciation leading to interspecific variation (reviewed in Boughman, 2002; Stevens, 2013;
McLean & Fox, 2014).

In summary, we found no convincing evidence for an association between habitat type
and plumage pattern in land birds worldwide, and the distribution of plumage patterns
across the world appears to be random rather than affected by habitat type. These results
opposes the hypothesis that closed habitat should contain more species with irregular
plumage pattern and open habitat more species with regular plumage pattern, as a result
of habitat selection for camouflage. This is an intriguing result that implies that plumage
pattern evolution does not conform to the prevailing views of selection for camouflage at
the global spatial and taxonomic scale.
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