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Dispersal events between habitat patches in a landscape mosaic can structure ecological communities
and influence the functioning of agrosystems. Here we investigated whether short-distance dispersal
events between vineyard and forest patches shape foliar fungal communities. We hypothesized that
these communities homogenize between habitats over the course of the growing season, particularly
along habitat edges, because of aerial dispersal of spores.

We monitored the richness and composition of foliar and airborne fungal communities over the season,
along transects perpendicular to edges between vineyard and forest patches, using Illlumina sequencing
of the ITS2 region.

In contrast to our expectation, foliar fungal communities in vineyards and forest patches increasingly
differentiate over the growing season, even along habitat edges. Moreover, the richness of foliar fungal
communities in grapevine drastically decreased over the growing season, in contrast to that of forest
trees. The composition of airborne communities did not differ between habitats. The composition of oak
foliar fungal communities change between forest edge and centre.

These results suggest that dispersal events between habitat patches are not major drivers of foliar fungal
communities at the landscape scale. Selective pressures exerted in each habitat by the host plant, the
microclimate and the agricultural practices play a greater role, and might account for the differentiation
of foliar fugal communities between habitats.
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Summary

Background. Dispersal events between habitat patches in a landscape mosaic can structure
ecological communities and influence the functioning of agrosystems. Here we investigated
whether short-distance dispersal events between vineyard and forest patches shape foliar fungal
communities. We hypothesized that these communities homogenize between habitats over the
course of the growing season, particularly along habitat edges, because of aerial dispersal of

spores.

Methods. We monitored the richness and composition of foliar and airborne fungal communities
over the season, along transects perpendicular to edges between vineyard and forest patches,

using [llumina sequencing of the ITS2 region.

Results. In contrast to our expectation, foliar fungal communities in vineyards and forest patches
increasingly differentiate over the growing season, even along habitat edges. Moreover, the
richness of foliar fungal communities in grapevine drastically decreased over the growing
season, in contrast to that of forest trees. The composition of airborne communities did not differ
between habitats. The composition of oak foliar fungal communities change between forest edge

and centre.

Discussion. These results suggest that dispersal events between habitat patches are not major
drivers of foliar fungal communities at the landscape scale. Selective pressures exerted in each
habitat by the host plant, the microclimate and the agricultural practices play a greater role, and

might account for the differentiation of foliar fugal communities between habitats.
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39  Introduction

40  Plant leaves provide one of the largest microbial habitaf on Earth (Ruinen, 1956; Morris, 2001;
41  Vorholt, 2012). They harbour highly diverse microbial communities, including many genera of
42 bacteria and fungi (Lindow & Leveau, 2002; Vorholt, 2012; Turner et al., 2013). The eco-

43 evolutionary processes which shape these communities — dispersal, evolutionary diversification,
44  selection and drift — are increasingly well understood (Hanson et al., 2012; Nemergut et al.,

45 2013; Vacher et al., 2016). This new eco-evolutionary framework will undoubtedly have

46  important applications in agriculture. Indeed, crop performance depends on the balance and

47  interactions between pathogenic and beneficial microbial species (Newton et al., 2010a, 2010b).
48  Manipulating whole foliar microbial communities, by acting on the processes shaping them,

49  could thus greatly #mperve crop health (Newton et al., 2010a; Xu et al., 2011). However, to reach
50  this aim, a better understanding of the structure and dynamics of foliar microbial communities at

51 the landscape scale is required.

52 The landscape plays a key role in the dynamics of macro-organism populations interacting with
53 crops, such as arthropod pests or their natural enemies (Norris & Kogan, 2000; Chaplin-Kramer
54 etal., 2011). In ecology, the landscape is defined as an heterogeneous geographic area,

55 characterized by a dynamic mosaic of interacting habitat patches (Bastian, 2001). Species

56 movements between habitat patches - referred as dispersal (Vellend, 2010) - modulates the

57  richness, composition and function of macro-organism communities (Hurst et al., 2013; Ma

58 etal., 2013; Lacasella et al., 2014). In agricultural landscape, species dispersal between natural

59 and managed habitats can trigger detrimental or beneficial effects in crops (Chaplin-Kramer
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60 etal., 2011; Blitzer et al., 2012), particularly along the edges (Thomson & Hoffmann, 2009;

61 Lacasella et al., 2014).

62  The influence of dispersal events on the structure of foliar microbial eemmunity, at the landscape
63  scale has hardly been studied se-far. Many microbial species colonising plant leaves are

64 horizontally transferred (i.e. from one adult plant to another) by airborne dispersal (Whipps et al.,
65 2008; Bulgarelli et al., 2013). The foliar microbial communities of a given plant can therefore be
66 influenced by those of its neighbours. Plant pathogens, for instance, can be transmitted from a

67 reservoir plant to neighbouring plants (Power & Mitchell, 2004; Beckstead et al., 2010; Wilson
68 etal., 2014). These short-distance dispersal events could have a greater effect on the foliar

69 microbial communities of deciduous @s, because the leaves of those plants are colonised by

70  micro-organisms every spring, after budbreak.

71 In this study, we analysed the structure and dynamic of foliar and airborne fungal communities in
72 a heterogeneous landscape consisting of vineyard and forest patches. We expected the fungal

73 communities of forest patches to be richer than those of vineyards, because the higher plant

74 species richness and biomass in forests increase the diversity of micro-habitats available to foliar
75 fungi. We also expected repeated dispersal events to homogenize foliar fungal communities

76  between the two habitats over the course of the growing season, particularly along habitat edges.

77 We thus tested the following hypotheses for both foliar and airborne fungal communities: (1)

78 community richness is higher in forests than in adjacent vineyards, (2) community similarity

79  between the two habitats increase over the course of the growing season and (3) is higher along

80 habitat edges.
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Materials and methods

Sampling design

Three study sites, each consisting of a forest patch and an adjacent vineyard, were selected in the
Bordeaux area (France). They were located in the domains of Chateaux Reignac (N44°54'03",
00°25'01"), Grand-Verdus (N44°4721", 00°24'06") and Couhins (N44°45'04", 00°33'53"). At
each site, the edge between the forest patch and the vineyard was at least 100 m long. The width
of each habitat, perpendicular to the edge, was at least 200 m. The forest patches at all three sites
contained mostly deciduous species, dominated by pedunculate oak (Quercus robur L.). The
second most frequent tree species was European hornbeam (Carpinus betulus L.) in Reignac and
Grand-Verdus, and sweet chestnut (Castanea sativa Mill.) in Couhins. In the vineyards, the
grapevine (Vitis vinifera L.) cultivar was Cabernet Sauvignon in Reignac and Grand-Verdus, and

Merlot in Couhins.

At each site, leaves were collected along three parallel transects perpendicular to the forest-
vineyard edge and separated by a distance of about five meters. Leaves were sampled at four
locations along each transect: in the centre of the forest (100 m away from the edge), at the edge
of the forest, at the edge of the vineyard and in the centre of the vineyard (100 m away from the
edge). In forest patches, leaves were sampled from the two most abundant tree species. For each
sampling location and each transect, a single tree of each species was selected. Three leaves
oriented in different directions were collected from each tree, at a height of 7 m. In vineyards,
three leaves were collected from three adjacent cloned grapevine stocks. Each of the sampled

leaves was selected from the base of the cane (one-year-old shoot), to ensure the collection of
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leaves of the same age on each date. The leaves were removed with scissors that had been
sterilised with 96 % ethanol, and all contact of the leaves with the hands was carefully avoided.
The leaves were stored in clear plastic bags containing silica gel to ensure rapid drying. In
addition, grapevine leaves were placed between two sheets of sterile paper filter to ensure good
dessication despite their thickness. Leaves were sampled on three dates in 2013: in May
(between the 15" and 23), July (between the 161 and 18™) and October (3'). The sampling
dates chosen were as far removed as possible from the last chemical treatment performed in the

vineyard (Supporting Information Table S1).

Airborne particles were collected along the middle transect of each site, with two Coriolis air
sampler devices positioned one meter above the ground. At each sampling location, three

successive 10 minute sampling sessions were carried out, with a flow rate of 200 1/min.

DNA extraction and sequencing

Sample contamination was prevented by exposing all tools and materials required for sample
processing and DNA extraction to UV light for 30 minutes in a laminar flow hood. Four discs
(each 8.0 mm in diameter) were cut randomly from each leaf, in the flow hood, with a hole-
punch sterilised by flaming with 95 % ethanol. The four discs were placed in a single well of an
autoclaved DNA extraction plate. Three wells were left empty as negative controls. Two
autoclaved metallic beads were added to each well, and the plant material was ground into a

homogeneous powder with a Geno/Grinder 2010 (SPEX Sample Prep, Metuchen, NJ).
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The liquid used to collect airborne particles was transferred into sterile 15 ml centrifuge tubes.
Each tube was then centrifuged for 30 minutes at 13000 RCF and the supernatant was removed
with a sterile transfer pipette. The pellet was then transferred by resuspension to an autoclaved
tube and freeze-dried. A tube of unused sampling liquid was treated in the same way and used as
a negative control. Total DNA was extracted from each leaf and airborne sample with the
DNeasy 96 Plant Kit (QIAGEN). Foliar DNA samples from the same tree were pooled, as were

foliar DNA samples from the three adjacent grapevine stocks.

Fungal ITS2 (Internal Transcribed Spacer 2) was amplified with the fITS7 (forward) and ITS4
(reverse) primers (Ihrmark et al., 2012). Paired-end sequencing (300 bp) was then performed in a
single run of an Illumina MiSeq sequencer, on the basis of V3 chemistry. PCR amplification,
barcodes and MiSeq adapters addition, library sequencing and data preprocessing were carried

out by the LGC Genomics sequencing service (Berlin, Germany).

Bioinformatic analysis

Sequences were first demultiplexed and filtered. All sequences with tag mismatches, missing
tags, one-sided tags or conflicting tag pairs were discarded. Tags and Illumina TruSeq adapters
were then clipped from all sequences, and sequences with a final length fewer than 100 bases
were discarded. All sequences with more than three mismatches with the ITS2 primers were
discarded. Primers were then clipped and the sequence fragments were placed in a forward-
reverse primer orientation. Forward and reverse reads were then combined, and read pair

sequences that could not be combined were discarded.
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The pipeline developed by Balint et al. (2014) was used to process the sequences. The ITS2
sequence was first extracted from each sequence with the FungallTSextractor (Nilsson et al.,
2010). All the sequences were then concatenated into a single fasta file, after adding the sample
code in the label of each sequence. The sequences were dereplicated, sorted and singletons were
discarded with VSEARCH (https://github.com/torognes/vsearch). The sequences were then
clustered into molecular operational taxonomic units (OTUs) with the UPARSE algorithm
implemented in USEARCH v8 (Edgar, 2013), with a minimum identity threshold of 97 %.
Additional chimera detection was performed against the UNITE database (Kdljalg et al., 2013),
with the UCHIME algorithm implemented in USEARCH v8 (Edgar et al., 2011). The OTU
table, giving the number of sequences of each OTU for each sample, was created with

USEARCH v8.

OTUs were taxonomically assigned using the online BLAST web interface (Madden, 2013)
against the GenBank database, by excluding environmental and metagenome sequences. The
assignment with the lowest e-value was retained. The full taxonomic lineage of each assignment
was retrieved from the GI number information provided by NCBI. All the OTUs assigned to
plants or other organisms, and all unassigned OTUs were removed, to ensure that only fungal

OTUs were retained.

Statistical analyses

All statistical analyses were performed in the R environment. We computed 100 random rarefied
OTU matrices, using the smallest number of sequences per sample as a threshold. The number of

OTUs per sample (OTU richness) and the dissimilarity between samples (Bray-Curtis index
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based on abundances and Jaccard index based on occurrences) were calculated for each rarefied

matrix and averaged.

T@III ANOVA was used to assess the effect of host plant species (grapevine, oak, hornbeam
and chestnut), sampling date (May, July, October), edge (habitat centre or edge) and their
interactions on foliar OTU richness. Sampling site was included in the model as a random factor.
Marginal and conditional coefficients of determination were calculated to estimate the variance
explained by fixed factors (R,,?) and fixed plus random factors (R ?). Post-hoc pairwise
comparisons were then performed for each level of each factor, with Tukey’s adjustment
method. A similar ANOVA was performed on airborne OTU richness, including habitat (forest

and vineyard), sampling date, sampling site, and their interactions.

Dissimilarities in composition between samples were represented by non-metric
multidimensional scaling analysis (NMDS) and were analysed by permutational multivariate
analyses of variance (PERMANOVA), including the same fixed factors as the ANOVAs, with
sampling sites treated as strata. We dealt with complex interactions in PERMANOVA results; by
calculating post-hoc PERMANOV As, including sampling date, sampling site and their
interaction, separately for each host plant species (or habitat for airborne samples). We then

corrected the P-values for multiple testing, as described by Benjamini & Yekutieli (2001).
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Results

Taxonomic description of foliar and airborne fungal communities

In total, we obtained 7 946 646 high-quality sequences, which clustered into 4 360 OTUs.
Overall, 867 OTUs, corresponding to 4 600 179 sequences (57.9% of the raw OTU table) were
not taxonomically assigned to fungi by BLAST. Among them, 4 451 913 sequences were
assigned to plant sequences (Tracheophyta division), principally Vitis (59%), and Carpinus
(35%) genus, showing that fITS7-ITS4 primers are not specific of fungi. These OTUs were
removed. The negative controls contained 29 857 fungal sequences clustering into 337 OTUs.
Some of these OTUs were found in all samples and were assigned to ubiquitous fungal species
that had already been found on plant leaves (e.g. Aureobasidium pullulans or Eppicocum
nigrum). Because it is difficult to distinguish real contaminations from cross-contaminations
during the DNA extraction or sequencing process (Kircher et al., 2011; Esling et al., 2015), we
decided to retain all these OTUs. Two samples containing very few sequences (<300 sequences)
were removed. These samples corresponded to grapevine leaves collected at the Couhins site, in
May. The first was collected in the centre of the vineyard, and the other was collected at its edge.
Finally, the OTU table used for the analyses contained 196 sampl@d 3 487 fungal OTUs,
corresponding to 3 316 156 sequences. The number of sequences per sample ranged from 424 to

96 276, with a mean of 16 919.

The fungal communities of bioaerosols and leaves from forest trees and grapevines were

dominated by ascomycetes (Fig. 1). The sequences assigned to Ascomycota division accounted
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for 82.1% of all the sequences in the rarefied dataset, followed by Basidiomycota division
(14.8‘@Verall, 3.1% of the total sequences remained unassigned at the division level.
Airborne and foliar samples shared 905 OTUs (Fig. 2), but there was no significant difference in
the composition of foliar and airborne fungal communities (PERMANOVA F=20.15, p=0.001).
The ten most abundant fungal OTUs were shared by airborne, forest foliar and grapevine foliar

communities, but their relative abundance differed between each compartment (Table 1).

Variations in the richness of foliar and airborne fungal communities at the landscape scale

ANOVA revealed a significant effect of the interaction between host plant species and sampling
date on the richness of foliar fungal communities (Table 2). Differences in fungal community
richness between plant species were not significant in May and July (Fig. 3 and Fig. S1). In
October, grapevine stocks had significantly less rich foliar fungal communities than oak (post-
hoc tests: P<0.0001; Fig. 3) and hornbeam trees (P<0.0001), but the richness of their fungal
communities did not differ significantly from that of chestnut trees (P=0.147; Fig. S1).
Hornbeam leaves harboured the richest communities of all the plant species considered (post-hoc
tests: P<0.0001 between hornbeam and chestnut, P=0.0003 between hornbeam and oak,

P<0.0001 between hornbeam and grapevine; Fig. S1).

ANOVA post-hoc tests also revealed a significant decrease in fungal species richness in
grapevine over the course of the growing season (P<0.0001 for each pairwise comparison;
Fig. 3). Seasonal variations in fungal richness were less marked in oak (P=0.081, P=0.999 and

P=0.004, respectively between May and July, July and October, May and October), chestnut
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(P=0.011, P=0.997 and P=0.0002, respectively) and hornbeam (P=1.00, P=0.144 and P=0.185,

respectively).

ANOVA also revealed a significant effect of the interaction between host plant species and edge
on the richness of foliar fungal communities (Table 2). The richness of foliar fungal communities
was significantly higher at the edge in oak (P=0.002), but not in hornbeam (P=0.100), chestnut

(P=0.139), or grapevine (P=0.790) (Fig. S2).

Habitat had a significant effect on the richness of airborne fungal communities (Table 2), which

was significantly higher in forests than in vineyards.

Variations in the composition of foliar and airborne fungal communities at the landscape

scale

PERMANOVA revealed a significant effect of the interaction between host plant species and
sampling date on the composition of foliar fungal communities (Table 3). Bray-Curtis
dissimilarities between oak and grapevine foliar fungal communities increased over the course of
the growing season (mean + SD; 0.47 £ 0.07 in May, 0.67 = 0.09 in July and 0.91 £ 0.06 in
October). These results are illustrated by non-metric multidimensional scaling (NMDS; Fig. 4a).
Bray-Curtis dissimilarities also increased between each pair of host species (Table S2 and

Fig. S3a). Similar results were obtained with the Jaccard dissimilarity index (Table S3 and

Fig. S3b).

PERMANOVA also revealed significant edge effects on the composition of foliar fungal

communities, in interaction with host plant species and sampling date. Post-hoc PERMANOV As
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computed separately for each host species indicated differences in community composition
between the edge and centre of the forest for oak and hornbeam, in interaction with sampling
date (F=1.68, P=0.031 and F=1.85, P=0.044, respectively). The composition of the fungal
community did not differ between the edge and the centre of the habitat for chestnut (F=2.27,
P=0.25) or grapevine (F=0.92, P=1). Finally, PERMANOVA analysis of Bray-Curtis
dissimilarities revealed a significant effect of sampling date on bioaerosol composition (Table 3

and Fig. 4b). Similar results were obtained for Jaccard dissimilarity (Table S3).

Discussion

To our knowledge, this is the first time that the spatial structure and the temporal dynamic of
foliar and airborne fungal communities are assessed simultaneously at the landscape scale. We
studied a landscape mosaic consisting of two main habitats, vineyard and forest patches. We
expected that repeated dispersal events between habitat patches would homogenize the foliar
communities over the course of the growing season. We expected the homogenization to be

greater along habitat edges, where grapevine stocks and forest trees are closer to each other.

Accordingly, we found that 26% of the OTUs are shared between airborne and foliar fungal
communities. The most abundant ones are principally generalist species, such as Aureobasidium
pullulans, Cladosporium sp. or Eppicoccum nigrum, which were already found as abundant in
the microbiome of many species (Jumpponen & Jones, 2009; Zambell & White, 2014; Pinto &
Gomes, 2016). This result confirms that many fungal species disperse through the atmosphere
(Lindemann et al., 1982; Brown & Hovmeller, 2002; Bulgarelli et al., 2013). Moreover, the

composition of airborne fungal communities did not differ significantly between forest patches
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and adjacent vineyards, whatever the season. This result suggests that dispersal is not limiting at
the landscape scale (Barberan et al., 2014), in contradiction with the results of Bowers et al.
(2013). This lack of spatial variation in airborne fungal communities could account for the high
similarity between foliar fungal communities of grapevine and forest tree species at the
beginning of the growing season. Our results suggest that flushing leaves in May receive similar
pools of fungal species through airborne dispersal, whatever the habitat and the host plant

species.

Against expectation, we found that the composition of the foliar fungal communities of forest
tree species and grapevine increasingly diverged from May to October. Besides, a severe decline
in the richness of foliar fungal communities was observed in grapevine over the course of the
growing season, but not in forest tree species. Despite an identical pool of airborne fungi in
vineyards and forests, the selective pressures exerted on foliar fungal communities differ

between both habitats.

Selection by the habitat can be exerted by the microclimate (Vacher et al., 2016). Harsher
microclimatic conditions in vineyards than in forests, especially in the summer, could account
for the decline in fungal species richness in vineyards but not in forests. Particularly, greater
exposure to UV and higher air temperatures in vineyards could decrease the survival of foliar
fungi on grapevine leaves. By contrast, tree cover provides a milder microclimate which could be

more suitable to foliar micro-organisms.

Selection by the habitat can also be exerted by the plant host (Vacher et al., 2016). Several
studies indeed revealed some host-specificity in foliar fungal communities (Kembel & Mueller,

2014; Lambais et al., 2014; Meiser et al., 2014). Our results paralleled these findings: in forest
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patches, foliar fungal communities significantly differ among tree species at the end of the
growing season. Seasonal variations in leaf physiology could also account for the observed
temporal variations in foliar communities, especially the richness decline in grapevine fungal
foliar communities. Older grapevine leaves indeed produce larger amounts of phytoalexins and

tend to be more resistant to pathogens (Steimetz et al., 2012).

Finally, selection by the habitat can be exerted by agricultural practices. A few studies
showed that fungicide applications can reduce the diversity and alter the composition of the
foliar microbial community (Gu et al., 2010; Moulas et al., 2013; Cordero-Bueso et al., 2014;
Karlsson et al., 2014). However, several other studies showed that the foliar fungal communities
of grapevine are highly resilient to some chemical or biological pesticides (Walter et al., 2007,
Perazzolli et al., 2014; Ottesen et al., 2015). Further research is required to assess the influence

of fungicide applications on the observed decline in the richness of foliar fungal communities.

Our study also showed, for the first time, significant edge effects on foliar fungal community
assemblages. A higher level of foliar fungal community richness was found in oak trees growing
at the edge of the forest than in oak trees growing 100 m away. Significant differences in
community composition between the edge and the centre of the forest were also found for oak
and hornbeam. Variations in microclimate and leaf physiology along the forest edge (Chen et al.,
1993; Zheng et al., 2005; Kunert et al., 2015) are more likely to account for this result than
species dispersal from vineyards to forest patches, since the foliar fungal communities of the two
habitats diverged over the course of the growing season. The absence of edge effect in grapevine
foliar fungal communities suggests that dispersal of fungal species from forests to vineyards has
little influence on community composition and richness. This result contrasts with the findings of

many studies on macro-organisms, reporting that dispersal events between managed and non-
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managed habitats shape communities and influence ecosystem functioning and services
(Thomson & Hoffmann, 2009; Rusch et al., 2010; Thomson et al., 2010; Chaplin-Kramer et al.,

2011; Blitzer et al., 2012).

Conclusions

Our results suggest that dispersal events between habitat patches are not major drivers of foliar
fungal communities at the landscape scale. Selective pressures exerted in each habitat by the
plant host, the microclimate and the agricultural practices play a greater role, and might account
for the differentiation of foliar fungal communities between habitats. Our results suggest that the
leaves of broad-leaf species are colonised by similar pools of airborne micro-organisms at the
beginning of the growing season. The composition of foliar fungal communities then diverges
between habitat patches and between plant species within the same habitat. In contrast, airborne
communities remain the same between habitats. Overall, our results thus confirm the Baas-
Becking statement that "Everything is everywhere, but the environment selects" (Baas Becking,
1934; De Wit & Bouvier, 2006). For fungal communities at the landscape scale, everything is

everywhere in bioaerosols, but the habitat selects.
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495 Tables

496  Table 1 Taxonomic assignment of the 10 most abundant OTUs by the online BLAST analysis
497 against the GenBank database. The environmental and metagenome sequences were excluded.
498  Identity is the percentage identity between the OTU representative sequence and the closest

499  matching sequence in GenBank. Taxa followed by a * indicate representative sequences assigned
500 to at least another species with an identical e-value. Relative abundance is the average abundance
501  of each ©B4 over 100 rarefactions. Brakets contain the rank of the © in each data subset. The
502  Project Accession Number is PRIEB13880.

503
Closest match Relative abundance (rank)
GI number Identity Putative taxon Total  Airborne Forest  Grapevine
leaves leaves

1034220623 100 Aureobasidium pullulans 20.74 5.6 (4) 16.7(1) 39.6(1)
1031917897 100 Cladosporium herbarum* 6.37 18.7(1) 3.4 (8) 4.0 (2)
391883765 86.2  Pseudeurotium hygrophilum*  5.03 2.4 (8) 7.3(2) 2.109)
1035371449 100 Cladosporium perangustum®*  3.70 9.6 (2) 2500) 2.11(8)
61619908 100 Ramularia endophylla 3.52 1.5(11) 4.7 (4) 2.48 (6)
626419142 99.5  Taphrina carpini 316 1.1(14) 47@3) 131715
1024249962 100 Erysiphe alphitoides* 260 1.0(15) 3.7(5 1.5 (12)
61619940 100 Naevala minutissima 2.53 1.5 (10) 3.5(7) 1.2 (18)
799381116 100 Ramularia vizellae 249 09 (16) 3.5(6) 1.5 (13)
1031917850 100 Epicoccum nigrum 2.05 337 1.0(19) 344

504
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511

Table 2 Effect of sampling date (May, July or October), host species (oak, hornbeam, chestnut

or grapevine) or habitat (vineyard or forest), edge (habitat centre or center) and their interaction

on OTU richness in foliar and airborne fungal communities, assessed using a type Il ANOVA.

In both models, sampling site was included as a random variable. R,,? is the marginal coefficient

of determination (for fixed effects) and R.? the conditional coefficient of determination (for fixed

and random effects). Bold values ares the significant ones.

F P-value R.2 (R?)
Foliar OTU richness
Date 44.49 <0.001 0.64 (0.71)
Species 14.97 <0.001
Edge 17.21 <0.001
DxS 23.42 <0.001
DxE 0.11 0.894
SxE 6.72 <0.001
DxSxE 1.13 0.347
Airborne OTU richness
Date 1.07 0.362 0.34 (0.52)
Habitat 10.19 0.004
Edge 4.20 0.052
DxH 0.86 0.436
DxE 1.40 0.267
HxE 0.01 0.912
DxHxXE 1.678 0.209

Peer] reviewing PDF | (2016:07:12097:0:0:NEW 15 Jul 2016)



Peer]

512 Table 3 Effect of sampling date (May, July or October), host species (oak, hornbeam, chestnut
513  or grapevine) or habitat (vineyard or forest), edge (habitat centre or center) and their interaction
514  on the composition of foliar and airborne fungal communities, assessed using a PERMANOVA.
515 In both models, sampling site was included as a stratification variable. Bold values ares the

516  significant ones.

F R? P-value

Foliar fungal community composition

Date 10.13 0.078 0.001
Species 13.70 0.158 0.001
Edge 3.94 0.015 0.001
D x Sp 6.92 0.160 0.001
DxE 2.05 0.016 0.007
SpxE 2.22 0.026 0.001
DxSpxE 1.08 0.025 0.239

Airborne fungal community composition

Date 2.94 0.157 0.001
Habitat 1.54 0.041 0.062
Edge 0.68 0.018 0.827
DxH 0.95 0.051 0.418
DxE 0.66 0.035 0.938
HxE 0.77 0.020 0.684
DxHxE 0.71 0.038 0.878

517
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518 Figures

519

520  Figure 1 Taxonomic composition of the airborne and foliar fungal communities in forest and

521  vineyard habitats. The inner disc shows the proportion of sequences assigned to each taxonomic
522 division, and the outer disc the proportion of sequences assigned to each class of the Ascomycota

523 and Basidiomycota divisions.
524

Fungal divisions :

B Ascomycota

M Basidiomycota

B Others
Unassigned

Ascomycota classes :
B Arthoniomycetes
I Dothideomycetes
M Eurotiomycetes
M Lecanoromycetes
Leotiomycetes
B Orbiliomycetes
B Pezizomycetes
B Saccharomycetes
B Sordariomycetes
B Taphrinomycetes
Unassigned

Bioaerosols

Basidiomycota classes :

B Agaricomycetes

B Agaricostilbomycetes
Cystobasidiomycetes

I Dacrymycetes

M Exobasidiomycetes

M Malasseziomycetes

I Microbotryomycetes

M Pucciniomycetes

B Tremellomycetes

M Ustilaginomycetes
Wallemiomycetes

525 Forest leaves Grapevine leaves Unassigned
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527  Figure 2 Venn diagramm giving the number of OTUs shared between the airborne, forest foliar

528 and vineyard foliar communities.
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l
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529 leaves leaves

530
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531 Figure 3 Richness of foliar fungal community in oak (green) and grapevine (red), depending on

532 the sampling date. Error bars represent the standard error.
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534  Figure 4 NMDS representing dissimilarities in the composition of fungal communities. (a)

535  Dissimilarities in the composition of foliar fungal communities between the host species (oak in
536 green and grapevine in red), depending on the sampling date. The other two forest species are not
537 shown here, to make the figure easier to read, and are presented in Fig. S2. The stress value

538 associated with this representation was 0.170. (b) Airborne fungal communities between the

539 habitat (forest in light-blue and vineyard in dark-blue), depending on the sampling date. The

540  stress value associated with this representation was 0.188. Dissimilarities between samples were
541 computed with the Bray-Curtis index, averaged over 100 random rarefactions of the OTU table.
542 The confidence ellipsoid at the 0.68 level is shown, for all combinations of these two factors.
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