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Seasonal regulation of herbivory and nutrient effects on
macroalgal recruitment and succession in a Florida coral reef
Alain Duran, Ligia LCV Collado-Vides, Deron E Burkepile

Herbivory and nutrient enrichment are drivers of benthic dynamics of coral reef
macroalgae; however, their impact may vary seasonally. In this study we evaluated the
effects of herbivore pressure, nutrient availability and potential propagule supply on
seasonal recruitment and succession of macroalgal communities on a Florida coral reef.
Recruitment tiles, replaced every three months, and succession tiles, kept in the field for
nine months, were established in an ongoing factorial nutrient enrichment-herbivore
exclusion experiment. The ongoing experiment had already created very different algal
communities across the different herbivory and nutrient treatments. We tracked algal
recruitment, species richness, and species abundance through time. Our results show
seasonal variation in the effect of herbivory and nutrient availability on recruitment of
coral reef macroalgae. In the spring, when there was higher macroalgal species richness
and abundance of recruits, herbivory appeared to have more control on macroalgal
community structure than did nutrients. In contrast, there was no effect of either herbivory
or nutrient enrichment on macroalgal communities on recruitment tiles in cooler seasons.
The abundance of recruits on tiles was positively correlated with the abundance of algal in
the ongoing, established experiment, suggesting that propagule abundance is likely a
strong influence on algal recruitment and early succession. Results of the present study
suggest that abundant herbivorous fishes control recruitment and succession of
macroalgae, particularly in the warm season when macroalgal growth is higher. However,
herbivory appears less impactful on algal recruitment and community dynamics in cooler
seasons. Ultimately, our data suggest that the timing of coral mortality (e.g. summer vs.
winter mortality) and freeing of benthic space may strongly influence the dynamics of
algae that colonize open space. [b]
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Abstract. 24	
  

Herbivory and nutrient enrichment are drivers of benthic dynamics of coral reef 25	
  

macroalgae; however, their impact may vary seasonally. In this study we evaluated the effects of 26	
  

herbivore pressure, nutrient availability and potential propagule supply on seasonal recruitment 27	
  

and succession of macroalgal communities on a Florida coral reef. Recruitment tiles, replaced 28	
  

every three months, and succession tiles, kept in the field for nine months, were established in an 29	
  

ongoing factorial nutrient enrichment-herbivore exclusion experiment. The ongoing experiment 30	
  

had already created very different algal communities across the different herbivory and nutrient 31	
  

treatments. We tracked algal recruitment, species richness, and species abundance through time. 32	
  

Our results show seasonal variation in the effect of herbivory and nutrient availability on 33	
  

recruitment of coral reef macroalgae. In the spring, when there was higher macroalgal species 34	
  

richness and abundance of recruits, herbivory appeared to have more control on macroalgal 35	
  

community structure than did nutrients. In contrast, there was no effect of either herbivory or 36	
  

nutrient enrichment on macroalgal communities on recruitment tiles in cooler seasons. The 37	
  

abundance of recruits on tiles was positively correlated with the abundance of algal in the 38	
  

ongoing, established experiment, suggesting that propagule abundance is likely a strong 39	
  

influence on algal recruitment and early succession. Results of the present study suggest that 40	
  

abundant herbivorous fishes control recruitment and succession of macroalgae, particularly in the 41	
  

warm season when macroalgal growth is higher. However, herbivory appears less impactful on 42	
  

algal recruitment and community dynamics in cooler seasons. Ultimately, our data suggest that 43	
  

the timing of coral mortality (e.g. summer vs. winter mortality) and freeing of benthic space may 44	
  

strongly influence the dynamics of algae that colonize open space.  45	
  

 46	
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Introduction  47	
  

On coral reefs, herbivory and nutrient availability are often considered the primary 48	
  

ecological drivers of macroalgal community dynamics (Littler and Littler, 1984; McCook, 1999; 49	
  

Burkepile and Hay, 2006). Field experiments excluding herbivores have resulted in a substantial 50	
  

increase of both biomass and density of some macroalgal species, generating changes in species 51	
  

composition at the community level (Lewis, 1986; Burkepile and Hay, 2009; Ferrari et al., 52	
  

2012). Nutrient enrichment tends to have more variable effects on macroalgal communities, 53	
  

possibly linked to species-specific responses of macroalgae to nutrient availability (Larned, 54	
  

1998; Fong et al., 2001; Dailer et al., 2012). In particular, growth rates of some small, fast-55	
  

growing species quickly peak in nutrient enriched environments (Lapointe et al., 1997; 56	
  

McClanahan et al., 2004; Smith et al., 2005). In contrast, larger slow-growing species, typical of 57	
  

late stages of macroalgal community succession (e.g., Sargassum spp., Amphiroa spp.), often 58	
  

show weak or mixed effects in nutrient enriched areas (McClanahan et al., 2004; Burkepile and 59	
  

Hay, 2009). However, abundance of different macroalgal species can vary seasonally on reefs 60	
  

(Lirman and Biber, 2000), which could explain the variable relative effect of each driver on 61	
  

structuring macroalgal communities (Burkepile and Hay, 2006; Smith et al., 2010).  62	
  

A number of factors may influence seasonality of algal communities on reefs including 63	
  

seasonal changes in abiotic conditions (e.g. temperature and light; Clifton and Clifton, 1999), the 64	
  

timing and intensity of disturbances (Diaz-Pulido and Garzon-Ferreria, 2000; Diaz-Pulido and 65	
  

McCook, 2004; Goodsell and Connell, 2005) and propagule supply and recruitment 66	
  

(McClanahan 1997; Diaz-Pulido and McCook, 2002). Increases in water temperature and light 67	
  

availability can promote macroalgal growth and trigger reproduction in some species (Clifton 68	
  

2008, Collado-Vides et al., 2011). For example, both Dictyota pulchella and Sargassum spp. 69	
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show a peak of abundance during the summer and a loss of biomass in the coolest seasons 70	
  

(Lirman and Biber, 2000; Mumby et al., 2005; Renken et al. 2010). In contrast, Gracilaria spp. 71	
  

and Stypopodium zonale often exhibit higher abundance during cooler seasons (Hay and Norris, 72	
  

1984; Chung et al., 2007). In addition to influencing macroalgal growth rates, temperature also 73	
  

influences the rate of herbivory in fishes with grazing rates often peaking during warmer periods 74	
  

(Smith, 2008; Lefevre and Bellwood, 2010). Thus, variation in abiotic controls of both algal 75	
  

growth rates and rates of herbivory across seasons could result in temporal fluctuations of 76	
  

bottom-up and top-down forcing.  77	
  

These seasonal differences in macroalgal growth and herbivory rates could affect how 78	
  

disturbances to reefs impact macroalgal community development and succession. For example, 79	
  

in reefs in the Florida Keys, both extreme warm water (Eakin et al., 2010) and cold water 80	
  

(Lirman et al., 2011) anomalies can lead to coral mortality. Given that these disturbances open 81	
  

up free space for macroalgal colonization during different times of the year with different abiotic 82	
  

conditions, different species of algae may become dominant and drive different successional 83	
  

trajectories depending on the timing of these disturbances and the initiation of algal succession.  84	
  

Propagule abundance can also impact community dynamics by influencing the rates of 85	
  

recruitment in many marine organisms (Stiger and Payri, 1999; Lotze, Worm and Sommer, 2000; 86	
  

Grorud-Colvert and Sponaugle, 2009). The abundance of adult macroalgal individuals, the 87	
  

number of propagules they produce, and the distance to a suitable substrate for colonization can 88	
  

determine the number of macroalgal recruits in a given area (Kendrick and Walker 1991, Stiger 89	
  

and Payri 1999, Lotze, Worm and Sommer, 2000). Thus, abundant adult macroalgae might 90	
  

increase local macroalgal recruitment, especially after relatively localized disturbances such as 91	
  

coral mortality events (Roff and Mumby, 2012). Consequently, increases in macroalgae due to 92	
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reductions in herbivory or increases in nutrient availability could lead to increased macroalgal 93	
  

propagule supply and a positive feedback on macroalgal abundance. Yet, no studies have directly 94	
  

addressed how seasonality and propagule supply interact with herbivory and nutrient availability 95	
  

to impact macroalgal community development and succession on coral reefs. 96	
  

In the current study, we tested how both nutrient availability and herbivory varied across 97	
  

seasons as drivers of recruitment and succession of a coral reef macroalgal community. We used 98	
  

a factorial field experiment manipulating access by herbivorous fishes and nutrient availability 99	
  

that had been established two years prior to examine the effects of herbivory, nutrient 100	
  

enrichment, and macroalgal abundance on macroalgal recruitment patterns and succession on 101	
  

primary substrate. We established primary substrate in the different treatments multiple times 102	
  

across different seasons to test for the interactive effects of herbivory, nutrient availability, and 103	
  

seasonality on recruitment patterns. We quantified macroalgal abundance and diversity on both 104	
  

primary substrate and the established macroalgal communities regularly over nine months. We 105	
  

predicted that macroalgal recruitment would be higher in areas with greater adult macroalgal 106	
  

abundance and that herbivory would be the main ecological driver of macroalgal abundance. In 107	
  

addition, we hypothesized that the effect of both nutrient availability and herbivory would be 108	
  

reduced in cooler seasons when lower temperature and light availability limit macroalgal growth 109	
  

and rates of herbivory are typically lower. We also expected to find that in our study site, 110	
  

characterized by high abundance of herbivorous fish, algal community composition will vary 111	
  

seasonally with turf-forming and articulated-calcareous algae dominant in cooler seasons with 112	
  

foliose algae (e.g. Dictyota spp.) becoming dominant in warmer seasons.  113	
  

  114	
  

Materials and methods 115	
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Study site and experimental design  116	
  

This study was conducted on a spur and groove reef system located in the upper Florida 117	
  

Keys near Pickles Reef (25°00’05”N, 80°24’55”W) with the approval of the Florida Keys 118	
  

National Marine Sanctuary (FKNMS-2009-047 and FKNMS-2011-090). The reef is a shallow 119	
  

area (5-6m) where parrotfish and surgeonfish are the dominant herbivorous fishes and the long-120	
  

spined urchin, Diadema antillarum, is present at very low densities (<1 individual per 50m2, 121	
  

pers. obs.). In June 2009, eight 9m2 experimental plots (3x3m) were established to examine the 122	
  

interactive effects of herbivory and nutrient availability on benthic community dynamics 123	
  

(Zaneveld et al. In Press). Plots were separated by at least 5m. Each 9m2 plot contained two 124	
  

quadrats (1x1m2) for herbivore exclusion (exclosure), covered with plastic-coated wire mesh 125	
  

(2.5cm diameter holes) around a 0.5m high metal bar frame. Two other quadrats (1x1m2) were 126	
  

used as herbivore exclusion controls (uncaged) that had metal bar frames with three sides 127	
  

covered with wire mesh but allowed access to all herbivores.  128	
  

To mimic nutrient loading, four of the eight 9m2 experimental plots were enriched with 129	
  

Osmocote (19-6-12, N-P-K) slow-release garden fertilizer. The Osmocote (175g) was placed in a 130	
  

15cm diameter PVC tube with 10 (1.5cm) holes drilled into it. These tubes were wrapped in fine 131	
  

plastic mesh to keep the fertilizer inside and attached to a metal nail within the plot for a total of 132	
  

25 enrichment tubes spread evenly across each enrichment plot. Enrichment tubes were replaced 133	
  

every 4-6 weeks to ensure continual nutrient addition. The other four 9m2 plots were kept at 134	
  

ambient nutrient conditions. Sampling of water column nutrients in this experiment showed that 135	
  

this enrichment increased both dissolved inorganic nitrogen (3.91µM vs. 1.15µM in enriched vs. 136	
  

ambient) and soluble reactive phosphorus (0.27µM vs. 0.035µM in enriched vs. ambient) in the 137	
  

water column (Vega Thurber et al., 2014). Levels of both DIN and SRP in the ambient nutrient 138	
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plots were within the range of concentrations for offshore reefs in the Florida Keys (Boyer & 139	
  

Briceño, 2010). Further, levels of DIN and SRP in the enriched treatment were similar to those 140	
  

reported from other anthropogenic-impacted reefs located around the world (Dinsdale et al., 141	
  

2008). Additionally, nitrogen concentration in the tissues of the common alga Dictyota 142	
  

menstrualis were 20% higher in the enriched plots compared to the control plots, suggesting that 143	
  

the nutrients from the enrichment were consistently available to benthic organisms (Vega 144	
  

Thurber et al., 2014).  145	
  

Fish community structure 146	
  

To estimate the intensity of herbivore pressure, fish community structure was evaluated 147	
  

four times during the study period (September, 2011; January, 2012; April, 2012 and July 2012) 148	
  

using 30x2m belt transects (n=12) placed haphazardly across the study site following AGRRA 149	
  

methodology (Protocols Version 5.4; Lang et al., 2010). All individuals of all fish species 150	
  

included in the AGRRA protocol were identified and size estimated to the nearest cm. Size 151	
  

estimates were converted to biomass for each individual fish using published length: weight 152	
  

relationships (Bohnsack and Harper, 1988). We did not quantify abundances of the urchin D. 153	
  

antillarum as they are currently rare across the Florida Keys (Chiappone et al., 2002) and were 154	
  

very infrequently seen at our field site. 155	
  

Recruitment of macroalgae on primary substrate 156	
  

To study macroalgal recruitment across different seasons in the different treatments, we 157	
  

placed two settlement tiles (10x10cm from quarried Pleistocene coral limestone) in each of the 158	
  

two exclosure and uncaged quadrats within every 9m2 plot (n=64 tiles total) in September 2011. 159	
  

We did not put tiles in completely open areas as data from the main experiment showed that the 160	
  

macroalgal communities in the uncaged and completely open areas did not differ (Zaneveld et 161	
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al., In Press). These tiles (hereafter ‘recruitment tiles’) were collected after three months and 162	
  

replaced with new tiles to quantify recruitment and early succession during each season. These 163	
  

deployments resulted in a total of three separate sets of data on macroalgal recruitment across 164	
  

different seasons: fall (September-December 2011), winter (December 2011-March 2012) and 165	
  

spring (March- June, 2012). A tropical storm in Summer 2012 removed much of the 166	
  

experimental infrastructure precluding data from the planned Summer period. 167	
  

After three months in the field, recruitment tiles were transported to the laboratory where 168	
  

algae were identified to the lowest possible taxonomic level (Appendix I) and their percent cover 169	
  

was visually quantified. The recruitment tiles were then placed in individual separate aquaria that 170	
  

were prepared to replicate the field conditions as closely as possible (salinity: 35-36ppt, 171	
  

temperature: 25-28ºC, constant water circulation, and artificial high output white light with 12:12 172	
  

day-night cycle). We kept the tiles in their corresponding aquaria for three months to promote 173	
  

growth of macroalgal recruits that were unidentifiable in our immediate evaluation due to their 174	
  

small size or lack of identifiable traits. After this period, all macroalgal species were re-identified 175	
  

and any new contribution was added to the species list. 176	
  

Succession of macroalgal communities on primary substrate   177	
  

In September 2011, we also placed a second set of two settlement tiles (10x10cm) 178	
  

(hereafter ‘succession tiles’) in each exclosure and uncaged quadrat (n=64 tiles total). Succession 179	
  

tiles were kept in the field from September 2011 to June 2012. Macroalgal abundance was 180	
  

visually quantified on succession tiles in situ in January and June 2012 using a percent cover 181	
  

scale of 0.1 (single individual), 0.5 (less than three sparse individuals), 1 (few individuals), and 182	
  

then 5 to 100 with multiples of 5 based on visually estimated percent cover. Macroalgae were 183	
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identified to the lowest taxonomic level possible and also binned into form-functional groups 184	
  

(FFG) following Steneck and Detheir (1994). 185	
  

Established macroalgal communities  186	
  

Macroalgal abundance of established communities showed significant differences in the 187	
  

benthic macroalgal community composition across the different treatments (Zaneveld et al. In 188	
  

Press). These differences in the abundance and community composition of algae could have 189	
  

resulted in differing levels of propagule abundance across treatments, an important factor 190	
  

potentially affecting recruitment and succession on primary substrate in our study. To evaluate 191	
  

the potential propagule supply of each established community, macroalgal abundance was 192	
  

visually quantified using quadrats (50x50cm) in January and June 2012 using the percent cover 193	
  

scale and FFG classification as described above.   194	
  

Statistical analyses 195	
  

Biomass and density of total and herbivorous fish were compared across seasons using a 196	
  

one-factor ANOVA. For statistical analyses of the different macroalgal community metrics of 197	
  

recruitment and succession tiles, we averaged data from the two tiles located within each 198	
  

exclosure and uncaged quadrat. For recruitment tiles, succession tiles, and established 199	
  

communities we averaged metrics of the two exclosure quadrats and two uncaged quadrats of 200	
  

each plot such that n=4 for each treatment except for the ambient-exclosure treatment where n=3 201	
  

due to losing exclosures in one plot in May 2012 during a storm.  202	
  

We used a three-factor ANOVA to test for the effects of herbivores, nutrient enrichment, 203	
  

season, and their interactions on algal species richness and overall macroalgal abundance of 204	
  

recruitment tiles. When there were significant treatment X season interactions, we used a two-205	
  

factor ANOVA to assess treatment effects (i.e. nutrient enrichment and herbivore exclosure) 206	
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within different seasons. We used non-metric multi-dimensional scaling (nMDS) and 207	
  

permutational MANOVA (PERMANOVA) to assess the effects of treatments and seasonality on 208	
  

macroalgae community composition of recruitment tiles. We used a similarity percentage 209	
  

analysis (SIMPER) to assess how different species contributed to differences in community 210	
  

structure across treatments. To assess variability in abundance of most common species across 211	
  

treatments and seasons, we used three-factor ANOVAs or non-parametric tests when data did not 212	
  

satisfy assumptions for parametric tests.  213	
  

For both successional tiles and established algal communities, we used a three-factor 214	
  

ANOVA to test the effects of herbivory, nutrient availability, and season on overall algal 215	
  

abundance and the abundance of different FFG. To test the effects of treatment on community 216	
  

succession, a non-metric multi-dimensional scaling (nMDS) and a PERMANOVA were 217	
  

performed on the abundance of all FFG analyzed seasonally. To examine how macroalgal 218	
  

abundance in the established communities (potential propagule supply) impacted macroalgal 219	
  

recruitment, we used a Pearson correlation to assess the relationship between FFG abundance of 220	
  

established communities and both succession tiles and recruitment tiles in both winter and 221	
  

spring. We performed descriptive and inferential analyses using the R program from R 222	
  

Development Core Team (2012), version 3.2.2. 223	
  

 224	
  

Results 225	
  

Fish community structure  226	
  

Overall fish mean biomass and density at the study site were 6495.60 ± 508.10 g/100m2, 227	
  

and 39.93 ± 3.20 Ind./100m2 respectively. Herbivores (Family Scaridae and Acanthuridae) 228	
  

comprised 78% of overall fish biomass with an average of 5086.17 ± 569.50 g/100m2 and 74% 229	
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of overall fish density 29.93 ± 2.10 Ind./100m2. Total biomass of parrotfish and surgeonfish were 230	
  

2771.65 ± 526.60 g/100m2 and 2315.52 ± 370.60 g/100m2 respectively. We saw no temporal 231	
  

changes in biomass or density of total and herbivorous fish as no significant differences were 232	
  

found among seasons (One-factor ANOVA, p>0.05 in all cases).  233	
  

Recruitment of macroalgae on primary substrate (recruitment tiles) 234	
  

We identified 101 macroalgal taxa (Appendix I) including field and laboratory 235	
  

observations. Macroalgal species richness on recruitment tiles increased across seasons, 236	
  

averaging 9.73 species per tile in fall, 12.13 in winter, and 14.40 in spring (three-factor ANOVA, 237	
  

Season: F=6.09, p=0.006). Neither nutrient enrichment nor herbivore exclosure had an 238	
  

independent or interactive effect on species richness of recruitment tiles (Appendix II). Overall 239	
  

abundance of macroalgae on recruitment tiles was twofold higher in spring (116.12 ± 9.50%) 240	
  

compared with fall (60.00 ± 7.48%) and winter (51.77 ± 6.31%) regardless of treatment (Figure 241	
  

1, three-factor ANOVA, Season: F=30.54, p<0.001). Across seasons the combination of 242	
  

herbivore exclosure and nutrient enrichment had significant impact with noticeable increase in 243	
  

macroalgal abundance (Figure 1; Appendix II). 244	
  

Macroalgal assemblages on recruitment tiles were different across seasons (nMDS, 245	
  

Figure 2, PERMANOVA, Season: pseudo F= 7.68, p=0.01). Only four groups were present in all 246	
  

seasons (CCA, Cyanobacteria, Jania capillacea and Peyssonnelia spp.) but with dissimilar 247	
  

abundances (Table 1). There was a peak of cyanobacteria in spring while the abundance of 248	
  

Peyssonnelia spp. was four times higher during fall and spring compared to winter (Table 1). 249	
  

Other species such as Ectocarpus sp., Gelidiella sp and Heterosiphonia sp. increased their 250	
  

abundance in winter although abundance of both Laurencia species peaked in spring (Table 1). 251	
  

There was an effect of herbivore exclosure and a significant interaction between herbivore 252	
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exclosure and season in driving differences in community composition on recruitment tiles 253	
  

(PERMANOVA, Herbivore: pseudo F= 3.94.67, p=0.01 and Herbivory:Season interaction: 254	
  

pseudo F= 2.15, p=0.01, respectively). Analyses within season showed a clear effect of herbivore 255	
  

exclosure and nutrient enrichment in spring which seems to be stronger when both are combined 256	
  

as shown in the nMDS analyses (Figure 2; PERMANOVA, Herbivory: pseudo F= 6.16, p=0.01 257	
  

and Nutrient: pseudo F= 3.08, p=0.04, respectively). 258	
  

Succession of macroalgae on primary substrate (succession tiles)   259	
  

Excluding herbivores from succession tiles led to almost double overall macroalgal cover 260	
  

(77.29±7.29%) compared to uncaged tiles (40.84 ± 5.22%; three-factor ANOVA, Herbivory: 261	
  

F=16.52, p<0.001), while no other factors showed significant effects (Figure 3; Appendix II). 262	
  

Filamentous algae increased abundance in June with 33.83±4.58% (Figure 3, three-factor 263	
  

ANOVA, Season: F=6.09, p=0.02) and was negatively affected by nutrient enrichment (Figure 3, 264	
  

three-factor ANOVA, Nutrient: F=13.23, p=0.01) but not by herbivore exclosure (three-factor 265	
  

ANOVA, Herbivory: F=0.12, p=0.74). Abundance of foliose macroalgae (e.g. Dictyota spp.) 266	
  

increased when herbivores where excluded (Figure 3; three-factor ANOVA, Herbivory: F=7.84, 267	
  

p=0.01) with stronger effect within ambient nutrient treatments where abundance doubled 268	
  

compared to other treatments (Figure 3; three-factor ANOVA, Herbivory:Nutrient interaction: 269	
  

F=10.55, p=0.004). Articulated calcareous algae (e.g. Jania spp. and Amphiroa spp.) showed 270	
  

higher abundance when herbivores were excluded (three-factor ANOVA, Herbivory: F=12.15, 271	
  

p=0.002), particularly when combined with nutrient enrichment, resulting in over three times the 272	
  

abundance compared to other treatments (Figure 3, three-factor ANOVA, Herbivory:Nutrient 273	
  

interaction: F=6.77, p=0.02). There was a trend towards herbivore exclosure increasing the 274	
  

abundance of leathery algae (e.g. Sargassum spp.) (three-factor ANOVA, Herbivory: F=3.22, 275	
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p=0.09), but these species were quite variable. There was also a trend towards herbivore 276	
  

exclosure decreasing abundance of crustose algae (e.g. Peyssonnelia spp. and crustose coralline 277	
  

algae) (three-factor ANOVA, Herbivory: F=3.31, p=0.08). 278	
  

Some observations suggest that macroalgal assemblages go through different 279	
  

successional patterns depending upon treatment. For instance, in both January and June, the 280	
  

nMDS analysis showed herbivore exclosure had significant effects on the FFG composition of 281	
  

macroalgal communities (Figure 4, PERMANOVA, Herbivory: pseudo F = 8.96; p=0.01, pseudo 282	
  

F = 3.46, p=0.03 respectively). However, there was an effect of nutrient enrichment only in 283	
  

January (Figure 4, PERMANOVA, Nutrient: pseudo F = 2.84; p=0.03). The significant effect of 284	
  

herbivore exclosure in the nMDS was not surprising given that some species of articulated 285	
  

calcareous algae (Jania spp. and Amphiroa spp.) and leathery algae (Sargassum spp.) were 286	
  

present almost exclusively within exclosures.  287	
  

Established macroalgal communities  288	
  

Overall macroalgal abundance of established communities was over twofold higher in 289	
  

June with 84.3 ± 7.76% compared to January 39.36 ± 7.55% (Figure 5, three-factor ANOVA, 290	
  

Season: F=59.65, p<0.001). Herbivore exclosures had two fold higher algal cover (Figure 5, 291	
  

three-factor ANOVA, Herbivory: F=65.49, p<0.001) while there was no effect of nutrient 292	
  

enrichment (Figure 5, Appendix II). Filamentous and crustose algae were the only macroalgal 293	
  

groups that showed a seasonal increase from January to June on established communities (Figure 294	
  

5, three-factor ANOVA, Season: F=70.46, p<0.001; F=10.05, p=0.004, respectively). The three 295	
  

groups of upright macroalgae: foliose, leathery and articulated calcareous algae were more 296	
  

abundant in herbivore exclosures (Figure 5). Leathery macroalgae were practically only found in 297	
  

herbivory exclosure treatments regardless of nutrient treatment (Figure 5). Furthermore, 298	
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articulated calcareous algae (e.g. Jania spp. and Amphiroa spp.) were much more abundant 299	
  

inside exclosures when combined with nutrient enrichment in both January and June (Figure 5, 300	
  

three-factor ANOVA, Herbivory:Nutrient interaction, F=10.00, p=0.005).  301	
  

There were significant positive correlations of algal abundance of established 302	
  

communities with algal abundance found on recruitment and succession tiles for some algal 303	
  

groups (Table 2). The abundance of leathery macroalgae on established communities was 304	
  

correlated with the corresponding abundances found on recruitment tiles in January (Pearson 305	
  

correlation, r=0.97, p=0.03) and with abundance of succession tiles in June (Pearson correlation, 306	
  

r=0.95, p=0.05). Articulated calcareous algae was the only algal group that showed correlations 307	
  

between established communities and corresponding recruitment and succession tiles in both 308	
  

seasons (Table 2).   309	
  

 310	
  

Discussion 311	
  

The results of this study provide evidence of the seasonal regulation of herbivory and 312	
  

nutrient availability effects on recruitment of coral reef macroalgae. We observed an increase in 313	
  

species richness and abundance of macroalgal recruits towards the warmer season (spring), with 314	
  

recruit abundance noticeably higher when combining reduced herbivory and nutrient enrichment.  315	
  

However, herbivory primarily drove macroalgal abundance and the trajectory of succession over 316	
  

longer time periods, with higher algal abundance for some groups of macroalgae (e.g. articulated 317	
  

calcareous algae) under elevated nutrient conditions. We also found positive correlations 318	
  

between algal abundance in established communities and abundance on both recruitment and 319	
  

successional tiles. These data suggest an important role of propagule supply in influencing algal 320	
  

recruitment and succession. These results show that the impact of herbivores and nutrient 321	
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availability on macroalgal recruitment and succession varies across seasons and functional 322	
  

groups of algae. Herbivory was a driving force across seasons, but strongest in warmer seasons, 323	
  

while nutrient availability showed the strongest effects in cooler seasons. 324	
  

Macroalgal communities on coral reefs can show noticeable temporal changes in species 325	
  

composition and abundance, associated with abiotic (e.g. temperature, light) and biotic factors 326	
  

(Tsai et al., 2005; Renken et al., 2010; Page-Albins et al., 2012). Some Caribbean species such as 327	
  

Dictyota spp. increase in abundance during summer, often covering over 50 % of the benthos, 328	
  

while others (e.g. Halimeda and turf-forming species) are more abundant during cooler periods 329	
  

of the year (Lirman and Biber, 2000; Renken et al., 2010; Ferrari et al. 2012). In our study we 330	
  

found an increase in overall abundance of macroalgal recruits towards spring with distinct 331	
  

species flourishing within treatments. For instance, recruitment of Jania capillacea and Hypnea 332	
  

spinella was higher in spring but mostly within exclosure, which suggests the strong control of 333	
  

herbivory of both species during spring. Both Laurencia cervicornis and L. intricata increased in 334	
  

abundance in spring. However, L. cervicornis was abundant in uncaged treatments while L. 335	
  

intricata was abundant in exclosure treatments. Some species of Laurencia are chemically 336	
  

defended against herbivores (Nagle and Paul, 1998; Pereira, Cavalcanti and Texeira, 2000), 337	
  

which could explain the proliferation of L. cervicornis in the presence of herbivores. In contrast, 338	
  

the abundance of small filamentous algal species commonly consumed by herbivorous fish (e.g. 339	
  

Ectocarpus sp., Gelidiella sp. and Heterosiphonia sp.) increased in winter when other studies 340	
  

have shown that grazing rates often decline (Ferreira et al., 1998; Lefevre and Bellwood, 2010). 341	
  

Indeed, we saw an interaction between herbivory and season on community composition 342	
  

suggesting that herbivores have stronger effects on algal recruitment during warmer periods 343	
  

(spring and summer). Since recruitment of corals is often higher during spring and summer 344	
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(Green and Edmund, 2011), the strong top-down control of algal recruitment during this period 345	
  

could indirectly enhance coral recruitment by freeing space for corals. Herbivory may have been 346	
  

less important in colder seasons due to lower grazing rates combined with lower recruitment 347	
  

rates and slower growth rates of algae.  348	
  

Succession in the absence of herbivores is expected to follow a trajectory characterized 349	
  

by replacement of early, fast growing species (e.g., Enteromorpha sp. Ceramium sp., Felmania 350	
  

sp.) by late successional species such as leathery and calcareous articulated species 351	
  

(McClanahan, 1997). Our results show that nutrient enrichment and herbivore exclosure interact 352	
  

to drive macroalgal succession at early stages (four months), while herbivory appears more 353	
  

important at later stages. After four months, filamentous and foliose algae increased inside 354	
  

exclosures with ambient nutrient levels, while leathery and articulated calcareous flourished in 355	
  

exclosures with nutrient enrichment. After nine months, species considered later successional 356	
  

species (e.g. Sargassum sp. and Amphiroa sp.) were present almost exclusively on succession 357	
  

tiles in exclosures regardless of nutrient enrichment. These results suggest that nutrient 358	
  

availability facilitates the rapid colonization and growth of leathery and articulated calcareous 359	
  

algae. But, over the long term, herbivory is the primary driver of their abundance. Other studies 360	
  

have shown that nutrient loading does not affect macroalgal species composition at late 361	
  

successional stages but facilitates abundance of early successional species such as turf forming 362	
  

algae and cyanobacteria (McClanahan et al., 2007). In our study we found that both nutrient 363	
  

availability and herbivory are significant drivers at early successional stages, whereas nutrient 364	
  

showed significant effect over later successional stages only when herbivores were excluded.  365	
  

Competition among algae may also be important for determining successional 366	
  

trajectories, especially when herbivory is low. Macroalgal communities on succession tiles 367	
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within herbivore exclosures were dominated by calcareous articulated and leathery species by the 368	
  

end of the experiment. These species appeared to replace Dictyota spp. and other foliose and 369	
  

filamentous algae, especially under nutrient enrichment, suggesting that these late successional 370	
  

species are better competitors in absence of herbivores. Thus, selective grazing by herbivores on 371	
  

more palatable species (e.g. articulated calcareous) might facilitate the colonization and 372	
  

establishment of less palatable foliose algae. Coral reef herbivores often consume macroalgal 373	
  

species of late successional stages such as leathery (e.g. Sargassum spp. and Turbinaria spp.) 374	
  

and calcareous articulated (e.g. Amphiroa spp., Halimeda spp. and Jania spp.) (Lobel and 375	
  

Ogden, 1981; Burkepile and Hay, 2008; Hoey and Bellwood, 2011), keeping macroalgal 376	
  

communities in stages of early succession. Hixon and Bostroff (1996) found similar results 377	
  

where removal of grazers led to a rapid shift from green and brown filamentous algae to finely 378	
  

branched filaments followed by species forming thicker filaments (e.g. Tolypoicladia 379	
  

glomerulata). Similarly, Thacker et al. (2001) reported a community shift from unpalatable to 380	
  

palatable species of algae when herbivores were excluded from coral reefs on Guam. This 381	
  

pattern is also common in terrestrial ecosystems where selective herbivores target palatable, but 382	
  

often competitively superior plant species, and release unpalatable species from competition 383	
  

(Briske and Hendrickson, 1998; Torrano and Valderrabano, 2004).  384	
  

We found that macroalgal abundance on recruitment and succession tiles was correlated 385	
  

with abundance of algae in established communities, which suggests that local propagule supply 386	
  

from the established community likely impacted early community development. In temperate 387	
  

marine communities, particularly for fast-growing species of macroalgae (e.g. Cladophora sp., 388	
  

Polysiphonia sp. and Ceramium sp.), propagule abundance has been proposed as one of the main 389	
  

drivers of macroalgal population growth (Worm and Lotze, 2006; Karez et al., 2004). Worm et 390	
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al. (1999) proposed that a combination of increased propagule supply and nutrient loading could 391	
  

overwhelm grazing rates and consequently increase the abundance of macroalgae in temperate 392	
  

benthic communities. Our results are consistent with Roff and Mumby (2012) who proposed that 393	
  

Caribbean coral reefs have lower resilience compared to Indo-Pacific reefs because they 394	
  

experience higher rates of macroalgal recruitment. However, further studies are needed to 395	
  

evaluate spatial and temporal variation of algal propagule supply and subsequent algal settlement 396	
  

in relation to herbivory and nutrient levels. For instance, since herbivores feed on adult 397	
  

macroalgae as well as recruits they might be controlling algal recruitment and abundance at 398	
  

multiple stages of the algal life cycle. Further, different species of herbivores could be important 399	
  

for controlling the same algal species at different life stages as some herbivorous fishes tend to 400	
  

focus more on early successional algae and would be more likely to consumer algal recruits 401	
  

while other herbivorous species focus on late-successional algae (Burkepile and Hay 2010). 402	
  

The combined effects of herbivore exclosure and nutrient enrichment showed strong 403	
  

effects on abundance of macroalgae on recruitment tiles. This result suggests that reefs that are 404	
  

both overfished and have high nutrient loading will have higher recruitment of algae. These 405	
  

higher recruitment rates may mean that these reefs are more likely to undergo regime shifts or 406	
  

state changes to algal abundant communities when corals die back. These impacts could be 407	
  

magnified if coral mortality occurs primarily in warmer seasons when herbivorous fishes are the 408	
  

most important for impacting algal recruitment. Once algal recruits have settled, succession can 409	
  

be modified by both nutrient availability and herbivores, often depending on season and 410	
  

successional stage. While overfished reefs can quickly undergo algal succession with rapid 411	
  

dominance of foliose and filamentous algae, overfished and nutrient enriched reefs can rapidly 412	
  

increase abundance of leathery and articulated calcareous algae when space is available. While 413	
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filamentous and foliose algae can reduce coral recruitment and harm small adult colonies, 414	
  

leathery and articulated calcareous algae can in addition shade and physically harm colonies by 415	
  

abrasion (McCook et al., 2001). Thus, overfishing herbivores and eutrophication can have strong 416	
  

impact on algal succession and, ultimately, their interactions with corals.  417	
  

 418	
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Table 1. Abundance of dominant macroalgal taxa found on recruitment tiles per season. Statistics 603	
  
column refers to analysis performed to compare abundance of specific taxa across season (F and 604	
  
p from one-factor ANOVA and N/A and p from Friedman test). Letters indicate post hoc 605	
  
analysis (SNK or Wilcoxon pair analysis) when abundance differed across seasons.  606	
  

 607	
  

Species 

Fall 
(Sep-Dec) 

Winter 
(Jan-Mar) 

Spring 
(Mar-Jun) 

Statistical 
sign. 

Percent cover 
(%) 

Percent cover 
(%) 

Percent cover 
(%) F p 

Peyssonnelia sp. 12.28 (A) 3.43 (B) 12.36 (A) 11.405 0
.001 

Crustose coralline 
algae (CCA) 11.24 7.41 6.40 2.157 0

.124 

Jania capillacea 4.68 2.20 10.44 N/A 0
.173 

Neosiphonia howei 3.90 (A) 0.00 (B) 2.86 (A) N/A 0
.001 

Cyanobacteria 6.6 (B) 3.56 (B) 37.84 (A) N/A 0
.001 

Heterosiphonia sp. 0.00 (B) 1.27 (A) 0.00 (B) N/A 0
.001 

Ectocarpus sp. 0.00 (B) 12.20 (A) 0.00 (B) N/A 0
.001 

Laurencia 
cervicornis 2.28 (B) 0.33 (B) 6.48 (A) N/A 0

.001 

Hypnea spinella 1.56 (A) 0.82 (A) 4.30 (B) N/A 0
.001 

Gelidiella sp. 0.00 (B) 1.16 (A) 0.00 (B) N/A 0
.001 

Laurencia intricata 0.00 (A) 0.00 (A) 3.42 (B) N/A 0
.001 

 608	
  
 609	
  
 610	
  
 611	
  
 612	
  
 613	
  
 614	
  
 615	
  
 616	
  
 617	
  
 618	
  
 619	
  

 620	
  
 621	
  
 622	
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Table 2. Pearson correlation between algal FFG abundance on recruitment or succession tiles and 623	
  
abundance of algal FFG in established communities for winter and spring. Bolded values show 624	
  
significant effects.  625	
  
 626	
  

 627	
  

Season Form-Functional group 
Recruitment tiles Succession tiles 

Coef. Corr (r)  p Coef. Corr (r)  p 
  Overall 0.59 0.002 0.86 0.001 

Winter 
(January) 

Filamentous 0.89 0.11 0.35 0.65 
Foliose 0.49 0.51 0.44 0.56 

Leathery 0.97 0.03 0.28 0.72 
Articulated-Calcareous 1.00 0.004 0.99 0.01 

Crustose -0.94 0.04 -0.77 0.23 
  Overall 0.53 0.01 0.43 0.03 

Spring 
(June) 

Filamentous -0.33 0.67 -0.51 0.49 
Foliose -0.09 0.91 N/S N/S 

Leathery 0.88 0.12 0.95 0.05 
Articulated-Calcareous 0.95 0.05 1.00 0.01 

Crustose 0.47 0.53 0.12 0.88 
 628	
  
 629	
  
 630	
  
 631	
  
 632	
  
 633	
  
 634	
  
 635	
  
 636	
  
 637	
  
 638	
  
 639	
  
 640	
  
 641	
  
 642	
  
 643	
  
 644	
  
 645	
  
 646	
  
 647	
  
 648	
  
 649	
  
 650	
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Figure 1. Overall abundance of macroalgae on recruitment tiles by treatments within each 651	
  
season. Bars represent means ± SEM. Probability values (p) come from three-factor ANOVA of 652	
  
main treatment effects.  653	
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Figure 2. Non-metric Multidimensional Scaling analysis of algal abundance in communities on 665	
  
recruitment tiles across seasons (A) and in each treatment by season (B-D).   666	
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Figure 3. Abundance of macroalgal FFG on succession tiles by treatment in Winter (January) 677	
  
and Spring (June). Bars represent means ± SEM. Probability values (p) come from three-factor 678	
  
ANOVA for main treatment effects and significant interactions.  679	
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Figure 4. Non-metric Multidimensional Scaling analysis of algal cover on successional tiles 691	
  
using percent cover of form-functional groups among treatments in Winter and Spring.   692	
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Figure 5. Abundance of macroalgal form-functional group on established communities by 707	
  
treatment in Winter and Spring. Bars represent means ± SEM. Probability values (p) come from 708	
  
three-factor ANOVA of main treatment effects and significant interactions.  709	
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