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ABSTRACT

Only recently has it been formally acknowledged that native species can occasion-
ally reach the status of ‘pest’ or ‘invasive species’ within their own native range. The
study of such species has potential to help unravel fundamental aspects of biological
invasions. A good model for such a study is the New Zealand native scarab beetle,
Costelytra zealandica (White), which even in the presence of its natural enemies has
become invasive in exotic pastures throughout the country. Because C. zealandica
still occurs widely within its native habitat, we hypothesised that this species has
only undergone a host range expansion (ability to use equally both an ancestral and
new host) onto exotic hosts rather than a host shift (loss of fitness on the ancestral
host in comparison to the new host). Moreover, this host range expansion could
be one of the main drivers of its invasion success. In this study, we investigated the
fitness response of populations of C. zealandica from native and exotic flora, to sev-
eral feeding treatments comprising its main exotic host plant as well as one of its
ancestral hosts. Our results suggest that our initial hypothesis was incorrect and that
C. zealandica populations occurring in exotic pastures have experienced a host-shift
rather than simply a host-range expansion. This finding suggests that an exotic plant
introduction can facilitate the evolution of a distinct native host-race, a phenomenon
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community (Ding ¢» Blossey, 2009), sometimes the introduction of exotic plants can be
taken as an opportunity by native species to expand and flourish outside of their native
habitat. This can occur via the process of host range expansion (Mack et al., 2000) and
ultimately of host-shift, sometimes referred in the literature as host-switching (Agosta,
2006) or host-transference (Holder, 1990). Agosta (2006) defines a host-shift as the
continuation of a host range expansion whereby a population of a phytophagous species
forms an association with a novel host plant. In addition, Diegisser et al. (2009) specitied
that, in this process, the population which would have undergone the host-shift might
not be able to use its new and its ancestral host simultaneously, which can be detected by
a host-plant associated fitness trade-offs on the ancestral host (Via, 1990; Diegisser et al.,
2009). In contrast, host-range expansions do not result in such fitness compromises,
allowing the population to use both its new and ancestral hosts (Diegisser et al., 2009)
without generating detrimental fitness response effect(s). We believe that these types of
response are likely to be observed in native insects that sometimes reach the status of
‘pest’ or ‘invasive species’ on introduced plants.

In the last few years, Valéry et al. (2008a), Valéry et al. (2008b), Valéry et al. (2009),
Valéry, Fritz & Lefeuvre (2013) debated the terminology relative to ‘biological invasion’
and demonstrated that it should not be solely confined to allochthonous species. For
insects alone, and with more than 60 native species that have become notable for the
economic damage that they cause (Scott, 1984), New Zealand is a perfect illustration of
this assertion. In this country, the larval form of the native scarab Costelytra zealandica
(White) (Coleoptera: Scarabaeidae) is certainly one of the most notorious local pests that
attack numerous exotic plants (Given, 1966; East ¢ Pottinger, 1984; Scott, 1984; Grimont
et al., 1988; Richards et al., 1997), among which are several European-style pastoral plants
such as clover and ryegrass. Despite this apparent luxuriant success on exotic hosts, this
species still occurs widely within its native habitat, which is mainly composed of local
fescue and tussock species. The present study aims to investigate whether the rise of C.
zealandica as a native biological invader was driven simply by a host range expansion
rather than by a complete host shift. The fitness response of two populations of C.
zealandica was investigated through survivorship and weight increase of third instar
larvae the longest and final larval stage in this species, under several feeding treatments
comprising an exotic host plant as well as one of its ancestral hosts.

MATERIAL AND METHODS

Insect sampling and plant culture

Two collection sites were selected, both in the South Island of New Zealand. In February
2012, young third instar larvae of the univoltine scarab C. zealandica were sampled at
Hororata (43°32'17”S 171°57’16”E) and Cass (43°02'10”S 171°45'40"E), labeled as sites
A and B respectively. Site A comprised typical European-style pastoral plant species
dominated by exotic ryegrass and clover. In contrast, site B was essentially composed of
New Zealand native tussock and fescue plant species.
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All collected larvae were initially placed individually in ice tray compartments with a
small piece of carrot as food and maintained at 15°C for four days to test for the presence
of amber disease, the most common disease in this species (Jackson, Huger ¢ Glare,
1993). Subsequently, healthy larvae were identified to the species level based on Hoy ¢
Given’s 1952 description of the genus and on the morphology of their raster (Lefort et al.,
2013). For a few specimens for which morphological identification was difficult, a rapid
diagnostic confirmation was made using a non-invasive molecular sampling method
based on the use of frass as a source of DNA (Lefort et al., 2012). All larvae were then
randomly assigned to the various experimental treatments.

The introduced white clover (Trifolium repens) was used as an exotic host to rear and
feed the larvae of C. zealandica. It was grown from seeds (PGG Wrightson Seeds Ltd,
Christchurch, NZ) in a glasshouse in 200 ml of potting mix comprising 60% peat and
40% sterilized pumice stones. Young plants of the native Poa cita (silver tussock) were
purchased from Trees for Canterbury (Christchurch, NZ) and used as ancestral native
host. Each plant was carefully transferred from its original pot to a 200 ml pot, filled with
potting mix comprising 60% peat and 40% sterilized pumice stones, and was allowed to
grow for two months in a glasshouse.

Native versus exotic hosts and artificial host-shift experiment
Following identification, C. zealandica larvae (n = 180) were weighted and placed in
individual 35 ml plastic containers containing 50 g of gamma-irradiated soil
(Schering-Plough Animal Health, Wellington, NZ). Containers were randomly allocated
to three trays so as to create 10 blocks, where the larvae were ordered from the lowest to
the highest weight on the trays to allow the detection of confounding factors effects. Each
container was randomly assigned to a feeding treatment. Feed trials were performed at
15°C over a period of 12 weeks corresponding to the most intense feeding period of the
third instar larval stage in C. zealandica. Larvae were fed ad libitum with freshly chopped
roots of the selected host plant. They were either fed with clover or tussock for 12 weeks
respectively for treatments 1 (T1) and 2 (T2), or with tussock for 7 weeks followed by a
shift of 5 weeks on clover for treatment 3 (T3).

The fitness response of the larvae was evaluated by measuring survivorship and
percentage increase in weight on a weekly basis. Statistical tests were conducted with R
software (R Development Core Team, 2009) and GenStat® (GenStat 14, VSN
International Ltd, UK).

Statistical analyses on the effect of each host plants (T1 and T2) and of the artificial
host shift (T3) on larval survival were carried out using a Chi-squared test. The treatment
effect (T1, T2 and T3) on larval growth was analyzed by analysis of covariance
(ANCOVA), with the larvae initial weight used as a covariate. The latter analysis was
performed after exclusion of larvae that died before the end of the 14 weeks of data
collection.
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Figure 1 Larval survival of two populations of Costelytra zealandica during 12 weeks of feeding treat-
ment with tussock, clover or with a combination of the two plants. Kaplan Meier plot of survival during
the 12 weeks of feeding treatment. Right: final survival after 12 weeks. Population A (dark colored bars)
was collected from exotic pastures and population B (light colored bars) was collected from New Zealand
native grasslands. All pairwise comparisons were performed using chi-squared tests after 12 weeks of
treatment. Only significant differences are indicated on the figure (p < 0.001x % s and p < 0.01::).

RESULTS

Larval survival

Death events occurred regularly over the 12 weeks of treatment in each treatment and for
both populations studied (Fig. 1). After 12 weeks, the larvae collected from exotic
pastures (population A) displayed significantly better survival rates when fed with the
exotic host plant (T2, 86% survival) as opposed to their native host (T1, 20% survival)
(x? = 86.6364,d.f. = 1, p < 0.001) (Fig. 1). Similarly, these larvae survived significantly
better when fed with a combination of native followed by exotic host plants (T3, 56%
survival) than when fed with their native host only (T1) ( x> =1269118,d.f =1,

p < 0.001).

In contrast, no significant survival differences were detected for the larvae collected
from native grasslands (population B) across all treatments (Fig. 1) (Chi-squared tests
respectively T1/T3 y2 = 3.1765,d.f. = 1, p = 0.074 71, and T2/T3 2 = 0.8985,

d.f. =1,p=0.3432).

Lefort et al. (2014), PeerdJ, 10.7717/peerj.262 4/11



PeerJ

—a—Population A
100 | —&—Population B
90 native tussock exotic clover
80 ‘
70
60
50
40 -
30

cumulative weight gain in %

20 1

10

1 2 3 4 5 6 7 8 9 10 11 12 weeks

Figure 2 Cumulative weight gain of two populations of Costelytra zealandica larvae following
12 weeks of artificial host-shift feeding treatment, where larvae were fed for 7 weeks on tussock and
5 weeks on clover. Population A (dark grey line) (n = 17) was collected from exotic pastures and popu-
lation B (light grey line) (n = 24) from New Zealand native grasslands. Vertical bars represent 5% LSDs
(Least Significant Difference) at the end of each week of treatment.

Larval growth

When the larvae were exposed to the artificial host-shift feeding treatment (T3), and fed
with native tussock during the first phase of the experiment, no differences in terms of
weight gain were detectable between the two populations studied (Fig. 2). However, this
trend changed considerably after the host-shift that occurred in week 7. Larvae belonging
to the population collected from exotic pastures (population A) quickly increased weight
by over 40% during the second phase of treatment that lasted for 5 weeks, which was
significantly more than population B larvae that only increased their weight by about
16.5% (Fig. 2).

It appeared that population A responded much better to the exotic host feeding as
shown by the rapid increase in weight just after the host-shift in T3, and also by an overall
weight gain close to 60% for the larvae submitted to T1 (Fig. 3). In contrast, when
population A was kept feeding on native tussock for 12 weeks (T2), larvae lost a
significant amount of weight (Fig. 3). From week 8 onward, the differences resulting
between this treatment (T2) and the exotic based treatments (T1 and T3) were highly
significant (all weeks, ANCOVA, p values < 0.001) (Fig. 3).

DISCUSSION

An important challenge for ecologists and evolutionary biologists is to investigate the
various contributing factors to biological invasions. Among these are the processes by
which some species reach the status of invaders in their home range. The present study
aimed to address the identification and investigation of such drivers in C. zealandica. Our
results recorded the existence of strong intra-specific variations in fitness of this species.
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Figure 3 Cumulative weight gain of Costelytra zealandica larvae collected from exotic pasture fol-
lowing 12 weeks of feeding treatment on various host plants. The native tussock feeding treatment
(T1) appears in dark grey (n = 6), the clover feeding treatment (T2) in light grey (n = 26) and the arti-
ficial host-shift feeding treatment (T3) in medium grey (n = 17). Vertical bars represent 5% LSDs (Least
Significant Difference) at the end of each week of treatment.

These variations were expressed as important differences in survivorship and weight
increase when different larval populations, recovered from different host plants and
regions, were exposed to their ancestral native or exotic host plants.

An overall high fitness performance was observed on clover, expressed as high
survivorship and high larval weight increase, by C. zealandica collected from exotic
pastures. As discussed elsewhere, such results may reflect some sort of inheritance and
maternal effect (Mousseau & Dingle, 1991; Mousseau ¢» Fox, 1998), where the offspring of
a given population is expected to display high fitness performances (Fox, 2006) and
similar host preferences as their parents (Craig, Horner ¢» Itami, 2001). However, for this
particular species, neither inheritance traits or maternal effect, nor an alternative
explanation such as the high nutritional value of clover (Awmack ¢ Leather, 2002), can
explain the observed increased performances of the larvae (Lefort, 2013). Nevertheless, it
is quite likely that intrinsic mechanisms relying on high degrees of phenotypic plasticity,
such as variation in host tolerances (Agrawal, 2000; Kant et al., 2008) rapid adaptation
(i.e., evolutionary host-shift) (Holder, 1990; Menken ¢ Roessingh, 1998; Agosta, 2006) or
ecological fitting sensus Agosta (2006) (i.e., ecological host-shift), might be partially or
totally responsible for the high fitness performance observed in C. zealandica collected
from exotic pastures and fed on clover. Agosta (2006) defined the term ecological
host-shift as a process that occurs through that of a host range expansion, whereby an
organism is able to use new resources at the moment of contact because of a latent ability
that results in a novel association of species, and where consequently evolution by either
member of the association shall not be a prerequisite. Because all the larvae of
C. zealandica, regardless of their origin, displayed high survival rates when fed with
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clover as a ‘new’ host, this latter explanation appears appropriate. Furthermore, Holder
(1990) suggested that this type of association often arises because of the physical
proximity of the ancestral and the new host-plant species, a scenario that followed the
European settlement in New Zealand, when numerous native forests and grasslands were
replaced by exotic pastures and crops (McDowall, 1994; Lee, Allen & Tompkins, 2006).
Effectively, this pattern of early settlement modification of the New Zealand landscape
resulted in new ecological configurations where native grasslands ended up neighboring
exotic cultures and grass pastures. It is believed that this physical proximity has resulted
in the contraction of native plant distribution ranges and in the exploitation of these new
modified habitats by native species (Yeates, 1991), as possibly observed in C. zealandica as
an ecological host-shift.

Another tangible explanation for the exploitation of both native and newly exotic host
plants by C. zealandica could be that this species has not yet undergone a host shift but
only a host-range expansion onto exotic pastoral plants. This explanation is likely because
of the close relationship that exists between this process and that of an ecological
host-shift, and where, in both cases, no significant adaptation to the newly encountered
exotic host is required (Diegisser et al., 2009; Agosta, Janz & Brooks, 2010). However, the
differences in fitness performances between the two populations of C. zealandica, which
were observed following the ancestral host feeding treatment, refute this possibility and
suggest another explanation. The larvae originating from exotic pastures seem no longer
able to properly benefit from their ancestral host, as shown by very high mortality rates
and low weight increase of the surviving larvae of this population. This fitness
compromise, which is expressed as a host-plant associated fitness trade-off (Via, 1990;
Diegisser et al., 2009) resulting in some degree of maladaptation to the ancestral host
plant of this species, is not compatible with the solely host range expansion theory and
reinforces that of a host-shift occurrence (Diegisser et al., 2009) for the population
originating from exotic pastures.

Even though the ecological host-shift theory appears to conform to this case study, the
slight variation in terms of weight gain between the two populations, following the
artificial host-shift on clover suggests that some level of evolutionary change has occurred
for the population collected from exotic pastures. Heard ¢ Kitts (2012) suggested that
host-shifts can be followed by host-associated differentiations that can result in the
evolution of new biotypes of specialist races, or so-called host-races (Diehl ¢» Bush, 1984;
Drés ¢ Mallet, 2002). Over the last decades, numerous examples of host-race formation
in insects have been described. Amongst the most recent examples, Downey ¢ Nice
(2011) reported the possibility of ongoing host-race formation in the juniper hairstreak
butterfly (Callophrys gryneus), following the observation of differential larval fitness
performances when reared on natal versus alternate hosts. More recently, Bourguet et al.
(2014) suggested ecological speciation as a possible evolutionary scenario leading to
reproductive isolation between the Asian and the European corn borers in the genus
Ostrinia (Lepidoptera, Crambidae). Using molecular tools, they concluded that the
process by which these borers became agricultural pests could have lead to the emergence
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of these two distinct species from one ancestral species. The results of the present study
strongly suggest a similar scenario, where an ecological host-shift in at least one
population of C. zealandica would have led to the emergence of distinct host-races in this
species. Hence, it is likely that the invasive C. zealandica might solely represent a
particular biotype. Any phenotypic plasticity that initially facilitated the assumed
host-shift and host-race formation, could, in the long term, lead to speciation (e.g.,
West-Eberhard, 1989; Agrawal, 2000; Agosta, 2006; Heard ¢ Kitts, 2012) in this insect.
Furthermore, these findings point to a very interesting case of sympatric host races
formation facilitated by exotic plant introductions, and resulting in the rise of a
phytophagous insect to the rank of invasive species in its own native range.

To summarise, this study has shown evidences of (1) host-shift initiation by host range
expansion in C. zealandica, upon contact with exotic host plant, given the ability of the
populations of C. zealandica recovered from native grasslands to perform well on exotic
host plant, followed by (2) host-shift completion in the population collected from exotic
pastures, where some level of evolutionary change have prevailed in populations feeding
on an exotic host plants, until the ability to effectively use the native host has been lost
and have resulted in (3) the formation of distinct host-races in C. zealandica.
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