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Background: Next-generation sequencing (NGS) technologies have profoundly impacted biology over
recent years. Experimental protocols, such as PhotoActivatable Ribonucleoside-enhanced Cross-Linking
and ImmunoPrecipitation (PAR-CLIP), which identifies protein–RNA interactions on a genome-wide scale,
commonly employ deep sequencing. With PAR-CLIP, the incorporation of photoactivatable nucleosides
into nascent transcripts leads to high rates of specific nucleotide conversions during reverse
transcription.

Methods: We show that differences in the error profiles of PAR-CLIP reads relative to regular
transcriptome sequencing reads (RNA-Seq) make a distinct processing advantageous. We describe a set
of freely available tools for this purpose, which are called the PAR-CLIP Analyzer suite (PARA-suite). The
PARA-suite includes error model inference, PAR-CLIP read simulation, a full read alignment pipeline with a
modified Burrows-Wheeler Aligner (BWA) algorithm, and CLIP read clustering.

Results: We examined the alignment accuracy of commonly applied read aligners on 10 simulated PAR-
CLIP datasets using different parameter settings and identified the most accurate setup among those
read aligners. Our processing pipeline allowed improvement of both alignment and binding site detection
accuracy. We demonstrate the performance of the PARA-suite in conjunction with different binding site
detection algorithms on several real PAR-CLIP and HITS-CLIP datasets.

Availability: The PARA-suite toolkit and the PARA-suite aligner are available at
https://github.com/akloetgen/PARA-suite and https://github.com/akloetgen/PARA-suite_aligner,
respectively, under the GNU GPLv3 license.
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23 Abstract
24

25 Background: Next-generation sequencing (NGS) technologies have profoundly impacted 

26 biology over recent years. Experimental protocols, such as PhotoActivatable Ribonucleoside-

27 enhanced Cross-Linking and ImmunoPrecipitation (PAR-CLIP), which identifies protein–RNA 

28 interactions on a genome-wide scale, commonly employ deep sequencing. With PAR-CLIP, the 

29 incorporation of photoactivatable nucleosides into nascent transcripts leads to high rates of 

30 specific nucleotide conversions during reverse transcription.

31 Methods: We show that differences in the error profiles of PAR-CLIP reads relative to regular 

32 transcriptome sequencing reads (RNA-Seq) make a distinct processing advantageous. We 

33 describe a set of freely available tools for this purpose, which are called the PAR-CLIP Analyzer 

34 suite (PARA-suite). The PARA-suite includes error model inference, PAR-CLIP read simulation 

35 based on PAR-CLIP specific properties, a full read alignment pipeline with a modified Burrows-

36 Wheeler Aligner (BWA) algorithm and CLIP read clustering for binding site detection.

37 Results: We examined the alignment accuracy of commonly applied read aligners on 10 

38 simulated PAR-CLIP datasets using different parameter settings and identified the most accurate 

39 setup among those read aligners. Our processing pipeline allowed improvement of both 

40 alignment and binding site detection accuracy. We demonstrate the performance of the PARA-

41 suite in conjunction with different binding site detection algorithms on several real PAR-CLIP 

42 and HITS-CLIP datasets.

43 Availability: The PARA-suite toolkit and the PARA-suite aligner are available at 

44 https://github.com/akloetgen/PARA-suite and https://github.com/akloetgen/PARA-suite_aligner, 

45 respectively, under the GNU GPLv3 license.

46

47

48
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49 Background
50

51 RNAs play a crucial role in cell survival and viability. Coding messenger RNAs (mRNAs), 

52 which are translated into proteins, and many other RNA species, such as small and long non-

53 coding RNAs, ribosomal RNAs and transfer RNAs, are essential for the survival and proper 

54 functioning of the cells §Eddy, 2001 #310°. Most RNAs maintain their function by working 

55 together with the so-called RNA-binding proteins (RBPs) (Glisovic, Bachorik et al. 2008). RBPs 

56 are virtually involved in all steps of the mRNA lifecycle, from polyadenylation, translocation 

57 and modification to translation (Hieronymus and Silver 2004). Thus, it is not surprising that 

58 many RBPs which show aberrant functions or changes in expression patterns have been 

59 associated with disease progression or even with carcinogenesis (Lukong, Chang et al. 2008). 

60 For instance, the FET protein family, consisting of the three RBPs FUS, EWSR1 and TAF15, is 

61 ubiquitously expressed and widely conserved in mammals. Genomic rearrangements, leading to 

62 mutant forms of these RBPs in humans, have been described as key players in sarcomas and 

63 leukemia (Tan and Manley 2009). More recently, two amyotrophic lateral sclerosis causing 

64 mutants of FUS have shown different RNA-binding patterns compared to the wild-type 

65 counterpart, supporting the importance of the function of FUS in mRNA processing (Hoell, 

66 Larsson et al. 2011).

67

68 Experimental protocols have been developed to analyze the functional network within a 

69 particular RBP interacts. A promising method for this purpose is the PhotoActivatable 

70 Ribonucleoside-enhanced Cross-Linking and ImmunoPrecipitation (PAR-CLIP) technique 

71 (Hafner, Landthaler et al. 2010). When coupled to deep sequencing, it identifies the bound RNAs 

72 for a particular RBP on a genome-wide scale. First, the cells are supplied with a specific 

73 photoactivatable nucleoside, such as 4-thiouridine (4-SU), which is incorporated as an alternative 

74 to the respective nucleoside into nascent mRNA transcripts. Afterwards, the cells are treated with 

75 ultraviolet (UV) light at 365 nm to cross-link the amino acids of RBPs to the nucleotides of their 

76 bound RNA molecules. The incorporation of 4-SU instead of uridine results in nucleotide 

77 conversions from uridine to cytidine at all cross-linked sites containing a 4-SU during reverse 

78 transcription (a necessary step for preparing cDNA libraries for sequencing). This specific 

79 replacement is also called a ‘T–C conversion’. T–C conversions can be used to distinguish 
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80 between unspecifically bound RNA fragments (considered as contaminations) and those that are 

81 specifically bound and cross-linked to the RBP of interest (Ascano, Hafner et al. 2012, 

82 Golumbeanu, Mohammadi et al. 2015). We recently published a detailed protocol for the PAR-

83 CLIP procedure (Hoell, Hafner et al. 2014). Other CLIP protocols for the genome-wide 

84 identification of RBP targets are also frequently used, such as the High-Throughput Sequencing 

85 of RNAs isolated by Cross-Linking and ImmunoPrecipitation (HITS-CLIP, sometimes also 

86 called CLIP-seq) or the iCLIP protocol (Chi, Zang et al. 2009, König, Zarnack et al. 2010). 

87 HITS-CLIP mainly introduces deletions of a single base at the cross-linked sites, while single 

88 nucleotide conversions do not seem to occur at a significant frequency (Zhang and Darnell 2011, 

89 Sugimoto, König et al. 2012).

90

91 Current sequencing platforms allow sequencing of mammalian transcriptome libraries with a 

92 high coverage. Nowadays, the most commonly used NGS platforms are 454, Illumina, 

93 IonTorrent or PacBio  (van Dijk, Auger et al. 2014). Depending on the sequencing platform and 

94 the sample type, sequencing errors vary in type and frequency. The errors that most commonly 

95 occur are substitution errors and indels of a few bases between the sequencing read and the 

96 reference template (large rearrangements, such as those leading to chimeras, are also possible 

97 errors but are not discussed here) (Laehnemann, Borkhardt et al. 2015). In an RNA-Seq dataset a 

98 single transcript will be covered by sequencing reads in all its expressed coding exons (apart 

99 from, for example, amplification errors or alternative splicing variants). For common sequencing 

100 data types, such as RNA-Seq and DNA-Seq, designated read aligners were recently developed. 

101 These include short read aligners, such as BWA (Li and Durbin 2009) or Bowtie (Langmead, 

102 Trapnell et al. 2009), and read aligners such as TopHat (Trapnell, Pachter et al. 2009), STAR 

103 (Dobin, Davis et al. 2013) or Subjunc (Liao, Smyth et al. 2013), which can also handle longer 

104 sequencing reads spanning exon-exon junctions. Specific software for the evaluation and 

105 analysis of the PAR- and HITS-CLIP sequencing data is needed to accommodate their unique 

106 error profiles (Kloetgen, Münch et al. 2015). For instance, the read aligner BWA PSSM 

107 (Kerpedjiev, Frellsen et al. 2014) makes use of a predefined position specific scoring matrix to 

108 process the error-prone PAR-CLIP reads. 

109 In general, sequencing error profiles of RNA-Seq datasets, including PAR-CLIP data, can vary 

110 between different sequencing runs, depending on the sequencing machine, experimental 
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111 conditions or the biological properties of the sample (Laehnemann, Borkhardt et al. 2015, 

112 Schirmer, Ijaz et al. 2015). Here, we describe the PAR-CLIP Analyzer suite (PARA-suite), 

113 which includes a PAR-CLIP read simulator, an error estimation tool for CLIP datasets and an 

114 alignment pipeline based on a novel alignment algorithm performing on the fly data-set specific 

115 error estimation.  The alignment pipeline thus automatically adjusts to the quality and error 

116 profiles of individual sequencing datasets. We compared PAR-CLIP sequencing reads to regular 

117 transcriptome sequencing reads (RNA-Seq) to identify distinctive properties relevant for the 

118 reference-based read alignment and RBP binding site detection from PAR-CLIP datasets. 

119 Generation of simulated PAR-CLIP datasets can be performed with the PAR-CLIP read 

120 simulator. The PARA-suite toolkit is available at https://github.com/akloetgen/PARA-suite and 

121 https://github.com/akloetgen/PARA-suite_aligner, implemented as an extension of BWA. It is 

122 licensed under GNU GPLv3 and implemented in the programming languages Java and C. 

123 Methods

124 2.1 Datasets and read aligners
125

126 We downloaded PAR-CLIP data of the FET family from DRASearch database 

127 (https://trace.ddbj.nig.ac.jp/DRASearch/) with accession number SRA025082 (Hoell, Larsson et 

128 al. 2011), HuR dataset with accession number SRR248532, MOV10 dataset with accession 

129 number SRR490650 and HITS-CLIP data on the Argonaute protein (Chi, Zang et al. 2009) from 

130 http://ago.rockefeller.edu/. For estimating the error profiles of regular RNA-Seq runs, we 

131 downloaded two sequencing lanes with the accession numbers SRR896663 and SRR896664 of 

132 an NGS quality assessment study (SEQC/MAQC-III-Consortium 2014) from DRASearch and 

133 pooled the data.

134 We used the following read aligners and versions, shown in alphabetic order: Bowtie, version 

135 0.12.7 (Langmead, Trapnell et al. 2009), Bowtie2, version 2.2.3 (Langmead and Salzberg 2012), 

136 BWA, version 0.7.8 (Li and Durbin 2009), BWA PSSM, initial release version (Kerpedjiev, 

137 Frellsen et al. 2014), MOSAIK, version 2.2.3 (Lee, Stromberg et al. 2014), STAR, version 2.3.0 

138 (Dobin, Davis et al. 2013), Subjunc, version 1.4.2 (Liao, Smyth et al. 2013) and TopHat, version 

139 2.0.13 (Trapnell, Pachter et al. 2009).

140
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141 2.2 PAR-CLIP read simulator and hierarchical clustering
142

143 We developed a PAR-CLIP read simulator (Figure 1) that creates short RNA reads which mimic 

144 important PAR-CLIP specific properties (Section 3.1). First, the following probability 

145 distributions are obtained from real PAR-CLIP data: (a) a probability matrix ε representing the 

146 background error profile of sequencing errors, (b) a probability vector of T–C conversion 

147 frequencies α for ranked T–C conversion sites, (c) a probability vector β for preferred read 

148 positions of T–C conversion sites within binding sites, (d) a probability vector µ for indel 

149 frequencies per read position and (e) a probability vector δ for the base calling quality score 

150 distribution per read position. The probability matrix ε contains a probability distribution for 

151 each DNA base over the DNA bases {A, C, G, T}. For this purpose, a PAR-CLIP dataset is 

152 aligned against a reference genome sequence with an appropriate read aligner.

153
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154

155 Figure 1: Pipeline of the PAR-CLIP read simulator implemented in the PARA-suite. Part A 

156 describes the generation of the error profile and further parameters learned from a real PAR-

157 CLIP dataset. Part B starts to generate reads mapping to RBP binding sites (clusters) on 

158 transcript regions from a given transcript database (e.g. Ensembl genes). In part C, the pre-

159 calculated profiles are used to introduce T–C conversions, sequencing errors, indels and base 

160 calling quality scores to the defined reads.

161

162 Based on these alignments, the sequencing error profile ε, excluding PAR-CLIP specific T–C 

163 conversions, is estimated from the observed frequencies of all single nucleotide substitutions, 

164 except for T–C errors. Standard T–C sequencing errors are approximated by the average over all 

165 the other sequencing error frequencies.  The probability vectors µ and δ are also inferred from 

166 these alignments. Next, all aligned reads of the real dataset are clustered (stacked) using single-

167 linkage hierarchical clustering based on their genomic mapping positions, using 5 bases overlap 

168 of the genomic mapping positions as the clustering threshold. To identify high confidence 

169 clusters (sometimes referred to as binding sites) as defined in literature (Hafner, Landthaler et al. 

170 2010), clusters which contain less than 10 reads, less than 25% T–C conversions per cluster, are 

171 longer than 75 bases and include only T–C conversion sites reported as single nucleotide 

172 polymorphisms (SNP) loci in the dbSNP database (version 142) (Sherry, Ward et al. 2001) are 

173 discarded. This implementation of hierarchical clustering is part of the PARA-suite and will later 
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174 on also be used for binding site detection. For the subsequent simulation, the positions and 

175 frequencies of highly mutated T–C sites within reads are determined to estimate α and β from the 

176 high confidence clusters (Figure S1A-B). 

177

178 Next, the PAR-CLIP read simulation starts with the random selection of transcripts from a pre-

179 selected database of annotated transcripts. One to at most three clusters (number of clusters 

180 randomly chosen from a uniform distribution) containing several reads are created for a selected 

181 transcript sequence. The starting positions of the clusters are randomly selected from a uniform 

182 distribution within the entire range of a transcript. The number of reads simulated for a single 

183 cluster is drawn from a normal distribution with a mean of 16 and standard deviation of 10. This 

184 enables the simulation of a wide range of read coverages throughout the clusters. Furthermore, 

185 small shifts of the start and end site of each read leading to the distinctive alignment position 

186 shifts in the shape of a cluster are randomly introduced at this step (normal distribution with s.d. 

187 1). A user-defined parameter λ ∈ [0,1] specifies the fraction of clusters that are considered 

188 binding-sites, while the remaining clusters mimic contaminations of unbound RNAs which occur 

189 in all PAR-CLIP experiments. We recommend values in the range of 0.5–0.7 (50–70%), as we 

190 observed this range of aligned sequencing reads stacking into clusters after hierarchical 

191 clustering and filtering (Table S1; similar values were previously reported by (Ascano, Hafner et 

192 al. 2012)). If more than one T–C site is simulated for a single cluster, a major T–C conversion 

193 site is selected according to the site-specific T–C conversion profile β and T–C conversion 

194 probabilities are drawn from α. Subsequently, background sequencing errors are introduced 

195 based on the pre-computed probability matrix ε and frequency vector µ for substitutions and 

196 indels, respectively. In the last step, every base receives a base calling quality score, as specified 

197 by the position-specific quality score distribution δ. All generated reads are stored in the 

198 universal FASTQ format (Cock, Fields et al. 2010). The PAR-CLIP read simulator is available 

199 through the PARA-suite.

200

201 2.3 The PARA-suite – tools for error profile inference, read simulation, multiple 
202 database mapping and more
203
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204 The PARA-suite is a toolkit for processing and aligning short and error-prone sequencing reads. 

205 It is implemented in Java using HTSjdk, a Java API for high-throughput sequencing data formats 

206 (https://github.com/samtools/htsjdk). The PARA-suite allows the user to estimate a sequencing 

207 run-specific error profile, combine the results of multiple reference database alignments, cluster 

208 an aligned sequencing read dataset (Section 2.2), run the PAR-CLIP read simulator, benchmark 

209 an alignment of simulated PAR-CLIP sequencing reads and run a full processing pipeline for 

210 error-prone short read alignment (Figure 2A). The alignment pipeline of the PARA-suite 

211 includes the calculation of an error profile for a particular sequencing run, applying the 

212 alignment algorithm described in the following section, and optionally combines the results of 

213 read mappings against multiple databases (Figure 2B–D). First, a read alignment against a 

214 reference sequence is performed with a fast short read aligner. Per default, this is done with 

215 BWA, as our evaluations demonstrated it to be a fast and accurate aligner (Section 3.3) on PAR-

216 CLIP reads. However, other read aligners can also be used to produce the reference-based read 

217 alignment. This initial read alignment is used to estimate the underlying mismatch and indel 

218 probabilities M, I and D (as described in the next section) of the sequencing run. Once the error 

219 profile has been estimated, all sequencing reads can be aligned with the PARA-suite aligner 

220 (Section 2.4) against the reference sequence(s). All aligned reads are reported in a BAM file.

221
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222

223 Figure 2: The PARA-suite. (A) The PARA-suite. Dashed boxes show packages while the other 

224 ones are executable programs. The Utils package includes tools for working with error-prone 

225 sequencing data and the postprocessing package contains a tool for clustering an aligned PAR-

226 CLIP dataset to identify RBP-bound genomic regions. (B) Read alignment by a fast read aligner 

227 is necessary to infer the error profile for a particular read dataset (we selected BWA). (C) The 

228 PARA-suite aligner is applied to the entire dataset to map error-prone reads, indicated here by 

229 the additional mapping of the two blue reads. (D) An optional alignment versus a transcriptome 

230 reference database can be executed using the PARA-suite aligner to identify previously 

231 unmapped reads.

232

233
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234 2.4 Algorithm of the PARA-suite aligner
235

236 The general BWA algorithm uses a Burrows-Wheeler transform (Burrows and Wheeler 1994) to 

237 create an index for a reference genome sequence and applies a backward search to identify 

238 possible mapping positions in the genome for every single sequencing read. The backward 

239 search starts with the last base of a read proceeding to its front, searching the partly 

240 decompressed suffix trie - using the auxiliary Ferragina and Manzini (FM) index (Ferragina and 

241 Manzini 2000) - for a matching predecessor base of the bases of the read sequence compared so 

242 far. Even if a match can be found for a single comparison, mismatches are introduced and all 

243 possible downstream paths within the suffix trie are considered, until a pre-defined threshold of 

244 maximal mismatches is exceeded in a single path (Figure 3, red dotted line). 

245

246

247 Figure 3: Suffix trie paths for BWA and PARA-suite. Paths of the algorithms through the 

248 suffix trie aligning the read sequence GCCATG$ against the reference sequence GTTATG$ 

249 (where $ means the end of a sequence). The red dotted line represents the algorithm of the BWA 

250 aligner, allowing for two mismatches, and the blue dashed line indicates the PARA-suite 

251 algorithm. The underlined bases represent positions where the respective aligner introduces a 
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252 mismatch. The example shows that the PARA-suite needs 14 comparisons while BWA needs 16 

253 comparisons. Therefore, the PARA-suite is slightly faster than BWA at finding the same match 

254 represented by the red/blue circle (left path). Indels are not shown for simplicity.

255

256 The principle idea of the PARA-suite aligner is the introduction of a probability estimate for 

257 each comparison of the backward search. This enables weighting mismatches according to their 

258 probabilities they occur in the analyzed dataset. A sequencing run is initially characterized 

259 according to its underlying error probabilities. This allows to determine specific error-profiles for 

260 experimental techniques, such as the frequent T–C conversions in PAR-CLIP data, that are more 

261 common than sequencing errors. The error profile M is a 4 × 4 probability matrix specifying 

262 substitution probabilities values ∈ [0..1] for each reference base ∈ {A, C, G, T} to read bases {A, 

263 C, G, T} (Figure 4A). Indels are introduced during the alignment step separately, using estimated 

264 probabilities I ∈ [0,1] for insertions and D ∈ [0,1] for deletions. 

265

266 For each comparison between a read base read[i] at read position i and a reference base ref[j] at 

267 position j in the reference sequence, the algorithm recursively calculates a joint probability value 

268 p, to examine the chance of incorporating a matching base or a suitable error, including indels at 

269 the respective read positions (Figure 4D):

270 𝑝𝑖 = { 𝑝𝑖 + 1 ∙ 𝐷,  
𝑝𝑖 + 1 ∙ 𝐼,  

𝑝𝑖 + 1 ∙ 𝑀(𝑟𝑒𝑎𝑑[𝑖], 𝑟𝑒𝑓[𝑗]),  � 𝑖𝑓 𝑟𝑒𝑓[𝑗] 𝑖𝑠 𝑑𝑒𝑙𝑒𝑡𝑒𝑑
𝑖𝑓 𝑟𝑒𝑎𝑑[𝑖] 𝑖𝑠 𝑖𝑛𝑠𝑒𝑟𝑡𝑒𝑑

𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

271 with p|read| = 1, starting with i = |read| - 1 and decreasing i at each step, except in the case of a 

272 deletion, where i ≥ 0.

273

274 Before the alignment of a particular read starts, a minimal threshold T for the probability p is 

275 necessary, to decide whether a reads is accepted as aligned or rejected. The calculation for T is 

276 dependent on a parameter X for the average number of mismatches. Note that this is not a 

277 maximal threshold in terms of absolute mismatches, as the number of the more frequent errors 

278 per aligned read can exceed X. The parameter X can be pre-defined by the user or as a default is 

279 estimated as the expected number of mismatches for different read lengths based on the error 

280 profile M for a sequencing run. Next, the minimal threshold T is computed (Figure 4B&C):
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281

282 𝑇 = 𝑎𝑣𝑔(match)|𝑟𝑒𝑎𝑑| ‒ 𝑋 ∙ 𝑎𝑣𝑔(mismatch)𝑋

283

284 where  and 𝑎𝑣𝑔(match) =
1
5[∑

𝑖 ∈ {0..3}𝑀𝑖,𝑖 + (1 ‒ (𝐼 + 𝐷))]
285 . 𝑎𝑣𝑔(mismatch) =

1
14 [∑

𝑖,𝑗 ∈ {0..3};𝑖 ≠ 𝑗𝑀𝑖,𝑗 + 𝐼 + 𝐷]
286

287 Both avg(match) and avg(mismatch) are normalized by the number of elements (four matches 

288 plus one for no “indel” occurring, and 12 mismatches plus 2 for either a insertion or a deletion). 

289 If p falls below the pre-calculated threshold T during read alignment, the path within the suffix 

290 trie is assumed not to match the read and is rejected (Figure 3, blue dashed line). The algorithm 

291 thus penalizes rare types of mismatches according to M, while frequent errors, such as T–C 

292 errors in PAR-CLIP reads, are the most favored substitutions in the alignment process (Figure 

293 4B–D).

294
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295

296

297 Figure 4: The PARA-suite aligner approach. (A) The error profile probability matrix M and 

298 indel probabilities I and D, which are used as input for the PARA-suite alignment algorithm, as 

299 well as some results of the intermediate calculations of the PARA-suite alignment algorithm. In 

300 M, only T–C conversions have a higher probability (6.3%) compared to sequencing error and 

301 indel probabilities. (B) The last characters of a particular read and three example mapping 

302 positions within a reference, called ref a–c. (C) The calculation of a maximum threshold T for the 

303 mapping probability p (see formula in main text, and values from A in this image). (D) The 

304 mapping probability calculation of the read when mapping to the references a–c. The read fails to 

305 map against ref b with two sequencing errors, while reference a and c are suitable mapping 

306 positions, where the probability p is higher than the threshold T. For implementation, we worked 

307 with the open-source read aligner BWA, version 0.7.8, to extend its algorithm for the alignment 

308 of short and error-prone reads.
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309 Results

310 3.1 Properties of PAR-CLIP reads
311

312 To assess the most important properties of the PAR-CLIP sequencing reads for read alignment, 

313 we systematically compared PAR-CLIP datasets for the three RBPs EWSR1, FUS and TAF15 

314 (FET protein family) (Hoell, Larsson et al. 2011) to a recently published RNA-Seq run on human 

315 reference RNA (SEQC/MAQC-III-Consortium 2014). The 10 outermost bases of the 

316 SEQC/MAQC reads showed error rates with peaks at 1.5 and 2.2 errors per 100 reads (EPR). In 

317 contrast, the middle read length range showed an average of about 0.3 EPR (Figure S2A, red 

318 line). As the short reads of the FET PAR-CLIP datasets consist only of these outermost bases, 

319 they exhibited a 2–3 times higher average sequencing error rate (about 0.7 EPR or even higher) 

320 than the SEQC/MAQC reads (Figure S2B, green line). When considering the T–C conversions 

321 only, we observed 1.319 EPR for EWSR1, 1.477 EPR for FUS and 1.051 EPR for TAF15 on 

322 average. This is an approximately 20- to 30-fold increase in comparison to the SEQC/MAQC 

323 dataset with 0.051 EPR for T–C conversions on average (Figure S2). Moreover, we analyzed 

324 data from two further PAR-CLIP studies performed on the RBPs HuR (Mukherjee, Corcoran et 

325 al. 2011) and MOV10 (Sievers, Schlumpf et al. 2012), which showed similar error profiles and 

326 EPRs to the FET PAR-CLIPs for T–C conversions (Figure S3).

327 Further analyses of the PAR-CLIP read datasets for EWSR1, FUS, TAF15, MOV10 and HuR 

328 showed the PAR-CLIP reads (a) to be shorter than 30 bases, (b) to cover only short stretches of 

329 an expressed gene rather than the entire expressed RNA (these stretches are later on called 

330 clusters), (c) to exhibit a specific nucleotide conversion pattern with a strong enrichment of T–C 

331 conversions, where (d) such conversions occur in specific ‘conversion sites’ in the clusters. The 

332 first two properties (a) and (b) arise from the RNAse T1 treatment of the cells or the lysate 

333 during the PAR-CLIP experimental protocol. As only the short RNA fragments which are not 

334 digested by the endonuclease (probably protected by the binding pocket of the RBP) are 

335 sequenced, the lengths of those fragments are usually short. However, the nucleotide 

336 composition of those reads is strongly affected by the digestion enzyme and can vary among 

337 different digestion enzymes (Kishore, Jaskiewicz et al. 2011). After quality trimming and adapter 

338 trimming of the five PAR-CLIP datasets, the reads had a length usually shorter than 30 bases. As 

339 the transcript regions outside of the bound RNA fragment are digested by the endonuclease, 
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340 these are removed during immunoprecipitation and not sequenced, except for additional binding 

341 sites on the same transcript further up- or downstream. Thus, the sequencing reads are stacked 

342 into short clusters covering short stretches of the gene and representing the RBP-bound regions 

343 of the transcripts (Figure S4A). 

344 The two properties (c) and (d) arise from the incorporation of photoactivatable nucleosides into 

345 the nascent transcripts during transcription. In the case of 4-SU, T–C conversions occur in the 

346 sequencing reads at all cross-linked sites, where the 4-SU is incorporated instead of the native 

347 uridine. These conversions can reach high rates in specific conversion sites within a cluster 

348 (Hafner, Landthaler et al. 2010). In the analyzed datasets, we observed an average frequency of 

349 about 70% T–C conversions in the main T–C conversion site (Figure S1A). This emphasizes that 

350 simulated read datasets with specific properties are necessary for the evaluation of common short 

351 read aligners for the analysis of PAR-CLIP read data. However, this cannot be created by 

352 common sequencing read simulators, such as ART (Huang, Li et al. 2012) or GemSIM 

353 (McElroy, Luciani et al. 2012). These produce simulated reads with a continuous coverage over 

354 the entire transcript range and the introduced mutations are distributed randomly throughout the 

355 simulated reads. This is not the case for PAR-CLIP sequencing reads.

356

357 3.2 PAR-CLIP read simulation for performance evaluation
358

359 We simulated a total of 10 PAR-CLIP read datasets based on information learned from three 

360 previously published PAR-CLIP datasets of the FET protein family (Hoell, Larsson et al. 2011) 

361 (Table S2). We imitated Illumina GenomeAnalyzer II sequence data according to the utilized 

362 real datasets. The respective sequencing error and T–C conversion profiles were generated based 

363 on alignments of all three datasets against the human reference genome sequence version 38 

364 (GRCh38) (Lander, Linton et al. 2001). The error profile and additional estimated distributions 

365 are similar to the ones from PAR-CLIP data on the two RBPs HuR and MOV10, indicating that 

366 these profiles represent a reasonable approximation for PAR-CLIP data in general. We selected 

367 human transcript sequences downloaded from Ensembl Genes Version 77 (Cunningham, Amode 

368 et al. 2015) as our sequence database to simulate human transcript read sequences. We set λ, the 

369 parameter for the fraction of sequencing reads stacking into clusters bound by the RBP, to 65%. 

370 Such true RBP binding sites show high T–C conversion frequencies in different T–C conversion 
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371 sites. The remaining 35% of the simulated sequencing reads were designated to represent non-

372 specifically bound transcripts without an elevated T–C conversion rate, except for a few T–C 

373 sequencing errors. These reflect RNA contaminations which can occur during the PAR-CLIP 

374 experiment.

375 To assess the quality of the simulation, we then compared PAR-CLIP-specific properties 

376 between the 10 simulated datasets and the FET PAR-CLIP data. Within a detected cluster of a 

377 simulated dataset, shifts in the alignment positions of a few nucleotides at the beginning and the 

378 end of the simulated cluster could be seen between the reads (Figure S4B). According to the 

379 position-wise T–C conversion profile used, a T–C conversion site with a high conversion rate, as 

380 well as a few sites with lower conversion rates, were usually present in the detected clusters (e.g. 

381 Figure 1B). We compared the error profiles between one of the simulated datasets and the real 

382 datasets, and distinguished between T–C errors and all other errors; the latter represent all 

383 sequencing errors, except for the T–C sequencing errors (Figure S2C). Similar to the real data, 

384 the distribution of the sequencing errors in the simulated dataset peaked at the beginning of the 

385 reads and dropped to a mean error rate of 0.6 EPR in the middle read length range. Error rates 

386 were slightly underestimated in the simulated data compared to real PAR-CLIP data, presumably 

387 because of a small percentage of multiple mutations occurring at individual sites. Apart from 

388 this, the simulated datasets appear to be representative for real PAR-CLIP data in the relevant 

389 aspects. 

390

391 3.3 Accuracy of common read aligners and the PARA-suite on simulated PAR-CLIP 
392 data
393

394 Using the simulated PAR-CLIP datasets, we analyzed the accuracy of state-of-the-art read 

395 aligners and common binding-site detection algorithms and compared these to the PARA-suite 

396 alignment pipeline. The analyzed aligners, BWA and Bowtie, have often been employed in CLIP 

397 studies (Lebedeva, Jens et al. 2011, Ascano, Mukherjee et al. 2012, Sievers, Schlumpf et al. 

398 2012). BWA PSSM was applied with the PSSM for PAR-CLIP provided by its authors, because 

399 a PSSM estimated from the sequencing dataset revealed a worse accuracy (data not shown). 

400 MOSAIK was executed reporting only unique mappings, allowing for up to three mismatches 

401 between the read and the reference sequence and using a Smith-Waterman bandwidth of 5. The 
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402 read aligners were used to align the simulated datasets to the reference sequence GRCh38. We 

403 also executed the PARA-suite on the Ensembl Genes transcriptome database (version 77) and 

404 combined the results with the genomic reference sequence alignments. These results are later 

405 referred to as those of the “PARA-suite pipeline”, while the results of the genomic alignment 

406 step only using the PARA-suite are referred to as those of the “PARA-suite aligner”. For the 

407 PARA-suite aligner, the sequencing error and T–C conversion profiles for the simulated datasets 

408 were obtained based on the BWA alignments allowing for two mismatches (BWA 2MMs) for 

409 each of the simulated datasets separately. For a performance overview, we estimated the average 

410 of the recall, precision and accuracy for every aligner over the 10 simulated datasets (calculation 

411 described in Supplementary Methods). Unfortunately, BMix does not report negative clusters 

412 (contaminations), thus we were not able to calculate the recall nor the accuracy, but only the 

413 precision.

414 In terms of overall performance, the PARA-suite alignment performed best, with an accuracy of 

415 69.74% for the PARA-suite aligner and 73.14% for the entire pipeline, showing performance 

416 gains of 1.57% and 4.97% compared to the second-best aligner (BWA 2MM), respectively 

417 (Table 1, Table S3). Many prominent PAR-CLIP studies have used Bowtie 1MM or BWA 2MM 

418 for the read alignment step (Lebedeva, Jens et al. 2011, Mukherjee, Corcoran et al. 2011, 

419 Ascano, Mukherjee et al. 2012, Sievers, Schlumpf et al. 2012, Mukherjee, Jacobs et al. 2014). 

420 When comparing the PARA-suite alignment pipeline with these two aligners, the PARA-suite 

421 pipeline showed an increase of 16.95% and 4.97% in the overall accuracy, respectively. Notably, 

422 an average of 1.56% reads aligned by the PARA-suite pipeline are spanning an exon–exon 

423 junction, but were not identified by the genomic reference mapping step only, but required 

424 alignment versus the transcriptome reference sequences. Additionally, we compared the recall 

425 (the fraction of correctly aligned reads out of all simulated reads) and the precision (the fraction 

426 of correctly aligned reads out of all aligned reads) to assess the mapping ability of the read 

427 aligners (Table 1, Figure S5). Here, the PARA-suite aligner and pipeline was ranked on places 1 

428 and 3 regarding recall, and places 1 and 2 regarding precision, respectively, out of eight analyzed 

429 alignment scenarios. Hence, the PARA-suite aligner and pipeline offer a notable performance 

430 increase regarding all relevant performance measures in comparison to commonly used 

431 computational analysis setups. 
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432 We then tested the accuracy of the binding site detection algorithms BMix, PARalyzer and the 

433 hierarchical clustering of the PARA-suite using read alignment of the PARA-suite (Table S4). 

434 The hierarchical clustering identified most correct binding sites; 3.26% more correct sites than 

435 BMix and 5.54% more correct binding sites than PARalyzer. However, BMix identified fewer 

436 false binding sites in comparison to the hierarchical clustering (20.30% less), and compared to 

437 PARa lyzer (69.85% less). Furthermore, we investigated whether the PARA-suite alignment 

438 increased the number of detected binding sites, irrespective of the used detection algorithm. In 

439 conjunction with BMix, BWA 2MM (second best aligner) identified 7.17% less correct binding 

440 sites than the PARA-suite aligner. For PARalyzer, BWA 2MM identified 2.97% less than by the 

441 PARA-suite aligner. Finally, the hierarchical clustering identified 7.52% more correct binding 

442 sites for the PARA-suite than for BWA 2MM. Overall, the combination of BMix with the 

443 PARA-suite alignment provided the most accurate results on our simulated data.

444
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445 Table 1: Alignment accuracy on simulated PAR-CLIP data. Most accurate alignment results for 

446 different parameter settings for every read aligner on 10 simulated PAR-CLIP datasets. The results are 

447 averaged per read aligner over all 10 datasets and are sorted by the accuracy.

Aligner Accuracy 

(in %)

Recall 

(in %)

Precision 

(in %)

Mapped 

overall

Mapped 

correctly

Real 

time (s)

Memory 

(GB)

PARA-suite 

pipeline

73.14 84.49 71.85 1,024,792 969,948 396.8 6.27

PARA-suite 69.74 82.16 68.24 975,672 924,802 153.7 4.42

BWA 2MMs 68.17 82.31 64.98 959,171 904,034 359.2 4.42

Bowtie 2MMs 63.38 77.91 60.93 886,512 840,540 120.6 4.46

BWA PSSM 59.80 74.04 58.72 818,895 793,007 25.4 2.26

TopHat 59.69 76.10 55.35 844,902 791,549 282.9 -

Bowtie2 56.22 73.23 51.43 763,893 745,531 13.4 3.32

STAR 50.74 69.57 43.02 826,871 672,920 248.6 28.39

MOSAIK 47.61 66.12 39.24 1,294,747 632,656 9,481.4 194.80

Subjunc 35.42 50.61 26.09 597,400 469,751 64.2 6.65

448

449  3.4 Analysis of FET PAR-CLIP datasets
450

451 To investigate the performance of the PARA-suite on real PAR-CLIP datasets, we applied it to 

452 the three FET PAR-CLIP datasets (Hoell, Larsson et al. 2011). The sequencing reads were 

453 preprocessed similarly to the original publication, and low quality ends and adapter sequences 

454 were trimmed using Cutadapt (Martin 2011). Afterwards, all remaining reads longer than 18 

455 bases were aligned against GRCh38 with BWA 2MMs, BWA PSSM and the PARA-suite aligner 

456 (without the transcriptome mapping step to achieve comparable results). We measured the 

457 fraction of aligned reads for all the aligners on the three datasets (Table S5). The PARA-suite 

458 aligner generated the largest fraction of aligned reads over all three datasets in comparison to 

459 BWA 2MM and BWA PSSM. Next, we stacked (clustered) all aligned reads using BMix and the 

460 hierarchical clustering tool of the PARA-suite (Table 2). BWA 2MM identified fewer binding 

461 sites compared to BWA PSSM or the PARA-suite, for read alignment prior to either BMix or 

462 hierarchical clustering. Using the hierarchical clustering, the PARA-suite reported the largest 

463 number of binding sites for two out of the three datasets. BWA PSSM identified 6.90% more 
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464 clusters than the PARA-suite aligner for the FUS dataset, while the PARA-suite aligner 

465 identified 3.98% more clusters for the EWSR1 dataset and 19.21% more clusters for the TAF15 

466 dataset compared to BWA PSSM. In comparison to the numbers reported in the original 

467 publication, the use of the PARA-suite aligner and hierarchical clustering increased the number 

468 of binding sites by 33.71% for EWSR1, 16.77% for FUS and decreased them by 12.56% for 

469 TAF15. After extracting distinct genes from all binding sites identified by the PARA-suite 

470 (10,631 genes in total), 26.90% additional genes were found for all three RBPs, in comparison to 

471 the original publication (7,771 genes in total). As expected for three RBPs from the same family, 

472 there was a substantial overlap in terms of identified genes, with 2702 genes targeted by all three 

473 RBPs (Figure S6).

474

475 Table 2: Detected binding sites for the FET protein family. Number of binding sites for the 

476 FET protein family identified by the three aligners BWA PSSM, BWA 2MMs and the PARA-

477 suite in combination with the hierarchical clustering of the PARA-suite. Filters were applied 

478 according to Section 2.2.

BWA 
2MM / 
BMix

BWA 
2MM / 
Clustering

BWA 
PSSM / 
BMix

BWA 
PSSM / 
Clustering

PARA-
suite / 
BMix

PARA-
suite / 
Clustering

EWSR1 20,703 22,760 24,639 27,550 25,478 28,692
FUS 14,768 36,861 19,628 51,606 19,006 48,042
TAF15 5,086 5,810 5,238 6,130 5,862 7,588

479

480 3.5 Analysis of PAR-CLIP data on HuR
481

482 We next applied the PARA-suite to a PAR-CLIP dataset on HuR, an RBP promoting RNA 

483 stabilization (Mukherjee, Corcoran et al. 2011). Adapters and low quality ends for the HuR 

484 dataset were trimmed using Cutadapt and reads shorter than 14 bases were discarded. The 

485 binding motif of HuR is well-studied and is AU-rich, with a consensus motif described as 

486 AUUUA, AUUUUA or AUUUUUA (Nabors, Suswam et al. 2003, Lebedeva, Jens et al. 2011), 

487 showing potentially more T–C conversions within each binding site than other RBPs. As the 

488 generated error-profile of the data set was similar to the ones of the FET PAR-CLIP data 

489 (Section 3.1), the data quality seemed comparable. However, we noted a slight increase in T–C 
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490 conversions (Figure S3). The AU-rich binding motif might explain the higher T–C conversion 

491 rate of 1.684 EPR compared to the conversion rate of 1.477 EPR e.g. for FUS. 

492

493 We used the read aligners Bowtie2, Bowtie 2MM, BWA 2MM, BWA PSSM and the PARA-

494 suite to align the pre-processed dataset against the human genome reference GRCh38. Then, we 

495 applied BMix and the hierarchical clustering of the PARA-suite to determine the binding sites of 

496 HuR derived using the different read aligners. BWA PSSM in conjunction with BMix identified 

497 most RBP binding sites within the genome – 3.69% more than the PARA-suite (Table S6). When 

498 comparing the detected binding sites of BMix and the PARA-suite hierarchical clustering for 

499 alignments created by the PARA-suite aligner (binding site positions overlapping by at least 13 

500 bases), the difference was only marginal, with an overlap of more than 98.25% for the two 

501 methods.  A recent study of this dataset reported binding sites using Bowtie 2MM for the 

502 alignment step and PARalyzer for the binding site detection. We found the use of any BWA 

503 PSSM or the PARA-suite alignment in conjunction with either BMix or hierarchical clustering to 

504 increase the number of detected binding sites by 2.87% – 7.84%.

505

506 We searched for the exact binding motifs of HuR (ATTTA, ATTTTA and ATTTTTA) within the 

507 BMix detected binding sites within 3’ UTRs or introns for all tested read aligners. We found that 

508 all aligners performed comparably, with motifs present in 42% to 44% of all detected binding 

509 sites. The largest fraction was achieved using read alignments with BWA PSSM (44.33%), while 

510 the PARA-suite aligner in combination with BMix found 42.53% most likely correct binding 

511 sites. Bowtie 2MM in combination with BMix had the lowest fraction of binding sites containing 

512 the reported binding motif (42.44%). We also compared the previously reported HuR binding 

513 sites to the binding sites determined by the PARA-suite pipeline with BMix for clustering and 

514 detected 13 out of 15 sites; namely 3’ UTR PTGS2, 3’UTR CDKN1A, 3’UTR VEGFA, 3’UTR 

515 TNF, 3’ UTR SLC7A1, 3’UTR CCND1, 3’UTR MYC, 3’ UTR XIAP, 3’UTR CELF1, TTS 

516 CSF2, 3’UTR CCNB1, intron NCL and 3’ UTR KRAS. The binding information for this 

517 comparison was taken from the Ingenuity knowledge base (Calvano, Xiao et al. 2005). The 

518 original study of the HuR dataset (Mukherjee, Corcoran et al. 2011) only reports 12 out of these 

519 15 genes with a confirmed binding site. 

520
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521 Discussion
522

523 We here describe a read simulator to mimic PAR-CLIP datasets with error profiles drawn from 

524 real PAR-CLIP datasets and the PARA-suite pipeline for error-aware read alignment and 

525 processing. Furthermore, we provide a detailed characterization of the error profiles of PAR-

526 CLIP reads and an in depth performance assessment of short read aligners in combination with 

527 binding site detection tools, to identify the most accurate read aligner and parameter settings on 

528 PAR-CLIP reads. Common read simulators such as ART or GemSim do not allow simulating 

529 PAR-CLIP reads with their specific error profiles. We characterized some of the unique 

530 properties of PAR-CLIP sequence datasets that have, to our knowledge, so far not been analyzed, 

531 such as preferred read positions for T–C conversion sites and their frequencies per read position. 

532 We observed higher frequencies of sequencing errors in PAR-CLIP data in comparison to human 

533 reference RNA-Seq data. A likely reason for this behavior could be that PAR-CLIP reads are 

534 much shorter than common RNA-Seq reads, which reach lengths of 200 bases and show high 

535 quality regions in the middle read length range (Laehnemann, Borkhardt et al. 2015, Schirmer, 

536 Ijaz et al. 2015). We used these observations for the design of a PAR-CLIP read simulator that 

537 embeds PAR-CLIP specific information into the simulation process. 

538

539 Based on the simulated PAR-CLIP datasets, we determined parameter settings delivering the 

540 best performance for commonly used aligners (Mukherjee, Corcoran et al. 2011, Ascano, 

541 Mukherjee et al. 2012, Sievers, Schlumpf et al. 2012, Mukherjee, Jacobs et al. 2014). Our 

542 analyses showed the read alignment to be crucial for RBP binding site detection from PAR-CLIP 

543 datasets. The PAR-CLIP specific read properties make it nearly impossible to identify splice 

544 junctions covered by PAR-CLIP reads with RNA-Seq read aligners such as TopHat, STAR or 

545 Subjunc, as their algorithms are based on contrary assumptions, such as a similar read coverage 

546 across all exons or long reads, to achieve high confidence k-mer spectra. Accordingly, these 

547 three aligners were outperformed by other methods (Table S3–4). In addition, recent studies have 

548 shown that BWT based aligners have less sensitivity in regions with genomic variation (Gontarz, 

549 Berger et al. 2013). Interestingly, MOSAIK, an error-aware aligner based on hash queries that 

550 was shown to be more robust on RNA-Seq reads than BWT based aligners (Lee, Stromberg et al. 

551 2014), was also outperformed by most other tested methods. Although it is robust on longer 

PeerJ Comput. Sci. reviewing PDF | (CS-2016:05:10695:0:0:NEW 23 May 2016)

Manuscript to be reviewedComputer Science



552 RNA-Seq reads, it seems to struggle with the very short PAR-CLIP reads. The PARA-suite 

553 alignment pipeline allowed to increase the fraction of aligned reads in comparison to other 

554 aligners, including alignment of reads spanning exon-exon junctions, both for PAR-CLIP 

555 datasets and data from a HITS-CLIP study (Supplementary Results). We observed this 

556 improvement irrespective of the applied downstream binding site detection algorithm. Different 

557 from the error-aware short read aligner BWA PSSM, our short read alignment algorithm does 

558 not need the manual input of an error profile, which is instead inferred de novo within individual 

559 sequencing runs. The aligner thus automatically adapts to varying qualities of individual (PAR-

560 )CLIP sequencing runs and is specifically adjusted to each sequence dataset. To our knowledge, 

561 it is the first tool for simultaneous de novo error model inference and short read alignment with 

562 the BWA algorithm. Another difference to the BWA PSSM algorithm is that the latter introduces 

563 mismatches under consideration of the base calling quality scores and a probabilistic background 

564 model for matching bases in addition to the input error profile. In contrast, the generic error 

565 profile estimation of the PARA-suite is not limited to any specific input profile. Further 

566 applications of our software could thus be the analysis of other types of error-prone sequencing 

567 data such as bisulphite sequencing data, which introduces a high amount of C–T mutations 

568 (Frommer, McDonald et al. 1992) or data from low-quality ancient DNA samples (Briggs, 

569 Stenzel et al. 2007).

570

571 Our analysis of combinations of read aligners and binding site detection algorithms on simulated 

572 and real datasets indicate that no single software performed best in terms of binding site 

573 detection on the available PAR-CLIP datasets. This observation was recently also made on 

574 further datasets (Kassuhn, Ohler et al. 2016). Our analysis of the HuR and FUS datasets revealed 

575 that U-rich binding sites tended to show higher rates of T–C conversions per read and were best 

576 aligned by BWA PSSM. RBPs with a more heterogeneous nucleotide distribution (e.g. EWSR1 

577 and TAF15) within the binding site are better assessed by the PARA-suite aligner. This is 

578 supported by an analysis of uridylate-rich sequences from our simulated data aligned by BWA 

579 PSSM and the PARA-suite (Supplementary Results and Supplementary Table 7). Thus, a 

580 preliminary analysis of the error profile using the PARA-suite error profiler could allow 

581 determining the best approach for analyzing sequencing data of a novel, yet uncharacterized 

582 RBP.
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