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Abstract: Although it has been traditionally accepted that Arenaria balearica25

(Caryophyllaceae) could be a relict Tertiary plant species, this has never been tested.26

Nor have the palaeohistorical reasons underlying the highly fragmented distribution of27

the species in the Western Mediterranean region been investigated. We have analysed28

AFLP data (213) and plastid DNA sequences (226) from a total of 250 plants from 2929

populations sampled throughout the entire distribution range of the species in Majorca,30

Corsica, Sardinia, and the Tuscan Archipelago. The AFLP data analyses indicate very31

low geographic structure and population differentiation. Based on plastid DNA data, six32

alternative phylogeographic hypotheses were tested using Approximate Bayesian33

Computation (ABC). These analyses revealed ancient area fragmentation as the most34

probable scenario, which is in accordance with the star-like topology of the parsimony35

network that suggests a pattern of long term survival and subsequent in situ36

differentiation. Overall low levels of genetic diversity and plastid DNA variation were37

found, reflecting evolutionary stasis of a species preserved in locally long-term stable38

habitats.39

40

41

42

43

44

45

46

47

Deleted: experimentally48

Deleted: disjunct49

Deleted: cpDNA50
Deleted: 5351
Deleted: 22252

Deleted: Our results point to a Messinian origin of53
A. balearica and suggest that its present distribution54
is not directly related to the splitting of the55
Hercynian Massif.56
Deleted: The57

Deleted: based on cpDNA data58
Deleted: radiative evolution and implies that all59
haplotypes were derived probably60
Deleted: and many of them as recently as during61
the Pleistocene from a single ancient ancestor. The62
nested clade phylogeographic analysis performed63
identifies restricted gene flow with isolation by64
distance as the main historical process affecting the65
genetic structure.66
Deleted: cpDNA67
Deleted: Our data shed light on the complex68
phylogeographic patterns within the Western69
Mediterranean region.70

Deleted: Key words: AFLPs - Arenaria – island71
evolution – Messinian - phylogeography -72
chloroplast DNA - Mediterranean. ¶73



3

1. Introduction74

Within the Mediterranean global biodiversity hotspot, the Tyrrhenian Islands represent75

ca. 22% of the total surface, and include a high percentage of endemic taxa (ca. 10-20%;76

Contandriopolous, 1990; Médail & Quézel, 1997; Bacchetta & Pontecorvo, 2005;77

Cañadas et al., 2014). Some of these endemic plant species show narrow distributions78

(Médail & Quézel, 1999; Thompson, 2005; Fenu et al., 2010; Bacchetta, Fenu &79

Mattana, 2012), but others are distributed in the major Western Mediterranean islands.80

Some endemic plant species shared by Corsica, Sardinia, and the Balearic Islands have81

been designated “Hercynian endemics” (Mansion et al., 2008) and are often considered82

palaeoendemic in the broad sense of the term (i.e., ancient or relict taxa often83

systematically isolated, Favarger & Contandriopolous, 1961; Greuter, 1995; Quézel,84

1995). The present distribution of such Hercynian endemic species has been attributed85

to the Oligocenic connections among the Western Mediterranean islands (Greuter,86

1995; Quézel, 1995; Thompson, 2005), but this has not been tested in all cases.87

Additionally, the term “palaeoendemic” has been restricted in concept (Thompson,88

2005) to include only clearly ancient isolated species in large genera (or monotypic89

genera) that usually show little variability. There are some endemic species showing90

distribution patterns that seem to be concordant with the geological history of the91

Western Mediterranean continental fragments, which have been commonly considered92

palaeoendemics. But, as it has not been yet demonstrated that they are of ancient origin93

and do not seem to be highly isolated within large genera, they do not fit into the94

restrictive concept of palaeoendemism proposed by Thompson (2005). These species95

are referred to as disjunct endemics and Arenaria balearica L( Caryophyllaceae) is a96

good example.97
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The Mediterranean region has been affected by dramatic palaeogeographical events and103

by considerable climatic changes during the Neogene (Kadereit & Comes, 2005),104

which have influenced the structure and composition of the flora, determined plant105

species distributions, and influenced intraspecific genetic variability of species over the106

past few million years (Thompson, 2005; Médail & Diadema, 2009).107

Like most Western Mediterranean islands, Corsica, Sardinia, and Majorca are of the108

continental type and have been separated from each other by tectonic and glacio-eustatic109

processes (Alvarez, 1972; Alvarez, Cocozza & Wezel, 1974; Rosenbaum, Lister &110

Duboz, 2002; Mansion et al., 2008; Mayol et al., 2012). The progressive, post-111

Oligocene fragmentation of land masses previously constituting part of the Hercynian112

belt has been described elsewhere (Alvarez, 1972; Alvarez et al., 1974; Rosenbaum et113

al., 2002; Speranza et al., 2002; Meulenkamp & Sissingh, 2003; Mansion et al., 2008;114

Salvo et al., 2010).115

The Tuscan Archipelago consists of seven small islands and several islets of different116

geological origins, which are also tectonic fragments that were once integrated within117

the Hercynian massif (Salvo et al., 2010). The granitic basement of Montecristo appears118

also to be partly a result of the volcanic activity displayed in the area over the past 10119

Ma, giving rise as well to other volcanic islands in the region, such as Capraia120

(Carmignani & Lazzarotto, 2004).121

With the closure of the Strait of Gibraltar (ca. 5.59 Ma; Hsü, 1972; Garcia-Castellanos122

et al., 2009) the Messinian Salinity Crisis of the Late Miocene was initiated and some123

connections were established between North Africa, Corsica, Sardinia, and continental124

Europe, as well as between the Balearic Islands and Iberia; however, no evidence of125

direct terrestrial corridors between Corsica or Sardinia and Balearic Islands have been126

documented (Alvarez, 1972; Alvarez et al., 1974; Rosenbaum et al., 2002; Mansion et127
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al., 2008; Salvo et al., 2010). During the Messinian, the Tuscan Archipelago may have139

connected Corsica, Sardinia, and the Italian Peninsula. The cycles of desiccation and140

transgression of the Mediterranean Sea in this period enabled interchanges of lineages141

that predated the Messinian Salinity Crisis in all these territories (e.g. Salvo et al., 2010;142

Molins et al., 2011). The subsequent reopening of the Strait of Gibraltar (ca. 5.33 Ma;143

Krijgsman et al., 1999; Garcia-Castellanos et al., 2009) caused partial extinction and144

isolation of previously connected populations and seems to have promoted vicariant145

speciation and population divergence at least in some cases (e.g. Quercus ilex L. in146

Lumaret et al., 2002; Anchusa crispa Viv. in Quilichini, Debussche & Thompson, 2004;147

Borago L. in Selvi, Coppi & Bigazzi, 2006; Abies spp. in Terrab et al., 2007; Anchusa148

L. in Bacchetta et al., 2008; Anchusa L. in Coppi, Mengoni & Selvi, 2008; Rodríguez-149

Sánchez et al., 2008; Salvo et al., 2008; Cephalaria gr. squamiflora (Sieber) Greuter in150

Rosselló et al., 2009; Bacchetta et al., 2012; Aquilegia L. in Garrido et al., 2012).151

The subsequent establishment of the Mediterranean climate (ca. 3-2 Ma) promoted the152

expansion of xerophytic elements and typically Mediterranean taxa (Suc, 1984;153

Thompson, 2005). Later, the cyclical climatic oscillations of the Pleistocene (ca. 1.8-154

0.01 Ma) also significantly shaped the genetic structure and spatial distribution of the155

biota, leading to population differentiation and eventually to speciation (Hewitt, 1999).156

Particularly, during the Pleistocene glacial maxima, sea level was approximately 120-157

150 m lower than at present (Yokohama et al., 2000; Church et al., 2001; Clark & Mix,158

2002; Lambeck & Purcell, 2005) and the Corsican and Sardinian coastlines were159

directly connected by land bridges (Salvo et al., 2010). These connections facilitated160

exchanges of plant species and have alternatively limited or favoured gene flow161

between populations of species distributed in both islands and probably also among162

them and the Tuscan islets (Figure 1).163
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Several Mediterranean disjunct endemic species show high levels of morphological168

stability despite long-term isolation among populations distributed in different169

continental fragment islands (Molins et al., 2011, 3.2 Ma). The constancy of170

morphological characters over long periods has frequently been related to low171

molecular evolutionary rates, although this may not be completely clear in all cases172

(Casane & Laurenti, 2013). Recently, high levels of plastid DNA (cpDNA) diversity173

have been reported for the Tyrrhenian endemic Thymus herba-barona Loisel. (Molins et174

al., 2011). Also the apparent inconsistency between the fact that the Mediterranean175

region has undergone dramatic geological as well as climatic changes and the long176

persistence of Mediterranean endemic species has been explained as the result of177

reduced and isolated, but particularly stable, habitats (e.g. rocky habitats) suitable for178

species survival, within a sea of unsuitable landscapes (Hampe & Petit, 2005;179

Thompson, 2005; Youssef et al., 2010; Molins et al., 2011; Mayol et al., 2012).180

Although A. balearica has been cited as an example of evolutionary stasis (low levels of181

morphological variation paralleled with low sequence variation) (Molins et al., 2011),182

this has never been demonstrated.183

Arenaria balearica is naturally distributed in Tyrrhenian islands of Majorca, Corsica,184

and Sardinia, including the surrounding minor islands of Tavolara, La Maddalena,185

Caprera, and Asinara, and in two of the main Tuscan Islands, Montecristo and Capraia186

(Diana Corrias, 1981). Most of the populations known from Majorca, Corsica and187

Sardinia are placed on the Hercynian basement of the corresponding island (Alvarez et188

al., 1974; Rosenbaum et al., 2002). The species is an alien plant in some European189

countries, where it is used as an ornamental. Due to its distribution pattern and to the190

fact that the plant usually inhabits plant communities having a notable relict character191

(Bolòs & Molinier, 1958), A. balearica has been traditionally considered to be a192
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Mediterranean paleoendemic in the broad sense of the term (Favarger &230

Contandriopolous, 1961), and a disjunct endemism by Thompson (2005). The plant231

produces small seeds (0.5–0.6 mm) and although it lacks any evident adaptation to long-232

distance dispersal (LDD), such events due to stochastic mechanisms, even human233

mediated (López González, 1990), cannot be a priori ruled out to explain its current234

distribution pattern235

Previous studies on phylogeopraphic patterns of Mediterranean disjunct endemic236

species have focused on examples from the Eastern Mediterranean region (e. g. Affre &237

Thompson, 1997; Widén, 2002; Bittkau & Comes, 2005; Edh, Widén & Ceplitis, 2007),238

as well as from the Western Mediterranean region, including species distributed in239

Majorca and Menorca (e.g., Sales et al., 2001; Molins, Mayol & Roselló, 2009) and240

Corsica and Sardinia (e.g., Falchi, 2009). Molins et al. (2011) have studied T. herba-241

barona, a disjunct endemic that shows a distribution similar to that of A. balearica242

except that the former is not as widespread neither in Majorca (only one population) nor243

in Sardinia as A balearica, and that it is absent from the islets of the Tuscan244

Archipelago.245

Using both sequencing of plastid DNA (cpDNA) regions and amplified fragment length246

polymorphism (AFLP) fingerprinting, this study aims to reconstruct the247

phylogeographic patterns and differentiation of intraspecific lineages within the disjunct248

endemic plant A. balearica. More specifically our objectives are: (1) test to which249

extent the observed distribution of A. balearica is concordant with the geological250

history of the continental fragment islands from the Western Mediterranean region; (2)251

assess how the colonization of the different islands and islets took place and 3) evaluate252

whether the low morphological variation observed among populations of A. balearica253
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located in different islands is in correspondence with overall low levels of genetic264

diversity.265

266

2. Materials and methods267

2.1. Reconstruction of the coastline during the Last Glacial Maximum in the study268

area269

During the Last Glacial Maximum (LGM), ice sheets covered large areas in northern270

latitudes, and global temperatures were significantly lower than today (Yokohama et al.,271

2000). At the LGM, the Earth’s ocean levels were at their lowest point and extensive272

reaches of dry land were exposed along the continents’ coasts. Several analyses have273

substantially narrowed the uncertainties regarding total changes in ice sheets and sea274

level and their proxies, suggesting a net decrease in the eustatic sea level at the LGM275

ranging from 120 to 135 m a.s.l. (Church et al., 2001; Clark & Mix, 2002). The276

reconstruction of coastlines at 21 Ka (kiloyears before present) for the study area277

presented here (Figure 1) is derived from these references.278

To map the past and current shorelines in detail, the present-day topographic and279

bathymetric data covering the area were taken from the ETOPO1, which is a 1 arc-280

minute global relief model of the Earth's surface that integrates land topography and281

ocean bathymetry. This model was built from numerous global and regional data sets,282

and is available in "Bedrock" (base of the ice sheets) versions (NOAA, 2009). Estimates283

of exposed land area at LGM with respect to the present-day are the result of the values284

of the Digital Elevation Model being raised by 120 m.285

286

2.2. Study species287
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Arenaria balearica is an herbaceous perennial delicate plant whose filiform, branched295

stems and small leaves form low, compact ever-green moss-like dense mats,296

preferentially on cool, moist soils in shaded rocky places (comophyte), although it can297

lalso be found also on shady moist slopes, between 0 and 1800 m a.s.l. (Diana Corrias,298

1981; López González, 1990). Although there are no available data on the reproductive299

biology of the species, its slender, short, upright stems that bear white, actinomorphic300

flowers suggest that it is probably partly wind, and partly insect pollinated. Its301

chromosome number is 2n = 18 (Diana Corrias, 1981; López González, 1990).302

Generation times are not known for the species. The available phylogenetic data based303

on the analysis of DNA sequences (Fior & Karis, 2007) indicate that this species is304

closely related to Arenaria bertolonii Fiori, which is distributed primarily in mainland305

Italy (Iamonico, 2013) and Sardinia (Conti et al. 2005). The most recent phylogeny306

published for the genus Arenaria L. (Sadeghian et al., 2015) concluded that. A.307

balearica should be excluded from A. sect. Rotundifoliae McNeill, where the species308

was traditionally included. Unfortunately these authors did not include A. bertolonii in309

the phylogeny and recovered A. balearica in a largely unresolved position (very low310

levels of statistical support).311

312

2.3. Sampling strategy, outgroup selection and monophyly test313

Leaf material from a total of 250 plants from 29 sampling sites including the islands of314

Majorca (9), Corsica (8), Sardinia (9), Tavolara (1), and Montecristo (2), representing315

the entire distribution range of A. balearica, was collected and dried in silica gel (Table316

1 and Figure 1). Each sampling site was geo-referenced with a GPS GARMIN317

GPSMAP 60, and voucher specimens were deposited at the herbaria of the University318
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of Salamanca (SALA), the University of Granada (GDA) in Spain and/or of the322

University of Cagliari (CAG) in Sardinia, Italy.323

The intent was to include a minimum of 10-12 plants per population in the analysis, but324

sometimes the population sizes were small and it was not possible to collect such a325

quantity of well separated (> 5-10 m) individuals. Also further problems were326

encountered in some cases in the DNA extraction and amplification processes (the327

leaves are only 2-4 mm and it was often difficult to get an adequate quantity of DNA).328

In this situation a variable number of 1-16 individuals per sampling site were finally329

used (Table 1).330

Three additional samples from A. bertolonii were selected to be used as outgroup in the331

plastid DNA haplotype analyses. Given the uncertain phylogenetic position of A.332

balearica within the genus according to the most recent data (Sadeghian et al., 2015),333

the selection of this outgroup was based on the results by Fior & Karis (2007).334

Furthermore, the monophyly of the study group was assessed in a parallel study (J.335

Bobo-Pinilla, J. Peñas de Giles & M. M. Martínez-Ortega, unpubl. data) through the336

phylogenetic analysis of nucleotide sequences of the nuclear ribosomal internal337

transcribed spacer (ITS) using 28 samples belonging to A. balearica and several other338

samples from the related species A. funiculata, A. tejedensis, and A. suffruticosa. These339

data further support the sister group relationship between A. balearica and A. bertolonii340

already proposed by Fior & Karis (2007).341

342

2.4. DNA isolation, AFLP amplification, and data analysis343

Total genomic DNA was isolated from crushed dried leaf material (ca. 25 mg)344

following the 2× CTAB (cetyl trimethyl ammonium bromide) protocol (Doyle & Doyle,345

1987) with minor modifications. The quality of the extracted DNA was checked in 1%346

Deleted: of347

Deleted: AFLP348

Deleted: many times349

Deleted: 4350
Comment [r3]: 4-16??

Deleted: plants351

Deleted: cpDNA352
Deleted: The353

Deleted: ¶354

Deleted: ¶355
Deleted: 3356
Deleted: ¶357



11

TAE-agarose gel. A negative control sample was consistently included to test for358

contamination, and five randomly chosen samples were replicated to test for359

reproducibility.360

Given the very small leaf size of A. balearica, it was not always possible to extract361

enough DNA to provide clear and reliable AFLP profiles. Therefore, five populations362

among the 29 initially sampled had to be excluded from the AFLP analysis (Table 1).363

AFLP profiles were finally drawn for 213 individuals following established protocols364

(Vos et al., 1995). An initial screening of selective primers was performed using 26365

primer combinations. The four finally selected primer combinations (fluorescent dye in366

brackets), (6-FAM)EcoRI-ACT/MseI-CAT, (6-FAM)EcoRI-AGA/MseI-CTG,367

(VIC)EcoRI-AAG/MseI-CAT, (VIC)EcoRI-AGG/MseI-CC, were used for the selective368

polymerase chain reaction. These combinations were selected because they generated a369

relatively high number of clearly reproducible bands. A relatively high number of370

alleles per individual is desirable, given that AFLP are dominant markers (Lowe, Harris371

& Ashton, 2004). Samples (3µl) of the fluorescence-labelled selective amplification372

products were combined and separated on a capillary electrophoresis sequencer (ABI373

3730 DNA Analyser; Applied Biosystems; Foster City, CA, USA), with GenScan ROX374

(Applied Biosystems) as an internal size standard.375

Raw AFLP data with amplified fragments from 150 to 500 base pairs (bp) were scored376

and exported as a presence/absence matrix using the software GENEMAPPER 4.0377

(Applied Biosystems). As an initial approach to the global genetic relationships among378

the individuals analysed and possible structure of the data, a Neighbour-Joining (NJ)379

analysis including 1000 bootstrap pseudoreplicates based on a matrix of Nei-Li (Nei &380

Li, 1979) distances was conducted with the software PAUP 4.0b10 (Swofford, 2003). An381

unrooted NeighbourNet was also produced using the program SPLITSTREE 4.12.3.382
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(Huson & Bryant, 2006) and based on Dice’s coefficient, which is suitable for384

multilocus dominant genetic data (Dice, 1945; Lowe et al., 2004; results not shown as385

they are coincident with but less readable than NJ). Additionally, a Principal Coordinate386

Analysis (PCoA) based on a matrix of Dice’s coefficient among individuals was387

performed with NTSYS-pc 2.02 (Rohlf, 2009).388

Population genetic structure was additionally investigated using a Bayesian clustering389

method implemented in STRUCTURE v. 2.3.4 (Pritchard, Stephens & Donnelly, 2000)390

following the approach described by Falush, Stephens & Pritchard (2007) for dominant391

markers. This method uses a Markov chain Monte Carlo simulation approach to group392

samples into an optimal number of K genetic clusters and does not assume an a priori393

assignment of individuals to populations, nor to clusters. Analyses were based on an394

ancestral admixture model with correlated allele frequencies among populations. The395

proportion of membership of each individual and population to the K clusters was396

calculated by performing 20 runs for each K value between 2 and 9 with a run length of397

the Markov chain Monte Carlo of 1 × 106 iterations after a burn-in period of 1 × 106398

iterations, with λ adjusted at 0.4523. The optimal number of K clusters was estimated399

using the ad hoc parameter (ΔK statistic) of Evanno, Regnatus & Goudet (2005), as400

implemented in the online application of Structure Harvester software (v0.63; Earl &401

VonHoldt, 2012).402

Although aware that AFLP-based estimates of the level of genetic variation could be403

biased in this case by low sampling sizes and relative differences in sampling effort,404

Nei’s (1987) gene diversity index was calculated for each population (or sampling site)405

using the R package AFLPDAT (Ehrich, 2006). This package was also used to calculate406

the frequency down-weighted marker values per population or sampling site (DW;407
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Schönswetter & Tribsch, 2005), which is an estimation of the genetic rarity of a408

population.409

To test the comparative historical effects of the main biogeographical barriers, a410

hierarchical analysis of molecular variance (AMOVA) was performed with the software411

ARLEQUIN 3.5.1.2 (Excoffier & Lischer, 2010). For this, genetic variation was412

distributed into portions assignable to differences among predefined geographical413

groups (FCT), among populations within these groups (FSC), and among populations414

across the entire study area (FST) (Turner et al., 2000; Ortiz et al., 2009). Additionally,415

four alternative groupings were tested using AMOVA analysis: the first two tested the416

groups derived from PCoA and NJ analyses, respectively, while the third and fourth417

ones tested two additional geographical groupings [i.e. (Majorca) (Corsica) (Sardinia +418

Tavolara) and (Majorca) (Corsica + Sardinia + Tavolara), respectively].419

420

2.4. Plastid DNA sequencing and data analysis421

Three regions of the plastid DNA were sequenced and haplotype variation was explored422

to complement the information given by the mainly nuclear AFLPs. The plastid regions423

trnLUAA-trnFGAA (Taberlet et al., 1991), psbA-3’trnK-matK and rpS16 (Shaw et al.,424

2005) showed the highest variability among seven surveyed regions (trnQ(UUG)-425

rps16x1, trnL-rpl32F, atpI-atpH, Shaw et al., 2007; rpoB-trnC, trnH-psbA, Shaw et al.,426

2005) and were used to analyse a total of 226 plants from 29 populations (Table 1) of A.427

balearica. PCR conditions and primers for DNA amplification are detailed in Table 2.428

PCR products were visualized on 1% agarose gel and purified using PCR Clean-Up429

with ExoSAP-IT Kit (AFFIMETRIX, Santa Clara, CA, USA) following the430

manufacturer’s instructions. The cleaned amplification products were analysed with a431
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3730 DNA Genetic Analyser capillary sequencer (Applied Biosystems). All sequences437

were deposited in GeneBank (Table 1 PENDING).438

Congruence in the phylogenetic signal of the different plastid DNA regions was tested439

with the partition homogeneity test (ILD; Farris et al., 1995a, b). ILD significance440

values were calculated in TNT v.1.1 (Goloboff, Farris & Nixon, 2003) with the441

INCTST script—kindly provided by the authors of the program—with 1000 replicates.442

The plastid DNA sequences were assembled and edited using GENEIOUS PRO
TM 5.4443

(Drummond et al., 2012) and aligned with CLUSTALW2 2.0.11 (Larkin et al., 2007);444

further adjustments and optimisations were made by visual inspection. Sequences from445

the three regions were concatenated based on the assumption that the plastid forms a446

single linkage group into a single matrix to be analysed, considering also that the ILD447

test did not report significant incongruities among DNA regions. Gaps448

(insertions/deletions) were coded as single-step mutations and treated as a fifth449

character state. Mononucleotide repeats of different sizes were excluded given that they450

seem to be prone to homoplasy at large geographic scales (Ingvarsson, Ribstein &451

Taylor, 2003).452

The completeness of haplotype sampling across the range of A. balearica was estimated453

using the Stirling probability distribution. It provides a way to evaluate the assumption454

that all haplotypes have been sampled (Dixon, 2006).455

As an approach to infer the genealogical relationships among haplotypes, an unrooted456

haplotype network was constructed using the statistical parsimony algorithm457

(Templeton, Crandall & Sing, 1992) as implemented in TCS 1.21 (Clement, Posada &458

Crandall, 2000).459

Six competing phylogeographic hypotheses were compared using a coalescent based460

approximate Bayesian computation method (ABD approach), as implemented in461
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DIYABC v2.1 software (Cornuet et al., 2014). DIYABC allows testing the posterior508

probabilities of alternative scenarios involving complex population histories (i.e., any509

combination of population divergences and multifurcations, admixture events,510

population size changes, bottlenecks, etc., even with population samples potentially511

collected at different times and/or with unsampled populations, Cornuet et al., 2014).512

The logistic regression procedure (Fagundes et al., 2007) gives an estimate of the513

occurrence of each scenario among simulated data sets that are closest to the observed514

data. In our case, four different metapopulations (i.e. Majorca, Corsica, NE Sardinia and515

SW Sardinia, correspondingly MAJ, COR, NSA and SSA in Table 1) were considered.516

Due to low sample sizes and considering that only the most widely represented517

haplotype was present, populations 11, 28 and 29 were excluded from this analysis in518

order to avoid increasing exponentially computation times . The distinction between NE519

Sardinia and SW Sardinia (Table 1) was made considering relevant geological aspects,520

particularly the fact that the populations of A. balearica present in the island are located521

exclusively on two different geological units both located on the ancient Hercynian522

basement of the island and mainly separated by Oligocene and Miocene rift basins and523

Plio-Pleistocene basalts (Rosenbaum et al,. 2002). After some initial analysis and taking524

into account the haplotype network, the geographical distribution of the species and525

these geological aspects, six competing phylogeographic scenarios were designed. A list526

of all parameters and prior distributions used to model scenarios is summarized in Table527

3. Prior distributions of the parameters were chosen as a first approach with a large528

interval due to the lack of ancestral information. Parameters were subsequently529

corrected according to values obtained after first tests. Population sizes were set equally530

in all cases; divergence times were taken unrestricted to allow the program to set the531

most likeable value. Uniform Mutation rate was set to [10-9- 10-7]. One million data sets532
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were simulated for each scenario (Cornuet et al., 2008, 2010). The posterior542

probabilities of each one were calculated by performing a polychotomous weighted543

logistic regression on the 1% of simulated data sets closest to the observed data set544

(Cornuet et al., 2008, 2010). The posterior distributions of parameters were evaluated545

under the best scenario using a local linear regression on the 1% closest simulated data546

sets with a logit transformation (Table 3). Bias and precision for the parameters547

estimations were also calculated. Divergence time between groups must be taken548

carefully, due to the lack of information about generation times for the species.549

Confidence in scenario choice has been tested by evaluating Type I and Type II error550

rates (Cornuet et al., 2010).551

552

3. Results553

3.1. Population structure based on AFLP554

The four primer combinations applied to 213 plants representative of the variation of the555

species A. balearica produced a total of 792 reproducible fragments.556

Both the NJ and NeighbourNet diagrams conducted on all individuals revealed a557

relatively weak overall structure of the genetic variation into two main groups: one558

comprised the samples collected in Majorca (“group 1”, represented in green in Figure559

2A; populations 1–3, 5, 7–9; with not significant bootstrap support, BS < 75%) and a560

second poorly supported group (BS < 75%), which clustered together individuals from561

the remaining populations included in this study. Within the second group, three further562

subgroups were found: first, “group 2”, which included samples collected mostly in C563

and S Sardinia (populations 14, 15, 18 and 19); second, “group 3”, which grouped564

populations 10–13, plus 17 from W and NE Sardinia and Tavolara, together with565

populations 23–27 mostly from S Corsica; and third, “group 4”, which included all the566
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individuals from population 16 in C Sardinia. None registered significant BS values (BS579

< 75%).580

Apparently a higher level of overall genetic structure was revealed by the PCoA (Figure581

2B); in this case, the first two axes accounted for 55.31% and 5.33%, respectively, of582

the total variance, although no evident geographic structure was found. Two groups583

were roughly distinguished in the PCoA: the first one grouped populations 1–3, 5, 7–9584

from Majorca with 10, 12, 15, 16, and 19 from Sardinia, while the second contained585

populations 11, 13, 14, 17, and 18 from Sardinia and Tavolara, with 22–27 from586

Corsica. This analysis indicated differentiation to a certain degree of the populations587

from Majorca and Corsica, but not of those from Sardinia or Tavolara. The genetic588

structure revealed by NJ and PCoA did not coincide except for the fact that the589

populations from Majorca were slightly differentiated from the Corso-Sardinian ones.590

Nei’s gene diversity index (Table 1) ranged from 0.09 (populations 8, 1, and 2, all from591

Majorca) to 0.20 (population 27 from Corsica, although this result may be biased due to592

the small sampling size) and DW varied between 4.49 in population 2 and 14.83 in593

population 7, both from Majorca. Overall, the genetically most distinctive and diverse594

populations were found in Corsica, while the populations from Majorca displayed595

generally low diversity and singularity values.596

Bayesian clustering conducted using STRUCTURE estimated K = 4 as the most likely597

number of genetic clusters in A. balearica, with a maximum modal value of ΔK =598

12.414075 (Figure 3). This clustering (Figure 2) showed that all four of these groups599

were represented in the three main islands and also in Tavolara. In summary, Cluster A600

(pink) was dominant in the populations from Majorca and S Sardinia (particularly in601

population 16), was well represented in Tavolara, but its representation was poor in the602

remaining populations, particularly in populations 23, 25, and 26 from Corsica; Cluster603
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B (purple) was also well represented −but consistently in a lower proportion than604

Cluster A− in Majorca (especially in population 5), southern Sardinia (particularly in605

population 16) and Tavolara, but it was present in a very low proportion in the606

remaining populations included in this study; Cluster C (yellow) was very well607

represented in all populations from Corsica, northern Sardinia, and Tavolara, but was608

almost absent from Majorca (completely absent from population 3); and Cluster D609

(orange) was best represented in Corsica, was present also in Tavolara and Sardinia (in610

an almost insignificant proportion in population 16), and had also a low representation611

in Majorca.612

The hierarchical AMOVA (Table 4) showed that the genetic structure in four groups613

detected by NJ (and NeighbourNet, data not shown) [i.e. (populations 1, 2, 3, 5, 7, 8, 9)614

(populations 14, 15, 18, 19, 22) (populations 10–13, 17, 23–27) (population 16)]615

accounted for a comparatively higher amount of the total genetic variance (10.71%),616

among these groups. This amount was similar, although slightly lower, than that617

accounted for among populations within groups (11.41%). In the AMOVA analyses that618

evaluated other groupings the levels of genetic divergence were remarkably low among619

all groups considered and most of the variation was consistently found among620

populations within groups instead of among pre-established groups.621

622

3.2. Plastid DNA variation in Arenaria balearica and geographical distribution of623

haplotypes624

The length of the three plastid DNA regions for 226 individuals ranged between 846625

and 704 bp, and resulted in an alignment of 2291 bp, 17 polymorphisms (12626

substitutions / 5 indels) were detected across the whole dataset, 5 (4 substitutions / 1627

indels), 8 (4 substitutions / 4 indels) and 4 substitutions were detected for the trnLUAA-628
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trnFGAA, psbA-3’trnK-matK and rpS16, respectively. All mutations together defined a644

total of 16 haplotypes (Table 1). The results of the ILD test did not reveal significant645

inconsistencies among the plastid-DNA regions studied. The completeness of haplotype646

sampling estimated using Dixon’s (2006) method was 0.97 (the most likely value of647

haplotypes = 16), suggesting that all haplotypes present in the species had been648

sampled.649

The statistical parsimony algorithm implemented in TCS inferred a 95% parsimony650

network with a maximum limit of four steps and star-like topology (Figure 1). As651

inferred from the networking analysis, A. balearica showed a single major haplotype652

(present in 24 from the 29 populations studied), probably ancestral (haplotype I), which653

occurred in all islands (including Tavolara and Montecristo). In addition, there were 15654

haplotypes, nine haplotypes (II, III, V, VII, X, XI, XII, XIII and XVI) separated one655

step from the ancestral one, haplotypes VI and XIV derived one step from haplotypes V656

and XIII respectively and haplotype XV derived two steps from XIV, two haplotypes657

derived two steps from haplotype I (IV and VIII) and IX derived one step from VIII.658

The most derived haplotypes were endemic to one individual island and usually were659

restricted to single populations (except for haplotype XIV, which was found in two660

populations from Corsica). Apart from haplotype I, only haplotype V was shared by661

populations located in different islands (Corsica and Sardinia). Arenaria bertolonii is662

separated 50 steps from the A. balearica central haplotype. The levels of haplotypic663

variation found in Corsica and Sardinia seems to be in accordance with the high levels664

of overall genetic diversity revealed by AFLP markers.665

666

3.4. DIYABC analysis667
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Scenario 1 (ancestral area fragmentation) was revealed as the most probable. The772

posterior probability of the logistic regression was 75%, while the alternative773

hypotheses (Figure 4) received less than 7%. Scenario 1 type I and type II errors774

resulted to be 21% and 17% respectively. DIYABC software places the fragmentation775

of the four areas 4730 generations ago.776

777

4. Discussion778

4.1. Phylogeography of the relict Arenaria balearica779

Rigorous analysis in phylogeography should be based on the choice of appropriate780

study organisms and focal areas. Several requirements for reliable phylogeographic781

inference should be met, among a sound phylogenetic framework and the absence of782

obvious adaptations for LDD from the organism side, and the availability of good783

historical climatic and geographic data from the focal-area side (Salvo et al., 2010).784

Arenaria balearica and the Western Mediterranean region satisfy these prerequisites.785

One of the most basic questions related with Mediterranean plant populations that still786

remains open is what part of their present genetic diversity is, as generally assumed, due787

to isolation in refugia during the Pleistocene glaciations, and what part can be traced788

back to the Tertiary history of taxa (Magri et al., 2007; Médail & Diadema, 2009).789

Several authors (Thompson, 2005; Donoghue, 2008; Ackerly, 2009) have suggested that790

the filtering of elements from the ancient Tertiary geofloras that spread across the791

Northern Hemisphere during the Tertiary (Wolfe, 1975, 1978) played a crucial role in792

the assembly of the Mediterranean floristic diversity. Thus, traditionally, botanists have793

classified the floristic elements of the Mediterranean region into two main groups,794

depending on whether these were believed to have arisen before or after the795

development of Mediterranean-like climates (Thompson, 2005; Salvo et al., 2010).796
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Arenaria balearica was traditionally considered a Tertiary relict palaeoendemic species801

(Contandriopoulos, 1962) and has been particularly mentioned as a “Hercynian802

palaeoendemic” (Molins et al., 2011). Unfortunately, considering that the plant is803

perennial and that there is no information available on generation times, although we804

have obtained here an estimated divergence time for T1 (Table 3; Fig. 4), our results are805

not conclusive regarding the question on the age and hypothetic ancient origin of the806

species.807

Several hypotheses may explain the presence of A. balearica in Majorca, Corsica, and808

Sardinia, plus minor Tyrrhenian continental fragment islands. This striking distribution809

may suggest that it could be a non-monophyletic lineage, but the phylogenetic analysis810

of ITS (nrDNA) and plastid DNA sequences, which included samples from all the811

Tyrrhenian islands where the species is represented, indicated that the study group is812

clearly monophyletic (J. Bobo-Pinilla, J. Peñas de Giles & M. M. Martínez-Ortega,813

unpubl. data). Additionally, both the careful review of herbarium materials prior to the814

sampling performed within this study, as well as the field observations, indicate very815

low morphological variation among populations (Lorite et al., unpubl. data).816

Both plastid and nuclear markers show the lack of a phylogeographic break among817

populations from different islands. Low levels of genetic structure are repeatedly found818

by the data analyses derived from the anonymous, mostly nuclear, DNA fingerprints819

(i.e. AFLP data; NJ, NNet and PCoA analyses; Figure 2) and by the plastid-DNA data.820

The AMOVA analyses also indicated moderate levels of divergence among populations821

of A. balearica considered as a unique group, which are even lower among the different822

groups tested with AMOVA. These results contrast with the expectation of high823

population or geographical group divergence in species that occur in spatially isolated824

territories, particularly when the species shows limited dispersal abilities (in these825
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situations gene flow tends to be low and especially when population sizes are small, the838

effect of genetic drift is usually high). In the case of A. balearica the moderate levels of839

divergence found may represent remnants of Messinian contacts among the Tyrrhenian840

territories and long-term genetic stasis followed by recent differentiation in different841

stable habitats. Furthermore, the star-like arrangement of plastid DNA haplotypes842

(Figure 1) and DIYABC models suggest a pattern of long term survival and in situ843

differentiation. These results strongly agree with the idea of an ancient haplotype (I)844

widespread throughout the Tyrrhenian islands where the plant is present today, with845

different geographically scattered younger in situ derived haplotypes. In most cases they846

represent endemic local variants that originated in isolation from each other, probably847

due to insularity or geography, on the one hand, and to the scattered availability of848

rupicolous habitats, on the other.849

The Messinian Salinity Crisis, which has been invoked to explain the distribution of850

many plant species in the Western Mediterranean (e.g. Molins et al., 2011), may also be851

invoked in this case, although the existence of Messinian terrestrial connections852

between the Corsica-Sardinia block and the Balearic Islands have never been853

documented (Alvarez, 1972; Alvarez et al., 1974; Rosenbaum et al., 2002). Also,854

although there is no evidence for further post-Messinian terrestrial connections between855

the major Tyrrhenian islands (Alvarez, 1972; Alvarez et al., 1974; Rosenbaum et al.,856

2002), direct land bridges existed during the Pleistocene glacial maxima between857

Corsica and Sardinia that allowed floristic exchanges (Salvo et al., 2010). This is also858

confirmed by the reconstruction of coastline during the LGM performed in this study859

(Figure 1). The slightly exerted small capsules, and very small seeds (López González,860

1990), and the plant’s preference for shaded rocky sites (comophyte) are features that861

probably favoured short-distance dispersal. LDD of A. balearica, appears to be862
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unfeasible during the Messinian when the Mediterranean Basin was a saline desert877

(Hsü, 1972). The fact that the plant lacks adaptations for over-water dispersal suggests878

also that LDD events between Majorca and the other Tyrrhenian islands (Corsica and/or879

Sardinia) were unlikely even during the Quaternary glacial maxima. No random LDD880

event was identified in the analyses performed in this study. Additionally, the star-like881

parsimony network inferred from plastid DNA data compiled (Figure 1) is not882

consistent with a range-expansion model after LDD events, and no evidence was found883

for the existence of such events, either recent or ancient, between Majorca and the other884

Tyrrhenian islands derived from the almost nuclear AFLPs.885

Historical gene flow seems to have existed between Corsican and Sardinian886

populations, as suggested by AFLPs. Both the NJ and PCoA analyses (Figure 2)887

revealed no structuring of the overall genetic variability on a geographical basis. These888

results are also confirmed by the AMOVA analyses, which show that the genetic889

structure in four groups detected by NJ accounts for the comparatively highest amount890

of the total genetic variance, thus supporting the idea that only those populations from891

Majorca are to some extent genetically differentiated from the rest. The Bayesian892

analysis of population structure reveals active historical gene flow and secondary893

contacts between Corsican and Sardinian populations (Figure 2C). Particularly, clusters894

B and D are well represented on both islands but almost absent from Majorca (Figure895

2C) and the levels of admixture of these clusters tend to be higher among the896

populations located in southern Corsica and northern Sardinia (Figure 2C). All these897

facts agree with the hypothesis of recurrent connections between Corsica and Sardinia898

in Miocene and Plio-Pleistocene times (Messinian Salinity Crisis: Gover, Meijer &899

Krijgsman, 2009; Pleistocene glaciations: Lambeck et al., 2004; Lambeck & Purcell,900

2005), which facilitated active exchanges of biota, as demonstrated for other organisms901
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(Zachos et al., 2003; Salvi et al., 2010; Fritz, Corti & Päckert, 2012). By contrast, the903

plastid DNA data do not indicate significant post-Messinian floristic exchanges among904

Corsica, Sardinia, and the Tuscan Archipelago (only one haplotype is shared between905

Corsica and Sardinia), as proposed for other plant groups (e.g. Quilichini et al., 2004;906

Salvo et al., 2008; Zecca et al., 2011), a conclusion which may be biased by the fact that907

we were not able to establish good AFLP profiles for the plants collected in Montecristo908

and further highlights the importance of including anonymous hypervariable nuclear909

markers in phylogeographic studies.910

911

4.2. Evolutionary stasis and habitat stability in Mediterranean disjunct endemic912

taxa913

The low levels of genetic variation found in the maternally inherited plastid DNA (i.e.914

low number both of detected and of missing haplotypes, low variation common to all915

the plastid DNA regions tested, and a maximum limit of four steps from the inferred916

ancestral haplotype were detected in the haplotype network) are consistent with some of917

the criteria that usually characterized palaeoendemic species (at least in the traditional918

broad concept of Favarger & Contandriopolous, 1961). This low variation is usually919

interpreted as a consequence of long processes of adaptation in relative isolation to the920

intrinsic characteristics of the local refuge area (Mansion et al., 2008).921

Molins et al. (2011) have emphasized that several relict endemic species show little or922

no morphological differentiation despite a long history of isolation on small continental923

fragments. Even though A. balearica was specifically cited in that work as an example924

of evolutionary stasis, this had never been demonstrated until now. The low mutation925

rates associated with the plastid genome in A. balearica probably correspond to low926

levels of genetic diversity detected also with AFLPs, thus revealing that stasis in this927
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case agrees with generally low levels of genetic variation. A remarkable lack of941

variation in all plastid DNA markers scored (including intron regions, intergenic942

spacers, and plastid microsatellites) was detected for the Tertiary relict Ramonda943

myconi (L.) Rchb. (Dubreuil, Riba & Mayol, 2008), which concords with previous944

results for other relict species (e.g. Zelkova abelicea (Lam.) Boiss. and Z. sicula Di945

Pasq., Garfì & Quézel by Fineschi et al., 2002; Quercus suber L. by Magri et al., 2007;946

Cephalaria squamiflora (Sieber) Greuter by Rosselló et al., 2009). According to947

Dubreuil et al. (2008), the absence or low variation in the plastid genome could be a948

consequence of strong bottlenecks or genetic drift associated with small effective949

population sizes for maternally inherited markers (Birky, Fuerst & Maruyama, 1989), of950

slow population dynamics (Dubreuil et al., 2008) and/or of slowed sequence evolution951

(Dubreuil et al., 2008; Molins et al., 2011). The latter has been repeatedly associated952

with morphological stasis (Barraclough & Savolainen, 2001; Soltis et al., 2002; Molins953

et al., 2011). Nevertheless, Casane & Laurenti (2013) have recently suggested that,954

although a causal link between low molecular evolutionary rates and morphological955

stasis has been generally assumed, it seems that low intra-specific molecular diversity956

does not imply a low mutation rate, and also those intraspecific levels of molecular957

diversity and morphological divergence rates are under different constraints and are not958

necessarily correlated. As for A. balearica, independent markers suggest low levels of959

intraspecific molecular diversity [i.e. low plastid DNA variation, that seems to parallel960

the low overall genetic variability as revealed by a technique (AFLP) that covers the961

whole genome and also with low ITS sequence variation (J. Bobo-Pinilla, J. Peñas de962

Giles & M. M. Martínez-Ortega, unpubl. data) that covers a small proportion of the963

nuclear DNA], but an explicit correlation between these data and either long-term964
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morphological constancy or slowed mutation rates cannot be established with the968

available data.969

Tertiary relict species have been forced to survive in refugia for long periods of time970

and their present genetic structure may therefore reflect the impact of a combination of971

ancient climatic and geographic changes. The ability to persist and resist overall adverse972

climatic conditions is probably coupled with the availability of relatively stable habitats,973

where intrinsic local properties have buffered the impact of historical climatic changes,974

thus allowing long-time persistence of particular species (Thompson, 2005; Médail &975

Diadema, 2009). The importance of local properties of refugia for survival of Tertiary976

relict taxa has previously been highlighted for other Mediterranean species, such as the977

rupicolous herb R. myconi (Dubreuil et al., 2008). Furthermore, several authors (e.g.978

Thompson, 2005; Peñas, Pérez-García & Mota, 2005; Rosselló et al., 2009; Youssef et979

al., 2010; Mayol et al., 2012) have commented on the long-term stability of rocky980

habitats in the Mediterranean region and their role at warranting species survival based981

on the relatively low incidence of disturbances and interspecific competition and the982

fact that it is probably not fortuitous that many Mediterranean endemic species occur in983

rocky habitats [e.g. Cymbalaria aequitriloba (Viv.) A. Chev., Nananthea perpusilla984

DC., Naufraga balearica Constance & Cannon, Soleirolia soleirolii (Req.) Dandy, etc.].985

Arenaria balearica represents a further example of the importance of rocky sites as986

conservation habitats and as long-term reservoirs of plant diversity within the987

Mediterranean region.988
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The hierarchical nested phylogeographic analysis identified (Table 4) five clades. Clade 1-1 was

made up of haplotypes V and VI from Central Sardinia; clade 1-2 was composed of haplotypes

XI and XII, which were represented in Corsica; clade 1-4 grouped haplotypes IX and X present

in Corsica and Sardinia, and clade 1-5 included the central haplotype I plus other five plastid

variants (II, III, IV, VII and VIII), which were represented in the three major islands. NCPA

identified one clade (1-3) for which the null hypothesis (no geographic structuring of haplotypes)

could not be rejected. No higher-level clades were identified. Additionally, the total cladogram

indicated restricted gene flow and isolation by distance (P<0.005), while the same process was

identified for clade 1-5 (P<0.001). For the remaining clades allopatric fragmentation was

detected, although these results were not statistically significant. Lastly, the estimated scaled

migration rate and divergence time between clades presented very low statistical support. The

estimated divergence time between clades was significant in three cases: (1) the splitting

between haplotypes IX and X, which, according to our data and assuming mutation rates of 1.1–

2.9 × 10–9 nucleotide substitutions per site per year, took place 0.03-0.01 Ma; (2) the divergence

of the Corsican haplotypes IX and X from those in clade 1-5, which was inferred to have

occurred 0.05-0.02 Ma; and (3) divergence between haplotypes V-VI and the rest of the group,

dated 0.11-0.04 Ma. All these divergences took place therefore within the Last Glacial Period

(ca. 0.11-0.012 Ma.) and particularly the splitting between haplotypes IX and X represented in

Corsica and Sardinia probably occurred in the LGM.




