Production of cytotoxic compounds in dedifferentiated cells of *Jatropha curcas* L. (Euphorbiaceae) (#10385)

First submission

Please read the **Important notes** below, and the **Review guidance** on the next page. When ready **submit online**. The manuscript starts on page 3.

Important notes

Editor and deadline

David Day / 20 May 2016

Files 4 Figure file(s)

4 Table file(s)

1 Raw data file(s)

Please visit the overview page to **download and review** the files

not included in this review pdf.

DeclarationsNo notable declarations are present

Please in full read before you begin

How to review

When ready <u>submit your review online</u>. The review form is divided into 5 sections. Please consider these when composing your review:

- 1. BASIC REPORTING
- 2. EXPERIMENTAL DESIGN
- 3. VALIDITY OF THE FINDINGS
- 4. General comments
- 5. Confidential notes to the editor
- You can also annotate this **pdf** and upload it as part of your review

To finish, enter your editorial recommendation (accept, revise or reject) and submit.

BASIC REPORTING

- Clear, unambiguous, professional English language used throughout.
- Intro & background to show context.
 Literature well referenced & relevant.
- Structure conforms to **PeerJ standard**, discipline norm, or improved for clarity.
- Figures are relevant, high quality, well labelled & described.
- Raw data supplied (See <u>PeerJ policy</u>).

EXPERIMENTAL DESIGN

- Original primary research within Scope of the journal.
- Research question well defined, relevant & meaningful. It is stated how research fills an identified knowledge gap.
- Rigorous investigation performed to a high technical & ethical standard.
- Methods described with sufficient detail & information to replicate.

VALIDITY OF THE FINDINGS

- Impact and novelty not assessed.

 Negative/inconclusive results accepted.

 Meaningful replication encouraged where rationale & benefit to literature is clearly stated.
- Data is robust, statistically sound, & controlled.
- Conclusion well stated, linked to original research question & limited to supporting results.
- Speculation is welcome, but should be identified as such.

The above is the editorial criteria summary. To view in full visit https://peerj.com/about/editorial-criteria/

Production of cytotoxic compounds in dedifferentiated cells of Jatropha curcas L. (Euphorbiaceae)

Isidro Ovando-Medina, Leny P. Pérez-Díaz, Sonia Ruiz-González, Miguel Salvador-Figueroa, Marcos E. Urbina-Reyes, Lourdes Adriano-Anaya

This study addresses the *in vitro* culture as an alternative to obtain compounds with cytotoxic activity from the medicinal plant *Jatropha curcas* (Euphorbiaceae). We determined the presence of cytotoxic compounds in both whole plants and dedifferentiated cells. We evaluated the effect of auxin, cytokinins and light on callus formation in cotyledon explants. We found that the most effective combination to induce callus was the auxin 2, 4-D (5 mM) with the cytokinin 6-BAP (2.5 mM), on Murashige-Skoog medium in darkness. We compared the callogenic potential among accessions from different geographic origins, finding that ARR-251107-MFG7 is most prone to form callus. The roots of *J. curcas* grown in field produced a compound chromatographically similar to the cytotoxic diterpene jatrophone. The profile of compounds extracted from the dedifferentiated cells was similar to that of the whole plant, including a relatively abundant stilbene-like compound. This study contributes to the future establishment of protocols to produce anti-cancer compounds from *J. curcas* cultivated in vitro.

1	Production of cytotoxic compounds in dedifferentiated cells of Jatropha curcas L.
2	(Euphorbiaceae)
3	
4	Isidro Ovando, Leny Palma Pérez-Díaz, Sonia Ruiz-González, Miguel Salvador-Figueroa,
5	Marcos Urbina-Reyes y Lourdes Adriano-Anaya*
6	
7	Universidad Autónoma de Chiapas. Centro de Biociencias. Boulevard Príncipe Akishino s/n
8	Colonia Solidaridad 2000. Tapachula, 30798, Chiapas, Mexico,
9	
10	*Author to whom enquiries should be directed: Tel. and Fax +52 +962 6427972; E-mail:
11	maria.adriano@unach.mx
12	
13	
14	
15	
16	
17	
18	
19	

A	ha	tra	۸ŧ
\mathbf{A}	ns	ıгя	C.I

This study addresses the *in vitro* culture as an alternative to obtain compounds with cytotoxic activity from the medicinal plant *Jatropha curcas* (Euphorbiaceae). We determined the presence of cytotoxic compounds in both whole plants and dedifferentiated cells. We evaluated the effect of auxin, cytokinins and light on callus formation in cotyledon explants. We found that the most effective combination to induce callus was the auxin 2, 4-D (5 mM) with the cytokinin 6-BAP (2.5 mM), on Murashige-Skoog medium in darkness. We compared the callogenic potential among accessions from different geographic origins, finding that ARR-251107-MFG7 is most prone to form callus. The roots of *J. curcas* grown in field produced a compound chromatographically similar to the cytotoxic diterpene jatrophone. The profile of compounds extracted from the dedifferentiated cells was similar to that of the whole plant, including a relatively abundant stilbene-like compound. This study contributes to the future establishment of protocols to produce anti-cancer compounds from *J. curcas* cultivated in vitro.

Keywords: Cell culture, diterpenes, Euphorbiaceae, cytotoxic metabolites.

Introduction

42	The search for less toxic and more powerful anti-carcinogenic drugs is based on the fact that
43	current drugs are scarcely selective and highly toxic to normal cells (Mohan et al. 2012). The
44	most promising sources of such molecules are plants, especially those used for herbal medicine
45	(Alonso-Castro et al. 2011). In this sense, <i>Jatropha curcas</i> , a plant native to Mesoamerica and
46	recently rediscovered due to its potential as a source of raw material for biofuels (Salvador-
47	Figueroa et al. 2014); it has been used both in traditional medicine, for the production of soaps,
48	and as a source of energy (oil lamps) by various peoples of Asia, Africa and Mesoamerica
49	(Kumar & Sharma 2008).
50	Furthermore, from the genus <i>Jatropha</i> different compounds with biological activity have been
51	isolated (Devappa et al. 2010). Among them are: jatrophol, a molecule with rodenticide activity
52	(Jing 2005); the curcusones a , b and c , and jatropholone A , with antineoplastic properties
53	(Muangman et al. 2005; Naengchomnong et al. 1986, 1994; Theoduloz et al. 2009); hydroxyl-
54	jatrophone and other diterpenes with antimetastatic activity (Devappa et al. 2011). The methanol
55	extracts of the leaves have anti-metastatic and anti-proliferative activity (Balaji et al. 2009) hat
56	compounds have been isolated from different plant parts in several species of Jatropha, although
57	the concentration is usually low (Goulart et al. 1993). This situation is not unique to this genus,
58	as in other plants bioactive molecules are also found in low concentrations.
59	Given the above, the <i>in vitro</i> culture of dedifferentiated plant cells is an alternative for increasing
60	the concentration of the compounds of interest (Roberts 2007). In this regard, Fett- Neto et al.
61	(1994) obtained 100 times more taxoid in <i>Taxus cuspidata</i> callus than in the field plant.
62	However, in vitro culture does not always improve the concentration of the metabolite of interest
63	(Pletsch & Charlwood 1997), given the difficulties to obtain friable callus, the genetic variations
64	throughout the culture and the formation of cell aggregates (Chattopadhyay et al. 2002).

65 Therefore, the objectives of this study were a) to establish a procedure for obtaining friable and

fast growing calluses, and b) to evaluate the production of cytotoxic compounds in J. curcas 66

dedifferentiated cells. 67

68

69

73

75

76

77

81

83

84

85

86

Materials and methods

70 Biological Materials

Five accessions of *J. curcas* (Table 3) representing the regions of Chiapas (Mexico) were used, 71

from the Biosciences Center (CenBio, initials in Spanish) Jatropha Germplasm Bank of the 72

Autonomous University of Chiapas (Mexico) located in the municipality of Tapachula, Chiapas

(14.4976 N, 92.4774 W, 58 m a.s.l., annual average temperature 30.7 °C, annual average 74

humidity 80 %, average rainfall of 2632.9 mm and andosol-type soil.) For in vitro culture 50

seeds of each of the accessions were collected. For the whole plant phytochemical analysis,

samples of leaf, stem and root of the accession MAP-011107-G8 were used hose samples were

washed with tap water, dried at 60 °C and ground to particle size of 500 μm. 78

79

Production of dedifferentiated tissue

Cotyledons of different J. curcas accessions were used as explants for production of 80

dedifferentiated tissue. In the first phase, the seeds of the accession MAP-011107-G8 were sown

on MS medium (Murashige & Skoog 1962), after disinfection with sodium hypochlorite at 5%, 82

following the procedure described by Soomro & Memon (2007), and kept in 2 d darkness and 2d

in light. After that period, the seeds were cut transversely, the embryo was removed and

cotyledons were sown on a MS medium supplemented with different hormone combinations, and

under different lighting conditions. For this phase, we used a full-randomized design with 32

treatments including a control without hormones, with three replications. Explants were maintained for 20 d, at the end of which the dry weight of callus generated was quantified. Based on the treatment that produced the highest amount of callus, the optimization process was conducted based on the concentration of hormones, using a 6² factorial design, where the factors were the hormones (2, 4-D and BAP) at six levels each, with four replications. In these treatments the dry weight of callus was determined after 30 d of culture. Lastly, cotyledons of all accessions were placed under the best conditions to produce callus; this variable was quantified and compared between accessions.

95 Determination of jatrophone content in field plants

Three grams (\pm 0.1 g) of particles of different plant parts were subjected to extraction by triplicate using refluxing (60 °C, 20 cycles) with 80 mL hexane in Soxhlet equipment. The hexane was evaporated in a rotary evaporator to 50 °C and the yield (extract weight • sample weight!) was calculated. The separation and identification of jatrophone was performed by thin layer chromatography using silica gel 60 plates of 5 x 20 cm (Sigma-Aldrich®, Fluka, Germany) washed with MetOH (Hycel®, Mexico, purity 99.8%) activated at 50 °C for 5 min. For this, the residue obtained as previously described was dissolved in hexane to achieve concentrations of 0.1 g • mL⁻¹. An aliquot (15 μ L) of each of the extracts and of a mixture of jatrophone (10 mM) with jatropholone a and b (4 mM based on jatropholone a dissolved in Hexane: Ethyl Acetate 7:3, kindly provided by Dr. Guillermo Schmeda-Hirschmann of the University of Talca, Chile), were placed individually in the chromoplate lanes. The chromatogram was developed at 28 °C as a mobile phase a mixture of Hexane: Ethyl Acetate 7:3. The compounds were revealed using the procedure reported by Pertino et al. (2007). Under the above conditions the Rf values for

jatrophone and jatropholone a and b mixture were 0.772 and 0.817 (given that isomers are not 109 separated with this eluent mixture), respectively. 110 111 The positive hexanic extracts for jatrophone were subjected to column chromatography packed with silica gel 60 (Merck®, Mexico). The column preparation and elution was performed using 112 the method proposed by Goulart et al. (1993) with flow of 0.6 mL • min⁻¹. The eluate was 113 received in 2 mL fractions and the presence of iatrophone was verified by thin layer 114 chromatography. Fractions where the compound of interest was present were blended, then the 115 solvent was evaporated in an oven at 50 °C and the residue was dissolved in 1 mL methanol (J.T. 116 Baker®, Mexico, purity 99.9%). 117 The solids dissolved in MetOH from the previous phase were analyzed on a gas chromatograph 118 119 (Thermo®, Focus-GC-Milan, Italy), coupled to a mass spectrum (Thermo®, MS DSQ-II). The 120 chromatography was performed at an intermediate polarity column (Thermo®-5ms SQC, Milan, Italy) of 30 m x 0.25 mm, D.I. 0.25 x 0.25 μm using helium as gas carrier. The temperatures in 121 the column of the injector and the ionization chamber used were based on those reported by 122 123 Wang et al. (2009). The standards were analyzed similarly, separately. The chromatographic and spectrometric data were processed by Xcalibur© data system (Version 2.0.7, 2007). The 124 fragmentograms obtained from each of the compounds present in the extracts were compared 125 126 with those stored in the NIST 02© (2005) database. Determining metabolites in dedifferentiated cells 127 128 Of each of the accessions, 2 g of callus (dry weight) were taken and subjected to an extraction and hemi-purification process, following the procedure described for evaluating jatrophone 129 content in field plants. We performed two sequential extractions, the first one with hexane and 130

131	then the residue with ethanol 96 °GL (Goulart et al., 1993). Extracts were analyzed by GC-MS,
32	as described previously

133 Data analysis

The concentrations of jatrophone and jatropholone a and b were obtained based on the areas under the curve of the samples peaks in relation to those of the standards. The concentration of an abundant stilbene-like compound (1) in callus was calculated using the standard of jatrophone as a reference. That a from all assays were subjected to analysis of variance (ANOVA) and comparison of means (Tukey $\alpha \le 0.05$).

139

140

141

Results

Effect of auxins and cytokinins on the production of callus

All hormone treatments induced callus formation in cotyledons of *J. curcas*, accession MAP-011 142 107-G8. In all cases, the callogenesis started on the edge where the cutting was made and then 143 covered the rest of the explant. Table 1 shows the callus induction by the different phytohormone 144 treatments and lighting conditions. It was observed that exogenous phytohormones under any 145 146 lighting condition did not influence the formation of callus, as they were statistically similar to the control $(p \le 0.05)$. The auxin 2,4- dichlorophenoxyacetic acid (2,4-D) presented lower values 147 of callus formation, but its callogenic effect was potentiated by combining it with the cytokinin 148 149 6-benzylaminopurine (BAP), either under light or darkness. Besides this, it was observed that 150 calluses from treatments with light showed signs of differentiation, producing chlorophyll and compacting themselves, while those cultivated in darkness remained undifferentiated and were 151 152 friable (Figure 1).

- To obtain the appropriate callus production, different concentrations of phytohormones 2,4-D and BAP were evaluated under darkness. In the overall analysis of the treatments, the combinations of 2,4-D and BAP at $7.5 + 2 \mu M$ and $5 + 2.5 \mu M$ produced the largest amount of callus, were statistically different from the other treatments, but equal among them (Table 2). Statistically significant differences were found among the amounts of cell callus formed in the five accessions evaluated (Table 3). The ARR-251107-MFG7 accession was superior in its capacity of callogenesis.
- 160 *Cytotoxic compounds in mother plants.*
- The yield of the hexane extracts depended of the type of tissue of the *J. curcas* studied. The 161 highest extract concentration was found in the roots, which had 1.6 - 1.8 times more extract than 162 leaves $(30 \pm 2 \text{ mg extract} \bullet \text{ g dry weight}^{-1})$ and bark $(27.1 \pm 3 \text{ mg extract} \bullet \text{ g dry weight}^{-1})$. 163 Separation by thin layer chromatography of the components in all the hexane extracts showed a 164 compound with Rf similar to jatropholone (0.814), while for jatrophone (Rf = 0.772) only one 165 spot with similar Rf (0.768) was found in the root extract (Figure 2). Separation and analysis by 166 gas chromatography-mass spectrometry of jatrophone positive fractions revealed that the root 167 hexane extract contains, in addition to other compounds, jatrophone and jatropholones a and b 168 (Table 4). Figure 3 shows the chromatogram and mass spectrum of the fraction in which 169 jatrophone was identified. 170
- 171 Production of compounds in dedifferentiated cells
- Although 19 compounds (alkanes, fatty acids, among others) were found under the assayed conditions of gas chromatography- mass spectrometry, no jatrophone or jatropholones were detected in dedifferentiated cells. A major stilbene-like compound (1) was found, which was

- present in all extracts with retention time of 27.21 min (Figure S1) and whose fragmentogram
- showed the following ions and relative abundances: [280 (8), 279 (12), 273 (14), 167 (53), 166
- 177 (14), 165 (19), 163 (62), 150 (52), 149 (32), 148 (40), 147 (32), **145** (**100**), 112 (13), 110 (13),
- 178 101 (7), 83(11), 70 (40), 68 (24), 57 (19), 53 (19)].
- There were no differences (p = 0.635) in the amount of (1) produced by type of callus. It was
- found that this metabolite is dependent on genotype (p = 0.029) as the accession ARR-1251107-
- 181 MFG7 produced almost 30 mg•g callus⁻¹, while the remainder produced less than one milligram.
- 182 Compared to the accumulation in roots of the accession MAP-011107-G8 cultivated in the field
- 183 (1.152 mg• root⁻¹), calluses produced 26 times more stilbene-like compound (1).

185

Discussion

- 186 Although a variety of compounds with cytotoxic activity isolated from *J. curcas* has been
- reported (Misra & Misra 2010; Ravindranath et al. 2004; Van den Berg et al. 1995), our study
- focused on three compounds: jatrophone, jatropholones a and b, which were present, especially
- in the roots. In particular, jatrophone is a diterpene present in the genus *Jatropha*, which had not
- been previously reported in *J. curcas*. Unlike the findings by Goulart et al. (1993), who detected
- 191 jatrophone in *J. elliptica* using hexane as eluent in column chromatography, in this study it was
- 192 detected in fractions where the elution solvent polarity was increased (Hexane: Ethyl Acetate
- 193 6:1).
- 194 Further studies of the extracts are required to corroborate the presence of jatrophone and discard
- 195 the possibility that we are dealing with other terpenoid compounds with similar chemical
- structure. However, comparison of the mass spectrum of the compound detected [312 (14), 297]

(4), **284** (**29**), 216 (36), 202 (33), **187** (**34**), 175 (45), 173 (83), **159** (**100**), 147 (30), 145 (70), 133 197 (30), 130 (45), 119 (30), 107 (35), 105 (56), 91 (32), **79** (**40**), 77 (50), 69 (35)] with that of the 198 jatrophol, a terpenoid with the same molecular weight (Naengchomnong et al. 1994), showed 199 that they have different ionization patterns [312 (100) 297 (11), 281 (43), 253 (34), 240 (37), 225 200 (35)]. Conversely, we emphasize that the compound identified as jatrophone has a ionization 201 202 pattern very similar to that of the standard [312 (15), 297 (6), 241 (67), 189 (66), 187 (34), 175 (31), 173 (43), 160 (75), **159 (100)**, 147 (41), 145 (38), 115 (39), 91 (43), 81 (51), 79 (43), 53 203 (67)] and to that reported by Pertino et al. (2007) for jatrophone. 204 In this work a maximum of 2038 µg of jatrophone • g dry sample-1 was found, which represents 205 22.6 more times the maximum reported for J. gossypiifolia (90 μg•g sample-1; Kupchan et al. 206 207 1976) and 1.4 more times than in *J. isabelli* (1450 μg•g sample⁻¹; dos Santos and Goulart 1999), but 4.9 times less than in *J. elliptica* (10 000 μg•g sample⁻¹; Goulart et al. 1993). The *J. curcas* 208 accession MAP-011107-G8 has a high amount of jatrophone, although it is possible that the 209 vields are affected by the extraction method; Kupchan et al. (1976) performed a purification of 210 jatrophone using liquid-liquid phases, while this extraction was carried out in solid phase. 211 Although these results are promising with respect to other species, it must be remembered that in 212 213 all cases the extraction is performed at the root, which involves waiting for the development of the latter and the complete sacrifice of the plant. 214 In regard to the study of induction for dedifferentiation, it was found that when the exogenous 215 216 phytohormones auxin and cytokinin were at low concentrations did not influence the formation of cell callus. The formation of callus in the control treatment was remarkable (Table 1). The 217 results of this study show that explants of *J. curcas* tend spontaneously to *in vitro* callogenesis, 218 denoting a high endogenous hormone load or high responsiveness of the plant tissues to healing, 219

221

222

223

224

225

226

227

228

229

230

231

232

233

234

235

236

237

238

239

240

241

since callogenesis invariably started at the cutting sites of the explant. In this sense, Sujatha et al. (2005) mention that J. curcas leaf explants develop callus from the cutting margins. In other species, in vitro spontaneous callogenesis has been observed, which has been linked either to high hormone concentrations or to its de novo synthesis. In order to determine the cause of spontaneous callogenesis in J. curcas, studies are needed regarding the dynamics of hormone concentration in intact tissues and in vitro cultured. Although auxin 2,4- D presented the lowest values of callus formation, its effect was potentiated when combined with cytokinin BAP. For this reason wider ranges of concentration of both hormones were explored and found that at higher concentrations (greater than 2.5 µM in the case of auxins and above 2µM in the case of cytokinins) there is an increased production of callus. Similar results were obtained by Kaewpoo & Te- Chato (2009), who evaluated different growth regulators in epicotyl and hypocotyl explants of *J. curcas* finding friable, soft and slightly yellow callus in all treatments with 2,4- D (6.78 x 10 ⁻⁶ M), while compact callus or shoots were obtained with the other auxins evaluated (IBA or NAA). In the present study friable callus induction was observed when using NAA although in lesser amounts, which is consistent with results obtained by Shrivastava & Banerjee (2008) who at assessing concentrations from 2 x 10⁻⁵ M to 5.37 x 10⁻⁶ M of NAA obtained the highest amount of callus at the highest concentration. In the study for optimization of concentrations, it was observed that the largest amount of callus is formed at concentrations of 5 µM and 7.5 µM of 2, 4-D, which are statistically equal (Table 2). However, we suggest the use of the lowest effective concentration, since high concentrations of auxin are almost always detrimental to the production of secondary metabolites (Kim et al. 2007).

In the case of the selection of cytokinins it is advisable to use BAP at 2.5 µM, since when 242 combined with auxin callogenesis is potentiated, which did not occur with other cytokinins. This 243 coincides with the study of Kalidass et al. (2010). They studied the effect of BAP in the 244 production of Catharanthus roseus callus and found that increasing the levels of BAP resulted in 245 higher dry weight of callus. In other studies with explants of J. curcas effective concentrations of 246 247 BAP for callogenesis were found, similar to the findings in the present study (Datta et al. 2007; Rajore & Batra 2007; Wei et al. 2004). 248 In regard to lighting conditions, it was found that it does not influence the amount of callus 249 formed, however, it was significant in the differentiation of callus tissue. Since the long-term 250 objective is obtaining dedifferentiated cell cultures that can be maintained in bioreactors, the 251 condition of darkness is preferable. Paz et al. (2006) mention something similar. They found that 252 under lighting, friable calluses could be conditioned to a vitrification process, which they did not 253 observe in the conditions of darkness. Also, Pletsch & Charlwood (1997) found that the 254 production of jatrophone in cultures in vitro of J. elliptica decreases up to 15 times under 255 continuous lighting. There are other studies which conclude that in the condition of darkness 256 calluses can accumulate more secondary metabolites compared to those grown under light 257 258 (Banthorpe et al. 1986; Mukundan & Hjortso 1991; Yazaki et al. 2001). The purpose of this research was the evaluation of cytotoxic compounds in dedifferentiated cells; 259 however, none of the three compounds in which the study focused was detected in calluses. It is 260 worth noting that jatrophone was found in the mother plant but not in the calluses, probably 261 because of two main reasons: 1) Calluses do not produce jatrophone. Charlwood et al. (1990) 262 point out that common that dedifferentiated cells lack the capacity for synthesizing isoprenoids 263 present in the mother plant and this is related to its disorganized nature; similar results are 264

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

reported in the biosynthesis of heavier terpenes such as steroids (Lui & Staba 1979). Other possibility is that *in vitro* cultures may have the ability to synthesize the compounds produced by the field plant but lack the capacity to accumulate them (Banthorpe et al. 1986). 2) In vitro cultures produce smaller quantities than those detectable by the equipment used (lower than 3 µg • ml⁻¹). In this regard Pletsch & Charlwood (1997) detected minimum amounts of jatrophone (3 ug •g of dry weight⁻¹), which were at the detection limit. Nevertheless, cell calluses accumulated a large amount of the compound (1) in relation to that found in the field plant (26 times more), which deserves further studies for identification and biological activity. In this study, a compound similar to jatrophone in root hexane extracts of J. curcas grown in the field was identified, while the best treatment for callus induction was the addition of 2, 4-D 5 μM, together with BAP 2.5 μM in dark conditions. However, the evaluation of the synergy between 2,4- D and NAA is recommended, as well as the evaluation of BAP in concentrations higher than the ones evaluated in the current optimization. Lastly, when evaluating the possible differences between accessions, ARR-251107-MFG7 turned out to be the one, which produced the greatest amount of callus. In the identification of metabolites in dedifferentiated cells, we could not identify jatrophone, although a stilbene-like compound was found in concentrations 26

282

283

284

285

Reference

times higher than in the plant field.

Alonso-Castro A.J., Villarreal M.L., Salazar-Olivo L.A., Gómez-Sánchez M.,
 Domínguez F. & García-Carranca A. 2011. Mexican medicinal plants used for cancer

- treatment: pharmacological, phytochemical and ethnobotanical studies. J. Ethnopharmacol. **133**: 945-72.
- Arias A. 2002. Biotecnología y Metabolitos secundarios en *Lepidium peruvianum* Chacón. "Maca". Universidad Nacional Mayor de San Marcos. Lima, Perú. Pp 110.
- Bermejo M (2010) Cultivo in vitro de Jatropha curcas para la obtención de curcina.
 Master Thesis. Instituto Politécnico Nacional, México. Pp. 62.
- Balaji R, Rekha N, Deecaraman M, Manikandan L (2009) Antimetastatic and antiproliferative activity of methanolic fraction of *Jatropha curcas* against B16F10 melanoma induced lung metastasis in C57BL/6 mice. Afr. J. Pharm. Pharmacol. 3:547-555.
- Banthorpe DV, Branch SA, Njar VCO, Osborne MG, Watson DG (1986) Ability of plant callus cultures to synthesize and accumulate lower terpenoids. Phytochem. 25:629-636.
- Charlwood BV (1993) Recent advances in the production of aroma compounds in plant culture systems. In: Van Beek TA & Breteler H (eds.): Phytochem. Agric. (pp. 322-345).

 Clarendon Press, Oxford.
- Charlwood BV, Charlwood KA, Molina-Torres J (1990) Accumulation of secondary compounds by organized plant cultures. In: Charlwood BV and Rhodes MJC (eds.):

 Secondary products from plant tissue culture (pp. 167-200). Clarendon Press, Oxford.
- Chattopadhyay S, Farkya S, Srivastava A, Bisaria V (2002) Bioprocess considerations for production of secondary metabolites by plant cell suspension cultures. Biotechnol. Bioproc. Eng. 7:138-149.

- Choi YH, Yoo KP, Kim J (2002) Supercritical fluid extraction and liquid chromatography-electrospray mass analysis of vinblastine from *Catharanthus roseus*.

 Chem. Pharm. Bull. (Tokyo). 50:1294-1296.
- Datta MM, Mukherjee P, Ghosh B, Jha TB (2007) *In vitro* clonal propagation of biodiesel plant (*Jatropha curcas* L.). Curr. Sci. India. 12:1438-1442.
- De la Rosa C (2009) Micorriza arbuscular y estrés abiótico en el contenido de alcaloides (vinblastina y vincristina) de *Catharanthus roseus* (L.) G. Don. Master Thesis, Colegio de Posgraduados, México.
- Demissie AG, Lele SS (2010) Bioassay-Assisted identification of phorbol ester from

 Jatropha curcas (Linn.) tissue culture. Int. J. Pharm. Bio. Sci. 1:1-7.
- Devappa RK, Makkar HP, Becker K (2010) *Jatropha* toxicity- A review. J. Toxicol.
 Environ. Health Part B Crit. Rev. 13:476-507.
- Devappa RK, Makkar HP, Becker K (2011) *Jatropha* diterpenes: A review. J. Am. Oil
 Chem. Soc. 88:301-322.
- DiCosmo F, Misawa M (1995) Plant cell and tissue culture: Alternatives for metabolite
 production. Biotechnol. Adv. 13:425-453.
- dos Santos AF, Goulart Sant'Ana AE (1999) Molluscicidal activity of the diterpenoids
 jatrophone and jatropholones A and B isolated from *Jatropha elliptica* (Pohl) Muell. Arg.
 Phytother. Res. 13:660-664.
- Duke JA (2001) Handbook of Medicinal Herbs. (pp 253-255). CRC Press, London.

- Expósito O, Bonfill M, Moyano E, Onrubia M, Mirjalili MH, Cusidó RM, Palazón J
 (2009) Biotechnological production of taxol and related taxoids: current state and
 prospects. Anticancer Agents Med. Chem. 9:109-21.
- Fett-Neto AG, Melanson SJ, Nicholson SA, Pennington JJ, Dicosmo F (1994) Improved taxol yield by aromatic carboxylic acid and amino acid feeding to cell cultures of *Taxus* cuspidata. Biotechnol. Bioeng. 44:967-71.
- Gibson DM, Ketchum REB, Vance NC, Christen AA (1993) Initiation and growth of cell lines of *Taxus brevifolia* (Pacific yew). Plant cell rep. 12:479-482.
- Goulart MO, Sant'ana A, de Lima RA, Cavalcante SH, de Carvalho MG, Braz-Filho R

 (1993) Fitoconstituintes químicos isolados de *Jatropha elliptica*. Atribuição dos

 deslocamentos químicos dos átomos de carbono e hidrogênio dos diterpenos Jatrofolonas

 A e B. Quim. Nova. 16:95-100.
- Heller J (1996) Physic Nut. *Jatropha curcas* L. Promoting the conservation and use of
 underutilized and neglected Crops. International Plant Genetic Resources Institute, Rome.
- Jacobsen HJ (1983) Biochemical mechanisms of plant hormona activity. In: Handbook of
 plant cell culture. Vol. 1. Ed. Por D.A. Evans, Sharp WR, Amirato P.V. & Yamada Y.).
 Collier Macmillan Publishers. Londres.
- Jing L, Fang Y, Ying X, Wenxing H, Meng X, Syed MN, Fang C (2005) Toxic impact of ingested jatropherol-I on selected enzymatic activities and the ultra-structure of midgut cells in silkworm, *Bombyx mori* L. J. Appl. Entomol. 129:98-104.

- Kaewpoo M, Te-Chato S (2009) Influence of explant types and plant growth regulators on multiple shoot formation from *Jatropha curcas*. Sci. Asia. 35:353-357.
- Kalidass C, Mohan RV, Daniel A (2010) Effect of auxin and cytokinin on vincristine
 production by callus cultures of *Catharanthus roseus* L. (Apocynaceae). Trop. Subtrop.
 Agroecosyst. 12:283-288.
- Kim YS, Yeung EC, Hahn EJ, Paek KY (2007) Combined effects of phytohormone, indole-3-butyric acid, and methyl jasmonate on root growth and ginsenoside production in adventitious root cultures of *Panax ginseng* C.A. Meyer. Biotechnol. Lett. 29:1789-1792.
- Kumar A, Sharma S (2008) An evaluation of multipurpose oil seed crop for industrial uses (*Jatropha curcas* L.): A review. Ind. Crop Prod. 28:1-10.
- Kupchan SM, Sigel CW, Matz MJ, Gilmore CJ, Bryan RF (1976) Tumor inhibitors. 111.
 Structure and stereochemistry of jatrophone, a novel macrocyclic diterpenoid tumor inhibitor. J. Am. Chem. Soc. 98:2295-2300.
- Lui JHC, Staba EJ (1979) Effect of precursors on serially propagated *Digitalis lanata* leaf and root cultures. Phytochem. 18:1913-1916.
- Mans DR, da Rocha AB, Schwartsmann G (2000) Anti-cancer drug discovery and development in Brazil: targeted plant collection as a rational strategy to acquire candidate anti-cancer compounds. Oncol. 5:185-98.
- Misra M, Misra A (2010) Jatropha: The biodiesel plant biology, tissue culture and genetic
 transformation a review. Int. J. Pure appl. Sci. Technol. 1:11-24.

- Mohan P, Koushik K, Fuertes MJ (2012) Efforts toward the total synthesis of a jatrophane diterpene. Tetrahedron Lett. 53:2730–2732.
- Muangman S, Thippornwong M, Tohtong R (2005) Anti-metastatic effects of curcusone
 B, a diterpene from *Jatropha curcas*. In Vivo (Attiki). 19:265-268.
- Mukundan U, Hjortso MA (1991) Effect of light on growth and thiophene accumulation in transformed roots of *Tagetes patula*. Plant Physiol. 138:252-255.
- Murashige T, Skoog F (1962) A revised medium for rapid growth and bioassays with
 tobacco tissue cultures. Physiol. Plant. 15:473-497.
- Naengchomnong W, Thebtaranonth Y, Wiriyachitra P, Okamoto KT, Clardy J (1986)
 Isolation and structure determination of two novel lathyranes from *Jatropha curcas*.
 Tetrahedron Lett. 27:5675-5678.
- Naengchomnong W, Tarnchompoo B, Thebtaranonth Y (1994) (+)-Jatrophol, (+) marmesin, propacin and jatrophin from the roots of *Jatropha curcas* (Euphorbiaceae). J.
 Sci. Soc Thailand. 20:73-83.
- Ovando I, Adriano ML, Salvador M, Ruiz S, Vázquez A (2009) Piñón (*Jatropha curcas*):
 bioenergía para el desarrollo de Chiapas. Biotecnol. Agrop. Biodivers. Chiapas 2:21-24.
- Ovando-Medina I, Espinosa-García FJ, Núñez-Farfán J, Salvador-Figueroa M (2011).
 Genetic Variation in Mexican *Jatropha curcas* L. Estimated with seed oil fatty acids. J.
 Oleo Sci. 60:301-11.

- Paz M, Vázquez F, Chuqui R, Paredes C, Sauvain M, Gimenez A (2006) Establecimiento
 de cultivos *in vitro* de *Galipea longiflora*, una rutaceae de la Amazonia Boliviana. Lat.
 Am. J. Pharm. 26:15-9.
- Pertino M, Schmeda-Hirschmann G, Santos LS, Rodríguez JA, Theoduloz C (2007)
 Biotransformation of Jatrophone by *Aspergillus niger* ATCC 16404. Z. Naturforsch B.
 62:275-279.
- Pletsch M, Charlwood BV (1997) Accumulation of diterpenoids in cell and root-organ cultures of *Jatropha* species. J. Plant Physiol. 150:37-45.
- Rajore S, Batra A (2007) An alternative source for regenerable organogenic callus induction in *Jatropha curcas* L. Indian J. Biotechnol. 6:545-548.
- Ravindranath N, Ravinder M, Ramesh C, Ramu R, Prabhakar A, Jagadeesh B, Das B (2004) New lathyrane and podocarpane diterpenoids from *Jatropha curcas*. Chem. Pharm. Bull. 52:608-611.
- Roberts S (2007) Production and engineering of terpenoids in plant cell culture. Nat.

 Chem. Biol. 3:387-395.
- Salgado-Cruz Y, Ovando I, Salvador M, Adriano M (2009) Organogénesis directa en
 Jatropha curcas L.: Desinfección y tipo de explante. In: Memorias del IV Congreso
 Estatal de Biotecnología "Chiapas 2009". Palenque, Chiapas, México.
- Salvador-Figueroa M, Magaña-Ramos J, Vázquez-Ovando JA, Adriano-Anaya ML,
 Ovando-Medina I (2014) Genetic diversity and structure of *Jatropha curcas* L. in its
 centre of origin. Plant Genet. Resour. doi: 10.1017/S1479262114000550.

- Shrivastava S, Banerjee M (2008) *In vitro* clonal propagation of physic nut (*Jatropha curcas* L.): Influence of additives. Int. J. Integ. Biol. 3:73-79.
- Soomro R, Memon R (2007) Establishment of callus and suspension culture in *Jatropha* curcas. Pakistan J. Bot. 39:2431-2441.
- Sujatha M, Dhingra M (1993). Rapid plant regeneration from various explants of
 Jatropha integerrima. Plant. Cell Tiss. Org. 35:293-296.
- Sujatha M, Makkar HPS, Becker K (2005) Shoot bud proliferation from axillary nodes and leaf sections of non-toxic *Jatropha curcas*. Plant Growth Regen. 47:83-90.
- Theoduloz C, Rodríguez JA, Pertino M, Schmeda-Hirschmann G (2009) Antiproliferative
 activity of the diterpenes jatrophone and jatropholone and their derivatives. Planta Med.
 75:1520-1522.
- Van Den Berg AJ, Horsten SF, Bosch K, Kroes BH, Beukelman C, Leeflang BR, Labadie
 RP (1995) Curcacycline A- a novel cyclic octapeptide isolated from the latex of Jatropha
 curcas L. FEBS Letters. 358:215-218.
- Wang ZY, Chen FL, Lin JM, Huang SL (2009) Gas chromatography-mass spectrometric
 analysis of *Jatropha curcas* leaf extracts prepared by supercritical fluid CO2 extraction.
 Nan Fang Yi Ke Da Xue Xue Bao. 295:1002-1007.
- Wei Q, Lu WD, Liao Y, Pan SL, Xu Y, Tang L, Chen F (2004) Plant regeneration from
 epicotyl explant of *Jatropha curcas*. J. Plant Physiol. Mol. Bio. 30:475-478.

127	•	Yazaki, K, Matsioka H, Shimomura K, Bechthold A, Sato F (2001) A novel dark-
128		inducible protein, LeDI-2, and its involvement in root-specific secondary metabolism in
129		Lithospermum erythrorhizon. Plant Physiol. 125:1831-1841.
430	•	Yeoman M, Forche E (1980) Cell proliferation and growth in callus cultures. In: I. K.
431		Vasil (ed.) Perspectives in Plant Cell and Tissue Culture. Int. Rev. Cytol. Supp. (pp.11A:
132		1-24).
133	•	Zenk MH, El-Shagi H, Schulte U (1975) Anthraquinone production by cell suspension
134		culture of <i>Morinda citrifolia</i> . Planta Med. Suppl. 79-101.
135		
436		
137		
138		
139		
140		
141		
142		
143		
144		
+44		
145		

PeerJ

446

447

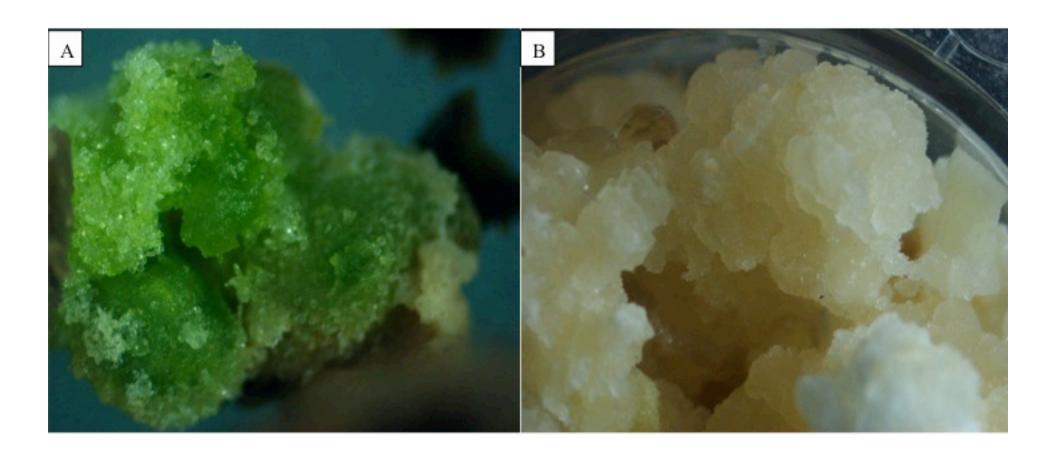


Figure 1(on next page)

Influence of illumination on the appearance of Jatropha curcas calli

Callus induced in conditions of light darkness from cotyledon explants of *Jatropha curcas*.

A) Developing photosynthetic callus. B) Developing callus of "sugary" and friable appearance.

Figure 2(on next page)

Thin layer chromatogram of crude hexane extracts from different tissues of Jatropha curcas MAP- 011107-G8.

Extracts were diluted to $0.1 \text{ g} \cdot \text{mL}^{-1}$ and revealed with sulphuric anisaldehyde. Lanes: 1) mixture of standards Jatrophone 10 mM + Jatropholone at 4 mM + b; 2) leaf extract; 3) bark extract; 4) root extract. In lane 1 band "**a**" represents the jatropholones (Rf = 0.817); and band "**b**," the jatrophone (Rf = 0.772).

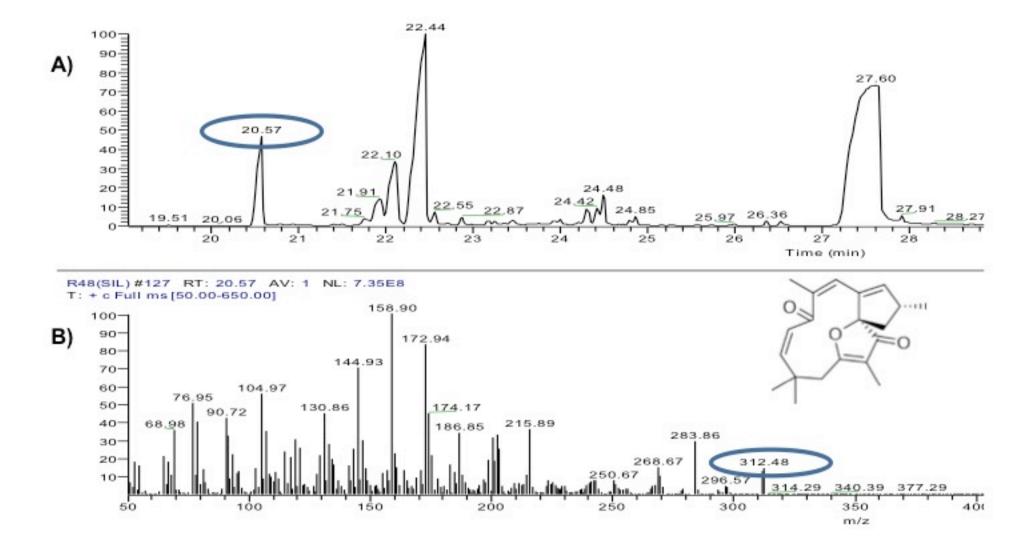


Figure 3(on next page)

Analysis of hexane extracts of Jatropha curcas by GC-MS

A) Chromatogram of a fraction of the root hexane extract of *Jatropha curcas* MAP-011107-G8, where the peak corresponding to jatrophone is circled. B) Fragmentogram of jatrophone–retention time 20.57 min, molecular weight is circled 312g • gmol⁻¹.

Table 1(on next page)

Effect of phytohormones and lighting conditions on callus dry weight (mg) obtained from cotyledon explants of *Jatropha curcas*.

Each treatment was repeated three times and each replicate consisted of 20-30 cuttings of a seed cotyledon from accession MAP-011107-G8. Means with different letters are significantly different ($p \le 0.05$). Formulation of Medium: Basal Medium MS + 3% sucrose (p/v) + 500 mg• L⁻¹ PVP. Auxins: 2,4-D (2,4-dichlorophenoxyacetic acid), NAA (naphthalene acetic acid), IAA (indole-3-acetic acid). Cytokinins: KIN (kinetin), BAP (6-benzylaminopurine), SAD (adenine sulfate).

Tuestanonte	Lighting			
Treatments	Light	Darkness		
Control	189 ± 8^{abc}	183 ± 37^{abc}		
2,4-D	$135 \pm 36^{\rm c}$	136 ± 14^{c}		
NAA	168 ± 18^{abc}	190 ± 42^{abc}		
AIA	178 ± 12^{abc}	201 ± 30^{abc}		
KIN	166 ± 36^{abc}	152 ± 40^{bc}		
BAP	168 ± 12^{abc}	207 ± 33^{abc}		
SAD	154 ± 37^{bc}	128 ± 8^{c}		
2,4-D+KIN	199 ± 33^{abc}	235 ± 52^{abc}		
2,4-D+BAP	289 ± 107^a	280 ± 13^{ab}		
2,4-D+SAD	154 ± 30^{bc}	234 ± 39^{abc}		
NAA + KIN	163 ± 18^{abc}	245 ± 34^{abc}		
NAA + BAP	170 ± 42^{abc}	239 ± 95^{abc}		
NAA + SAD	183 ± 23^{abc}	208 ± 41^{abc}		
AIA + KIN	197 ± 46^{abc}	203 ± 52^{abc}		
AIA + BAP	156 ± 37^{bc}	205 ± 34^{abc}		
AIA + SAD	227 ± 18^{abc}	201 ± 46^{abc}		

Table 2(on next page)

Combined effect of the auxin 2,4-dichlorophenoxyacetic acid (2,4-D) and cytokinin 6-benzylaminopurine (BAP) on the formation of cell callus in cotyledons of *Jatropha curcas* accession MAP-011107-G8

The data were taken 30 days after culture in darkness. Each treatment had three replicates and each repetition consisted of 20 to 30 cuttings in a cotyledon. Means having different letters are significantly different ($p \le 0.05$). Formulation of Medium: Basal Medium MS + 3% sucrose (p/v) + 500 mg • L⁻¹ PVP.

BAP	2,4 D (μΜ)					
(μ M)	0	1	2.5	5	7.5	10
0	$196 \pm 10^{\text{efghij}}$	138 ± 10^{j}	145 ± 7^{ij}	186 ± 20^{ghij}	$142 \pm 10^{\rm j}$	191 ± 20^{efghij}
0.5	194 ± 10^{efghij}	271 ± 110^{bcdefgh}	153 ± 21^{hij}	156 ± 30^{hij}	194 ± 20^{efghij}	$208 \pm 40^{\text{defghij}}$
1	152 ± 20^{hij}	199 ± 20^{defghij}	246 ± 31 cde (hij)	$285 \pm 30^{\text{abcdefg}}$	303 ± 10^{abcdefg}	313 ± 20^{abcde}
1.5	140 ± 20^{j}	0.190 ± 20^{fghij}	376 ± 24^{ab}	223 ± 20^{cdefghij}	245 ± 30^{cdefghij}	267 ± 30^{bcdefghi}
2	203 ± 60^{defghij}	0.221 ± 40^{abc}	342 ± 46^{cdefghij}	$209 \pm 60^{\text{defghij}}$	405 ± 11^a	319 ± 20^{abcd}
2.5	211 ± 10^{defgihj}	$0.219 \pm 30^{\text{defghij}}$	375 ± 33^{ab}	402 ± 20^a	311 ± 10^{abcdef}	307 ± 20^{abcdefg}

Table 3(on next page)

Jatropha curcas accessions representative of regions in Chiapas State (Mexico) used in this study and their callogenic ability when induced with 2,4-D (5 μ M) and BAP (2.5 μ M).

*Populations located in Chiapas, Mexico. Source: Ovando-Medina et al. (2011). **Coefficient of variation was 64.9 %. The data were taken 30 days after culture. Each accession had three replicates and each repetition consisted of 20 to 30 cuttings of a cotyledon. Means having different letters are significantly different from the others ($p \le 0.05$). Composition of medium: Medium MS (1962), 3% sucrose p/v and 500 mg*Lof Polyvinylpyrrolidone + 2, 4-D (5 μ M) + BAP (2.5 μ M).

Accession*	Latitude	Longitude	Population	Callus dry weight (mg)**
ARR-251107-MFG7	16°11.231'	93°54.516'	Isthmus	1014 ± 578^{a}
MAP-011107-G8	15°25.505'	92°53.554'	Soconusco	402 ± 23^{ab}
JIQ-090208-AG1	16°40.012'	93°39.242'	Center	175 ± 31^{b}
PUJ-030 508-S4	16°16.430'	92°17.550°	Frailesca	204 ± 19^{b}
CDCU-030208-F4	15°40.473°	92°00.129'	Border	207 ± 50^b

Table 4(on next page)

Compounds identified in the root hexane extract of *Jatropha curcas* accession MAP-011 107-G8, by gas chromatography-mass spectrometry.

Yields were calculated based on the areas under the peak curve of purified standards.

Structure	Molecular Weight (g•gmol-1)	Retention time (min)	Yield (mg compound•g sample ⁻¹)
Jatrophone	312	20.57	2.038
Jatropholone a	295	22.1	6.331
Jatrotropholone b	296	22.3	1.668