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ABSTRACT
Complex physiological dynamics have been argued to be a signature of healthy phys-
iological function. Here we test whether the complexity of metabolic rate fluctuations
in small endotherms decreases with lower environmental temperatures. To do so, we
examine the multifractal temporal scaling properties of the rate of change in oxygen
consumption r(VO2), in the laboratorymouseMus musculus, assessing their long range
correlation properties across seven different environmental temperatures, ranging from
0 ◦C to 30 ◦C. To do so, we applied multifractal detrended fluctuation analysis (MF-
DFA), finding that r(VO2) fluctuations show two scaling regimes. For small time scales
below the crossover time (approximately 102 s), eithermonofractal or weakmultifractal
dynamics are observed depending on whether Ta < 15 ◦C or Ta > 15 ◦C respectively.
For larger time scales, r(VO2) fluctuations are characterized by an asymptotic scaling
exponent that indicates multifractal anti-persistent or uncorrelated dynamics. For both
scaling regimes, a generalization of the multiplicative cascade model provides very
good fits for the Renyi exponents τ (q), showing that the infinite number of exponents
h(q) can be described by only two independent parameters, a and b. We also show
that the long-range correlation structure of r(VO2) time series differs from randomly
shuffled series, andmay not be explained as an artifact of stochastic sampling of a linear
frequency spectrum. These results show that metabolic rate dynamics in a well studied
micro-endotherm are consistent with a highly non-linear feedback control system.

Subjects Computational Biology, Ecology, Mathematical Biology, Statistics
Keywords Physiological complexity, Metabolic rate fluctuations, Endothermy,Mus musculus,
Long-range correlations, Multifractality, Metabolic rate

INTRODUCTION
Physiologic complexity is ubiquitous in all living organisms (Bassingthwaighte, Liebovitch
& West, 1994; Glass, 2001; Goldberger et al., 2002; Burggren & Monticino, 2005). It emerges
as the result of interactions among multiple structural units and regulatory feedback
loops, all of which function over a wide range of temporal and spatial scales, allowing
the organism to respond to the stresses and challenges of everyday life (Bassingthwaighte,
Liebovitch & West, 1994; Goldberger et al., 2002). As a consequence of these intricate
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regulation feedbacks, most physiological state variables typically present non-linear non-
stationary dynamics, with irregular fluctuations that follow power-law probability distribu-
tions and present long-range correlations over multiple time scales (Glass, 2001; Goldberger
& West, 1987; Kantelhardt, 2011; Labra, Marquet & Bozinovic, 2007; Mantegna & Stanley,
2000; Bassingthwaighte, Liebovitch & West, 1994). The application of analytic techniques
from nonlinear dynamics and statistical physics to the study of different physiologic
variables has led to the proposition of a general theory to account for the complexity of
physiologic variables (Glass, 2001; Costa, Goldberger & Peng, 2002; Goldberger et al., 2002;
Kantelhardt, 2011;Lipsitz, 2004). This theory states that, given certain parameter conditions,
the state variables of healthy systems reveal complex variability associated with long-range
(fractal) correlations, along with distinct classes of nonlinear interactions (Goldberger, 1996;
Goldberger, Rigney & West, 1990; Goldberger et al., 2002). Over the last two decades, differ-
ent studies have shown that the break down of this type ofmulti-scale, nonlinear complexity
is a characteristic signature of disease and senescence, and as a result, the study of complexity
in physiological variables has shown important promise in the efforts to understand and
diagnose different pathologies (Costa et al., 2008; Delignières & Torre, 2009; Goldberger
et al., 2002; Hausdorff et al., 2001; Hu et al., 2004; Ivanov et al., 2007; Lipsitz, 2004).

While different quantitative approaches have been devised to measure the degree of
complexity in physiological signals (e.g., Burggren & Monticino, 2005; Costa, Goldberger
& Peng, 2002; Feldman & Crutchfield, 1998; Pincus, 1991; Rezek & Roberts, 1998; Richman
& Moorman, 2000; Schaefer et al., 2014), most studies examining changes in physiological
complexity as a result of pathological alterations have been conducted by examining either
the change or loss of longrange correlations of physiologic signals (e.g., Costa et al., 2008;
Delignières & Torre, 2009; Goldberger et al., 2002; Hausdorff et al., 2001; Hu et al., 2004;
Ivanov et al., 2007; Lipsitz, 2004). Long-range correlated time series typically exhibit slowly
decaying autocorrelation functions C(s) across different time scales s, which are
characterized by power law decay:

C(s)∝ s−γ (1)

with scaling exponent taking values in the range 0< γ < 1, such that a characteristic
correlation time scale cannot be defined (Chaui-Berlinck et al., 2002a; Chaui-Berlinck
et al., 2002b; Billat et al., 2006; Kantelhardt, 2011). It has been argued that the lack of a
characteristic scale in physiological systems may help the organism to be more stable and
adaptive to internal and external perturbations by preventing the emergence of periodic
behaviors or phase locking, thus avoiding any restriction to the functional responsiveness
of the organism in the face of external perturbations (Peng et al., 1993; Peng et al., 2002;
West & Shlesinger, 1989). If this were correct, the study of long-range correlations would
provide important insights on the degree of regulation and homeostasis of living organisms,
as well as potential tools in the diagnosis of certain pathologies. A power law scaling of the
spectrum of Fourier frequencies may also describe the presence of long-term correlations
in any given stationary physiological signal:

S(f )∼ f −β . (2)
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Long-range correlated processes of this type are often referred to as 1/f β processes or
noises, and are characterized by a unique value of the scaling exponent β, which provides a
measure of the type of long-range correlation (Chaui-Berlinck et al., 2002a; Chaui-Berlinck
et al., 2002b; Billat et al., 2006; Kantelhardt, 2011; Schaefer et al., 2014). Again, the power
law scaling implies that no single characteristic scale may be identified. The Fourier power
spectrum scaling exponent may be related to the correlation function exponent by the
relationship β = 1−γ . Further, the different scaling exponent values are associated with
different types of correlation structure in a given time series or signal. Thus, for processes
where β = 0 (or γ =−1) the signal shows no long-range correlation between values while
values where β > 0 (or γ >−1) describe a process with long-range correlation or
persistence. Processes where β < 0 (or γ <−1) describe a signal with long-range anti-
correlations, or anti-persistence, where large values are followed by small ones (Witt &
Malamud, 2013). Nevertheless, the use of frequency spectra requires not only that the time
series be stationary, but also the use of particular binning procedures as well as averaging
over a large number of realizations in order to accurately estimate the value of the scaling
exponent β (Kantelhardt, 2011;Witt & Malamud, 2013). An alternative approach for non-
stationary time series is to characterize its long-range persistence by examining the self-
affinity of the profile or cumulative sum zi=

∑
r(VO2,i), for all samples i= 1 to N (Peng

et al., 2002; Kantelhardt, 2011). Examination of these time series requires us to take into
account that the time axis and the axis of the measured values x(t ) are not equivalent
quantities, and that a rescaling of time t by a factor amay require rescaling of the series values
x(t ) by a different factor aH in order to obtain a signal that is statistically self-similar to
the original one (Kantelhardt, 2011). Hence, the exact type of self-affinity or statistical self-
similarity in a time series may be described by the resulting scaling relation x(t )→ aHx(at )
where H corresponds to the Hurst exponent, which measures the degree of persistence or
predictability of the profile or cumulated time series (Kantelhardt, 2011). The exponent H
may be studied by different methods including rescaled range analysis, fluctuation analysis,
and detrended fluctuation analysis (Peng et al., 2002; Kantelhardt, 2011). In particular,
Detrended fluctuation analysis (DFA) has been widely employed to reliably detect long-
range autocorrelations in non-stationary time series, with a large number of studies using it
to report long-range autocorrelations, although a few studies have reported anti-persistent
anti correlations (e.g., Bahar et al., 2001; Delignières et al., 2006; Delignières, Torre &
Bernard, 2011; Kantelhardt, 2011). The value of the Hurst exponent H may be approxi-
mated by the DFA, which calculates the scaling of mean-square fluctuations with time series
scale, yielding the scaling exponent α (Feder, 1988; Hurst, 1951; Peng et al., 2002; Kantel-
hardt, 2011). When DFA scaling relationships are observed, the scaling exponent α≈H is
related to the correlation exponent γ by the relationship α= 1−γ /2, with α= 0.5 being the
threshold between anti persistence and persistence (Peng et al., 2002; Kantelhardt, 2011).

Despite the increased interest to study fractal or long-range correlated dynamics across
many systems, in some highly nonlinear complex systems, the resulting time series presents
a scaling autocorrelation function and frequency power spectrum which may be better
described by a large number of scaling exponents rather than by a single scaling exponent
value (Kantelhardt, 2011). Thus, onemay distinguish betweenmonofractal andmultifractal
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signals.Monofractal signals present a long-range correlation structure where a single scaling
exponent suffices to describe the correlation scaling. On the other hand, multifractal
signals require an infinite spectrum of scaling exponents to describe their correlation
structure (Humeau et al., 2009; Ivanov et al., 1999; Kantelhardt, 2011; Suki et al., 2003;West
& Scafetta, 2003). Thus, multifractal time series are heterogeneous, showing a given value
of the self-affinity exponent only in local ranges of the signal structure, such that their
self-affinity exponent varies in time. Hence, multifractal signals may be characterized
by a set of local fractal sets that represent the support for each Hurst exponent value
(Bassingthwaighte & Raymond, 1994; Ivanov et al., 1999; Kantelhardt, 2011). In this regard,
multifractal time series are more complex thanmonofractal ones, and determining whether
a given complex physiologic system presents monofractal or multifractal dynamics may
provide insight on the degree of complexity or nonlinearity of the underlying control
mechanisms (Mantegna & Stanley, 1997).

In endotherms, metabolic rate (VO2) is a global emergent property that reflects the sum
of the energetic costs required to maintain homeostasis allowing body temperature (Tb) to
remain as constant as possible despite any changes of its surrounding ambient temperatures
(Ta) (Karasov & Martinez del Rio, 2007; Lighton, 2008; McNab, 2002). Under controlled
laboratory conditions, it is possible to identify a range of optimal Ta values where Tb
may be kept constant without changes in energy expenditure, but rather as a result of
adjustments to physical processes (i.e., conductance, radiation, and convection). Within
this range of Ta values VO2 is expected to show minimal variation, and hence it is named
the thermoneutral zone (TNZ ) (Bozinovic & Rosenmann, 1988; Chaui-Berlinck et al., 2005;
Karasov & Martinez del Rio, 2007; Lighton, 2008; Lipsitz, 2004; McNab, 2002). A striking
characteristic of VO2 signals is that, even within the TNZ they may be non-stationary,
showing changes in the mean and variance of the time series (Chaui-Berlinck et al., 2002a).
Studies with small endotherms have shown that VO2 dynamics within the TNZ present
irregular fluctuations with long-range correlations, evidenced by the presence of a single
monofractal 1/f β scaling exponent in the Fourier frequency spectrum (Chaui-Berlinck
et al., 2002a; Chaui-Berlinck et al., 2002b; Billat et al., 2006). Thus, within the TNZ, VO2

shows complex dynamics that are consistent with a dynamical system under non-linear
control (Chaui-Berlinck et al., 2005). The non-stationary behaviour in metabolic rate may
be examined by analysing the rate of change in oxygen consumption, r(VO2) as a measure
of the fluctuations of VO2. It is defined as r(VO2)= log10[VO2(t +1)/VO2(t )] (Labra,
Marquet & Bozinovic, 2007). This variable reveals whether clusters of large, abrupt changes
may be seen in the r(VO2) time series, or if similar variability is observed throughout. In
addition, the calculation of r(VO2) allows the de-trending of the data, yielding a much
more stationary time series. Examination of r(VO2) time series for different species of
small mammals, birds and reptiles have shown that this variable has a symmetric power
law probability distribution, centered in r(VO2)= 0, with a universal triangular shape
that does not change across different species (Labra, Marquet & Bozinovic, 2007). Thus,
metabolic rate fluctuations follow a single statistical distribution despite differences in
cardiovascular and respiratory designs, with distribution width scaling inversely with
individual body size (Labra, Marquet & Bozinovic, 2007). However, to date, the correlation
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structure in r(VO2) has not been examined. In a similar fashion to other complex non-linear
time series, long-term correlations in r(VO2) would mean that large fluctuations are more
likely to be followed by another large oscillation, while a small oscillation is likely to be
followed by a small oscillation (Ashkenazy et al., 2003; Bunde & Lennartz, 2012). If this were
the case, the expected average value of VO2 would increase, showing a persistent trend.
For VO2 to show homeostatic regulation; however, its fluctuations would be expected to
show anti-persistence over at least at some scales, so that large r(VO2) increases may be
followed by large r(VO2) decreases, ensuring that overall average VO2 values remain under
homeostatic control. Thus, the presence of anti-persistent correlations may be expected
for r(VO2) time series, particularly if there are strong control feedback loops regulating
total energy expenditure in an organism. This suggests that examination of the type of
autocorrelations present in r(VO2) time series, as well as the range of time scales involved
may provide insight on the regulation feedback that may be acting on metabolic rate at the
level of the organism. To gain some understanding of how this may be so, we examine the
relationship between thermal stress and VO2 fluctuations.

In endotherms, VO2 fluctuations are expected to be proportional to the environmental
thermal challenges measured as changes in the difference (Tb− Ta) (Bozinovic &
Rosenmann, 1988; Chaui-Berlinck et al., 2005; Karasov & Martinez del Rio, 2007; Lighton,
2008). Outside the TNZ, adjustments to the body’s thermal conductance are not enough to
sustain thermal homeostasis, and consequently additional physiological and biochemical
process are required in order to keep constant the internal state, which leads to an increase
both VO2 and presumably r(VO2) as well. In the case of small endotherms, their body size
leads to higher challenges associated to the loss of temperature resulting from the large
body surface through radiation (Chaui-Berlinck et al., 2005; Karasov & Martinez del Rio,
2007; Lighton, 2008; Lipsitz, 2004;McNab, 2002). Given the intricate nature of the network
of control processes involved in achieving constant Tb (Chaui-Berlinck et al., 2005), it
is reasonable to expect that when faced with lower environmental temperatures values
below the TNZ endothermic homeostatic processes would be accompanied by a more
complex pattern of auto-correlations. To determine whether this is the case, we use fractal
and multifractal analysis to examine whether the correlation structure of VO2 shows any
changes as a result of decreasing environmental temperatures In this regard, a working
hypothesis is that for Ta values below the TNZ the r(VO2) signal should show a more
complex pattern of long-range correlations, resulting in a broader range of autocorrelation
scaling exponents, as expected formultifractal signals. These changes should come about as a
result of the activation of internal feedback mechanisms to regulate Tb. A related question
to this prediction concerns the form of this possible relation between complexity and
decreasing ofTa. Records inwild rodents show amonotonic and linear increment of average
VO2 in animals exposed to Ta decreasing (30 ◦C–0 ◦C) (Bozinovic & Rosenmann, 1988),
suggesting thatVO2 and r(VO2) complexity levels may also increase linearly. An alternative
outcome may be the gradual decrease and eventual loss of complexity, due to a drop in
the efficiency of the thermoregulatory feedback control at lower temperatures (Angilletta,
2006; McNab, 2002). This second pattern would be in agreement with the hypothesis
of loss of physiological complexity in the face of extreme system degradation or acute
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stress (Goldberger et al., 2002). To test these hypotheses, we examine the fractal properties
of time series of r(VO2) measurements n laboratory mice (Mus musculus) exposed to
environmental temperatures ranging fromTNZ (30 ◦C in this species) to 0 ◦C. Thus, as first
step in this work we assess whether r(VO2) values exhibit either monofractal or multifractal
long-term correlations under different environmental temperatures. We do this by testing
whether metabolic rate fluctuations show any longrange correlations and, if so, testing
whether there may be described either by a single scaling exponent or if multiple scaling
exponents are required, using the multifractal detrended fluctuation analysis (MF-DFA)
method. We then assess how these quantitative descriptors of longrange correlations vary
with environmental temperature, assessing how they change with decreasing values of Ta.

METHODS
Determination of metabolic rate
Empirical VO2 time series were determined by measuring metabolic rate in wild-type male
white laboratory mice. Mice were transferred to the laboratory and housed individually
with sawdust bedding. Mice were provided with water and fed with food pellets ad libitum.
Ambient temperature and photoperiod were held constant at 20 ± 2 ◦C and 12L:12D
respectively. Care of experimental animals was in accordance with institutional guidelines.
The Bioethics commissions of Universidad Santo Tomás, Pontificia Universidad Católica
de Chile, and The Chilean National Committee of Science and Technology (CONICYT)
approved all experimental protocols followed. Animals were held under these conditions for
twoweeks prior tomeasurements and then fasted for 3 h immediately prior tometabolic rate
records in metabolic chambers (Lighton, 2008). Individuals were measured at seven
different Ta, 0 ◦C, 5 ◦C, 10 ◦C, 15 ◦C, 20 ◦C, 25 ◦C and 30 ◦C, with the latter corresponding
to the lower limit of TNZ in this species. Overall, 18 individuals were assigned to different
temperature treatments, with the order of temperature treatments for each individual
assigned at random to avoid any artefacts. In addition, colonic body temperature (Tb)
was recorded at the end of each measurement using a Digi-Sense copper-constant thermo-
couple to evaluate a possible torpor condition at the end of the experiment. In each experi-
mental record VO2 was measured in a computerized open-flow respirometry system (Sable
Systems, Las Vegas, Nevada). The metabolic chamber received dried air at a rate of 800
ml/min from mass flow-controllers (Sierra InstrumentsTM, Monterey, California), which
ensured adequate mixing in the chamber. Air passed through CO2 and H2O absorbent
granules of BaralymeTM and DrieriteTM respectively before and after passing through the
chamber and was monitored every 1 s. This allowed us to obtain time series of oxygen
consumption recorded at periodic intervals of t = 1 s. After the r(VO2) time series were
registered, they were then analysed by calculating the corresponding r(VO2) time series.

Assessing long range correlations in metabolic rate
To determine the presence of long-term correlations in the r(VO2) time series, we examined
the power spectral density S(f )≡ |x(f )|2, where x(f ) is the Fourier transform of r(VO2)
data observations measured under experimental conditions (xi) evaluated at frequencies
f = 0,...,N/2 (Bunde & Lennartz, 2012; Kantelhardt, 2011). As mentioned above, for
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long-term correlated time series, it can be shown that the power spectral density decays
with frequency following a power law (see Eq. (2)). In order to avoid potential artefacts
due to lack of stationary behaviour, we also used the Detrended Fluctuation Analysis
method (DFA) (Kantelhardt, 2011; Peng et al., 1995a). Briefly, DFA analyses a profile or
accumulated data series zi=

∑
r(VO2,i), for all samples i= 1 to N . The profile is divided

into Ns non-overlapping segments of scale s. For every segment ν, the local trend is fit by
a polynomial of order n, and the variance raised to the 2th power [σ 2(v,s)]2 between the
local trend and the profile in each segment ν is calculated. The mean fluctuation function
F(s)2 is then calculated by:

F2(s)≡

{
1
Ns

Ns∑
v=1

[
s2(s)

]}1/2

. (3)

Examination of how F2(s) scales with box size or scale s allows the estimation of
the scaling exponent αDFA, which is often referred to as the global Hurst exponent H
(Goldberger et al., 2002; Ivanov et al., 2007; Kantelhardt, 2011; Peng et al., 1995a). When
observed time series are either uncorrelated or show short term correlations, αDFA= 0.5
(Kantelhardt, 2011; Peng et al., 1995a). For long-term correlated data with persistent 1/f β

noise, where β = 1.0, αDFA exhibits values of equal to 1.0. For values of αDFA below 0.5,
the series is said to be anti-persistent, with positive trends being associated with negative
trends (Delignières et al., 2006; Delignières, Torre & Bernard, 2011).

Assessing multifractality of metabolic rate
To determine the presence of multifractality in the fluctuations of metabolic rate we applied
multifractal detrended fluctuation analysis (MF-DFA) (Kantelhardt, 2011; Kantelhardt et
al., 2002) to r(VO2) data measured under experimental conditions. This method yields
similar results to other existing methods of multifractal analysis in time series (Ivanov
et al., 2007; Kantelhardt, 2011; Kantelhardt et al., 2002; Ludescher et al., 2011; Oswiecimka,
Kwapien & Drozdz, 2006), but is considerably easier to implement, being based on an ex-
tension of DFA (Kantelhardt, 2011; Kantelhardt et al., 2002; Ludescher et al., 2011). Briefly,
MF-DFA analyses a profile or accumulated data series zi =

∑
r(VO2,i), for all samples

i= 1 to N . The profile is divided into Ns non-overlapping segments of scale s. For every
segment ν, the local trend is fit by a polynomial of a given order o, where o= 1, 2 or 3. The
resulting variance is then raised to the q/2th power [σ 2(v,s)]q/2 between the local trend
and the profile in each segment ν is calculated. When q= 0, logarithmic averaging may be
applied (Kantelhardt, 2011; Kantelhardt et al., 2002; Ludescher et al., 2011). A generalized
fluctuation function Fq(s) is then calculated by averaging all the variances across all
segments of scale s:

Fq(s)≡

{
1
Ns

Ns∑
v=1

[
σ 2(v,s)

]q/2}1/q

. (4)

In general, Fq(s) exhibits a scaling relationship with time scale s: Fq(s)∼ sh(q), which
allows the estimation of a set of exponents h(q) for every moment q. These scaling
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exponents correspond to the generalized Hurst exponents. In some nonlinear complex
systems, the Fq(s) function has been shown to exhibit scaling crossovers, with more than
one asymptotic scaling exponent (Koscielny-Bunde et al., 2006). Hence, we tested whether
linear or piecewise linear regressions best fit the scaling relationship of Fq(s) with s, using
log-transformed data. The piecewise or segmented relationship between the mean response
µ= E[Y ] and the variable X, for observation i= 1,2,...,n was modeled by adding the
following terms in the linear predictor:

β+β1Xi+β2(Xi−δ)+ (5)

where (Xi−gδ)+= (Xi−gδ)×I (Xi>ψ) and δ is the fitted breakpoint or crossover point
and I (·) is an indicator function that is equal to one when the statement is true and is
equal to zero when the statement is false (Muggeo, 2003). Piecewise linear models were
fitted using the segmented library (Muggeo, 2003) in the R program (R Development Core
Team, 2014). If no crossovers were observed, then linear regression would be favored
over a piecewise regression. To test this, the segmented library uses Davie’s test to test
for a non-constant regression parameter in the linear predictor (Muggeo, 2003). Once
the correct regression model is identified, the regression slopes provide the asymptotic
estimates for the scaling exponents h(q). If no crossover is present, only one scaling
exponent h(q) is obtained for every moment q. If a crossover point is detected, then two
scaling exponents h(q) and h(q)are obtained for every moment q.

For monofractal self-affine time series, h(q) is independent of the chosen moment q,
and is identical to the global Hurst exponent H regardless of the value of the moment
q (Feder, 1988; Hurst, 1951; Kantelhardt et al., 2003; Kantelhardt et al., 2002). Hence, for
monofractal self-affine time series αDFA≈H . On the other hand, in multifractal time series
h(q) varies with q, reflecting the fact that small and large fluctuations scale differently
(Kantelhardt et al., 2002). For negative values of q, h(q) describes the scaling behaviour
of those time series segments with small fluctuations, whereas for positive values of q,
h(q) describes the scaling behaviour of those time series segments with large fluctuations
(Kantelhardt et al., 2002). It has been shown that the generalized Hurst exponent h(q) can
be directly related to the classical multifractal scaling Renyi exponents τ (q) defined by the
standard partition function-based formalism using the relationships: τ (q)= qh(q)−1 and
h(q)= (τ (q)+1)/q (Kantelhardt et al., 2002; Koscielny-Bunde et al., 2006). Thus, it may
be shown for normalized, stationary time series that the multifractal spectra estimated by
MF-DFA have a deep similarity with thermodynamics (Kantelhardt et al., 2002).

For monofractal records, τ (q) is a linear function of q, while multifractal records are
characterized by non-linear dependence of τ (q) on q (Ivanov et al., 1999; Kantelhardt et al.,
2002; Koscielny-Bunde et al., 2006). Also, it can be shown that h(q) may be related to the
singularity spectrum f (α) via a Legendre transform:

f (α)= q[α−h(q)]+1 (6)

where α= [dτ (q)/dq] is the singularity strength, or Hölder exponent, while f (α) denotes
the singularity dimension of the subset of the time series that is characterized by a given
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value of singularity strength α (Feder, 1988; Kantelhardt et al., 2002; Ludescher et al., 2011;
Ihlen, 2012). For monofractal self affine signals, the singularity spectrum of the time series
is a single point, showing that there is a unique value or a very small set of values of
singularity strength α, with a corresponding fractal dimension f (α)= 1. For multifractal
self affine signals, the singularity spectrum of the time series is a parabola, with a maximum
at the dominant singularity strength observed in the time series.

To assess multifractality in r(VO2) time series, we calculated the fluctuation function
Fq(s) for data obtained from wild-type white laboratory mice r(VO2) time series measured
under controlled conditions. Following recent studies, we fit both the h(q) and τ (q) spectra
with a modified version of the multiplicative cascade model, which has been proposed by
(Koscielny-Bunde et al., 2006):

h(q)= (1/q)− (ln(aq+bq))/(qln(2)) (7)

and

τ (q)=−(ln(aq+bq))/(ln(2)). (8)

The modified multiplicative cascade model functions (MMCM) allows the description
of multifractal spectra with only two parameters, a and b, which take values between 0 and
1 with a+b≥ 1. An additional advantage is that these functions also extend to negative q
values, and thus allow estimation of the multifractal spectrum f (α) for these values as well
(Koscielny-Bunde et al., 2006). Using the τ (q) spectra, we estimated the parameters a and b
for Eq. (8), allowing us to obtain continuous τ (q) and f (α) spectra from the MMCM fits.

To test whether observed long term correlation behaviour was different from a random
expectation, we randomized all time series using an amplitude-adjusted Fourier transform
algorithm (AAFT) (Schreiber & Schmitz, 1996; Schreiber & Schmitz, 2000). The scaling
functions were calculated for all surrogate time series and the corresponding scaling expo-
nents (e.g., β and αDFA for Fourier spectral density and DFA respectively) were calculated
(Schreiber & Schmitz, 1996; Schreiber & Schmitz, 2000).

Assessing the effect of temperature on multifractality of metabolic
rate fluctuations
As explained above, regular VO2 time series were obtained under temperature-controlled
conditions (see ‘Methods’ sections for details). To assess the effect of Ta on long range
and multifractal measures of r(VO2) fluctuations, we calculated the average fluctuation
function Fq(s) for each of the seven temperature treatment groups, testing whether the
resulting h(q) and τ (q) spectra are also multifractal. In order to summarize the observed
results, we calculated the singularity spectrum f (α), which allows a compact description of
the degree of multifractality through the quantification of 1α, the width of the singularity
spectrum as well as the average dominant exponent αmax, which indicates which is the
dominant scaling exponent, or the one which shows greater support on average across the
time series. We then summarized the various spectra across the experimental temperature
treatments, allowing us to examine their response to temperature. To test whether observed
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multifractal behaviour was different from a random expectation, we randomized all time
series using an amplitude-adjusted Fourier transform algorithm (AAFT) (Schreiber &
Schmitz, 1996; Schreiber & Schmitz, 2000). After the surrogates were generated, the general
fluctuation function Fq(s) and the h(q) spectra were calculated as explained above. We then
compared h(q), τ (q) and f (α) spectra for the shuffled time series. Again, we summarized
the various spectra for shuffled time series across the experimental temperature treatments,
allowing us to compare them with original time series spectra as for different temperature
treatments. To assess the potential effect of de-trending polynomial order o, all data analyses
were carried out for each individual time series were carried out using three orders: o=1, 2
or 3. Data analyses were carried out using Matlab R2011b and R software (R Development
Core Team, 2014).

RESULTS
As described in the physiological literature for endotherms, average VO2 values in the lab
mouse show a marked thermal response below TNZ, with higher VO2 values that increase
away from basal metabolic rate (BMR) as Ta becomes progressively lower (Fig. 1A).
None of the animals studied showed signs of torpor either during or after the VO2

measurements, and observed Tb varied from 36.0 to 37.3 ◦C across all records. However,
even within the TNZ (30 ◦C), typical VO2 time series exhibit irregular non-stationary
fluctuations (Fig. 1B). The rate of change r(VO2) yields a de-trended time series, which
reveals abrupt changes in VO2, with clusters of large fluctuations separated from clusters
of smaller fluctuations(Fig. 1C). This suggests the presence of long-term correlation or
persistence in these time series. The clustering of large fluctuations is lost when data
are shuffled randomly using AAFT (Fig. 1D), providing indication that the observed
pattern of r(VO2) fluctuations may be associated with the autocorrelation structure of
the time series (Schreiber & Schmitz, 1996; Schreiber & Schmitz, 2000; Kantelhardt, 2011)
rather than with the fat tailed probability distribution shown by this variable (Labra,
Marquet & Bozinovic, 2007). The statistical pattern of autocorrelation in the sequence of
large and small fluctuations may be examined by calculating the Fourier frequency power
spectra, which reveals the presence of long-term correlations, shown by a 1/f-like scaling
exponent (Fig. 1E). On the other hand, shuffled time series exhibit a shallower power
spectrum, indicating the loss of these long-term correlations (Fig. 1E) (Kantelhardt et al.,
2002; Schreiber & Schmitz, 1996; Schreiber & Schmitz, 2000). However, while r(VO2) time
series do not exhibit obvious trends in the mean, they do show changes in variability
through time, and as a result may not meet the statistical assumptions of spectral frequency
estimation (Kantelhardt, 2011). Examination of detrended fluctuation analysis reveals a
scaling crossover, with two clear scaling regimes shown by the root mean square fluctuation
function F2(s) (Fig. 1F). This suggests that a single scaling exponent may not be sufficient
to characterize the autocorrelation of r(VO2) fluctuations (Kantelhardt et al., 2002). In
this time series, the scaling exponent for small time scales (s< 100 s), αDFA1, indicates
the presence of persistent, long-range correlated fluctuations (αDFA1 = 0.91) (Fig. 1F).
However, for larger time scales (s> 100 s) we see that fluctuations over these time scales are
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Figure 1 Long-term correlations of metabolic rate fluctuations inMus musculus. (A) Average
metabolic rates (VO2) measured at different ambient temperatures. Average values± standard errors
are shown with open circles and error bars. Straight line shows calculated thermal conductance,
while the humped curve corresponds to a fitted three parameter Gaussian function (g (x) =
a ∗ exp(−.5 ∗ ((x − x0)/b)2)). (B) Metabolic rate (VO2) time series shown for a representative individual
measured at 30 ◦C for 1 3/4 h at 1 (s) intervals. Note the irregular, nonstationary dynamics, despite
thermo neutral ambient temperature. (C) Observed VO2 fluctuations r(VO2)= log10[VO2(t+1)/VO2(t )]
time series for data in (B). Note the clustering of broad and narrow fluctuations. (D) Randomized r(VO2)
values, showing the loss of the clustering of fluctuations. (E) Fourier power spectra for time series in (C)
and (D) shown by blue and red lines respectively. A smoothing procedure was applied, which consisted
of averaging the spectra for consecutive overlapping segments of 256 data points. Fitted OLS scaling
relationships are shown in dotted lines. (F) Detrended fluctuation analyses (DFA) for the two time series
shown in (C) and (D). Fluctuation functions for original and shuffled time series in are shown in open
and filled circles respectively. Fitted scaling relationships are shown in dashed lines. Note the change in
exponent values above s= 100 for the original time series.

anti-persistent, with the second scaling exponent αDFA2= 0.39 (Eke et al., 2000; Delignières
et al., 2006; Delignières, Torre & Bernard, 2011). As mentioned above, in anti-persistent
time series dynamics positive trends are usually followed by negative trends, thus showing
a phenomenological signature of control or negative feedback over the rate of change of
VO2 (Delignières, Torre & Bernard, 2011). Shuffling the data results in a loss of the observed
crossover scaling behaviour, indicating this is property is not a result of randomness in the
pattern of fluctuations (Fig. 1F). Thus, we find that r(VO2) fluctuations within the TNZ
show non-trivial long-range correlations, in agreement with previous observations for VO2

in small endotherms (Chaui-Berlinck et al., 2002a; Chaui-Berlinck et al., 2002b). However,
a single scaling exponent does not suffice to describe these long-range correlations.

When we examined the DFA scaling functions for r(VO2) fluctuations both within and
outside the TNZ, we observe a similar crossover pattern across different temperatures, with
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Figure 2 Temperature effects on root-mean-square fluctuation function of r(VO2) in mice. The figure shows the average F2(s) functions calcu-
lated with linear detrending for all mice. Results for the time series studied at 30 ◦C, 20 ◦C, 10 ◦C and 0 ◦C are shown in the respective columns ar-
ranged from left to right. Figures (A)–(D) show the average DFA functions calculated for the r(VO2) time series, while figures (E)–(H) show average
DFA functions calculated for the AAFT shuffled data. All figures show the DFA root-mean-square fluctuation functions obtained using three dif-
ferent orders of detrending polynomials: linear (open circles), quadratic (open squares) and cubic functions (open triangles). Two scaling regimes
can be observed across all temperatures and for all polynomial detrending orders. The first scaling regime spans scales between 8 and 100 s, while the
second one spans scales from 100 to 1,024 s. All curves have been shifted vertically for clarity. Please note that while only four experimental tempera-
tures are shown, the remaining three temperatures show similar patterns.

average F2(s) scaling functions show a crossover pattern which is similar to that observed in
Fig. 1F. Hence, observed scaling exponent values for small to intermediate time scales) are
consistent with persistent long-range autocorrelations (i.e., 0.5<αDFA1< 1.0) (Figs. 2A–
2D). On the other hand, for intermediate to large scales, the scaling exponent values
are consistent with anti-persistent long-range correlations (αDFA2< 0.5) (Figs. 2A–2D).
Shuffling the individual time series results in changes to the F2(s) scaling functions, with
average αDFA1 values becoming smaller (Figs. 2E–2H). Examination of the scaling exponent
values shows that αDFA2 values do not show large changes for shuffled data (Fig. 3). This
pattern is observed for linear (Fig. 3) as well as for quadratic and cubic de-trending orders
o (see Fig. S1). The existence of two scaling regimes for the long-range correlations of
r(VO2) may be interpreted as evidence that two dominant scaling exponents may suffice
to account for the correlation structure of the r(VO2) time series. An alternative possibility
may be that a continuous spectrum of scaling exponents are required in order to account
for the observed pattern of long-term correlations in VO2 fluctuations. If the latter were
the case, local scaling exponents would show a large number of possible values.

To visualize whether a sample r(VO2) time series is consistent with amultifractal process,
we examined the changes in the value of local DFA scaling exponent αDFA through time in
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Figure 3 Temperature effects on long range scaling exponent α in metabolic rate fluctuations. The fig-
ure shows the average DFA scaling exponent αDFA calculated as a function of experimental temperature.
Average scaling exponents corresponding to exponent for raw r(VO2) data within the 10 < s < 100 scal-
ing regime are shown with filled circles, while filled squares show the scaling exponents for the raw r(VO2)
data within the 100 < s < 1,024 scaling regimes. Open circles and squares show the scaling exponents for
these two respective scaling regimes when data are shuffled.

the time series shown in Fig. 1 (which was measured within the TNZ). We calculated the
local value of αDFA as for a moving window placed along the time series. We calculated αDFA
values using moving windows of 128, 256 and 512 s (Figs. 4A, 4B and 4C, respectively).
All these window sizes correspond to the asymptotic exponent expected for the second
scaling regime identified before for this time series (Fig. 1F). Observed local αDFA exponent
values change through time for all window sizes used, forming an irregular pattern (Fig. 4).
Further, αDFA values range broadly between 0.5 and 1.5, as shown by the blue lines in
Fig. 4. Thus, while in some sections show exponent values close to 1.0, corresponding
to persistent power law long-range correlations, other sections may show values closer
to either 1.5 (corresponding to persistent Brownian motion) or to 0.5 (corresponding to
uncorrelated fluctuations) (Peng et al., 1995b). There are also sections where the local αDFA
scaling exponent may take values below 0.5, corresponding to anti-persistent fluctuations
(Eke et al., 2000;Delignières et al., 2006;Delignières, Torre & Bernard, 2011). Again, random
shuffling of the time series destroys the observed pattern of irregular fluctuations of αDFA,
with all exponent values clustering around 0.5, as shown by the red lines in Fig. 4. Thus,

Labra et al. (2016), PeerJ, DOI 10.7717/peerj.2607 13/29

https://peerj.com
http://dx.doi.org/10.7717/peerj.2607


0.50

0.75

1.00

1.25

1.50

0 1500 3000 4500 6000
time (s)

 _
D

FA

A

0.50

0.75

1.00

1.25

1.50

0 1500 3000 4500 6000
time (s)

 _
D

FA

B

0.50

0.75

1.00

1.25

1.50

0 1500 3000 4500 6000
time (s)

 _
D

FA

C

Figure 4 Local DFA scaling exponents. The figure shows the value of local DFA scaling exponents αDFA
for the time series in Figs. 1C (blue lines) and 1D (red lines). Local exponents are calculated with a moving
window shifted across the whole time series. Figures (A), (B) and (C) show the results for shifting window
widths of 128, 256 and 512 s respectively. The heterogeneity of the rate of change in metabolic rate is re-
vealed by the broad range of local scaling exponents αDFA, which shows a complex structure in time as op-
posed to the simpler and more restricted changes in the shuffled time series.

for this time series, we can see that observed r(VO2) fluctuations cannot be characterized
by a single scaling exponent, and hence may be multifractal.

To determine whether this is the case, we examined whether the MF-DFA formalism
can describe VO2 fluctuations across different environmental temperatures. Figure 5
shows the average MF-DFA generalized fluctuation functions Fq(s) calculated from time
series measured at 30◦, 20◦, 10◦ and 0 ◦C (Figs. 5A, 5B, 5C and 5D respectively). Across
all temperatures studied, and for all the values of q examined, observed Fq(s) functions
show a crossover δ that defines two scaling regions, as shown by the fitted piecewise linear
regressions (shown in black lines) (Fig. 5). Shuffling the time series leads to some changes in
the crossover pattern, although no striking overall pattern may be discerned by qualitative
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Figure 5 Temperature effects on generalized fluctuation function of r(VO2) in mice. Figure shows log–log plots of the average generalized fluc-
tuation function Fq(s) as a function of time s in r(VO2) time series. Figures (A)–(D) show the average Fq(s) functions calculated for the observed
r(VO2) time series measured at 30 ◦C, 20 ◦C, 10 ◦C and 0 ◦C respectively. Figures (E)–(F) show average Fq(s) functions calculated for the AAFT
shuffled r(VO2) time series measured at 30 ◦C, 20 ◦C, 10 ◦C and 0 ◦C respectively. Open circles in all figures show the observed Fq(s) values for dif-
ferent values of q, with q= 8, 4, 2, 1, 0,−1,−2,−4,−8 (from the top to the bottom). Also shown in black lines are piecewise linear regression fits to
the Fq(s) functions. Dashed straight lines with slope h= 0.5 are shown below the data in each figure to allow qualitative comparison with the uncor-
related case. Please note that while only four experimental temperatures are shown, the remaining three temperatures show similar patterns.

examination (Fig. 5E–5F). It must be noted that while the remaining three series for 5◦,
15◦ and 25 ◦C are not shown, they show similar patterns. In fact, detailed examination of the
average generalized fluctuation functions reveals that Fq(s) show the presence of crossover
time scales δ for all temperatures studied, regardless of the order o of the de-trending
polynomial used (see Figs. S2–S8 for detailed results for different de-trending polynomial
orders and all temperatures from 0 ◦C to 30 ◦C). Thus, for all temperatures examined,
regardless of the order of de-trending polynomial used, we observed two scaling regimes
are present, with the piecewise break point changing as a function of q in some cases (see
Fig. S9). While it could be argued that such scaling crossovers may be the result of trends
associated with non-stationary dynamics in the data, examination of the Augmented
Dickey-Fuller Test (ADF test) for all r(VO2) time series rejected the hypothesis of the
presence of trends, and we observed that the ADF test yields p< 0.01 in all time series.
Shuffling of the observed r(VO2) time series does not completely remove the crossover
scales δ or the two observed regimes, but does seem to change the scaling exponent for
the first scaling regime (see Figs. S2–S8). Given the presence of two scaling regimes across
all time series studied, we then examined the scaling slopes of the curves for both of these
scaling regimes and their change with the exponents q. This allowed us to estimate the
average Hurst (h(q)) and Renyi (τ (q)) spectra for each of these two scaling regimes. We
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then also fitted the MMCMmodel to the observed Renyi (τ (q)) spectra, and estimated the
singularity spectra (f (α)) based on these parameter fits.

When we examined average Hurst (h(q)) and Renyi (τ (q)) spectra, as well as the
corresponding singularity spectra (f (α)) estimated from the MMCM fits on τ (q), we
found that the two scaling regimes differ in their multifractal spectra across the seven
temperatures studied. Figures 6A, 6D, 6G, 6J, 6M, 6P and 6S show the multifractality of
r(VO2) fluctuations, as indicated by the dependence of h(q) on q for different temperature
values. We find that fluctuations of different magnitudes in r(VO2) time series show
different scaling behaviour, similar to what has been observed other complex systems
(Bunde & Lennartz, 2012; Kantelhardt et al., 2006; Kantelhardt et al., 2002). However, the
first and second scaling regimes differ in their behaviour, with smaller time scales (in
the approximate range 8≤ s≤ 100) showing generalized Hurst exponent h1(q) values
closer to 1.5, while larger time scales (in the approximate range 100≤ s≤ 1,024) show
generalized Hurst exponents decreasing from h2(q)≈ 0.9 to h2(q)≈ 0.25 as the exponent
order q increases (Fig. 6). Hence, fluctuations on the first scaling regime show long-range
correlations or persistence, similar to that of Brownianmotion, regardless of the magnitude
of the fluctuation. On the other hand, for the second scaling regime, smallVO2 fluctuations
are characterized by larger scaling exponents h2(q), corresponding to power law, long-
range correlated persistent dynamics, while larger VO2 fluctuations present smaller h2(q)
exponent values, corresponding to anti-persistent dynamics (see Figs. 6A, 6D, 6G, 6J, 6M,
6P and 6S). Thus, over intermediate to large time scales, large positive r(VO2) values are
balanced by large negative values. On the other hand, for this range of scales, small r(VO2)
values are persistent, such that small positive increases are followed by similarly valued
changes, resulting in gradual positive trends in VO2. A similar pattern occurs for negative
rates of change, which leads to gradual negative trends in VO2. Shuffling the r(VO2) time
series results in markedly lower values of h(q) scaling exponents for the first scaling regime,
indicating the observed, persistent long-range correlation cannot be accounted for by a
random sample of the observed spectral density function. On the other hand, in the second
scaling regime, a complex response is observed, where shuffling results in changes only for
negative and small positive q values, whereas observed exponents for large positive q values
overlap with the exponents from shuffled time series. In fact, with the exception of 30 ◦C,
very large fluctuations in r(VO2) do not differ from the random expectation (Fig. 6).

Observed differences in the range of h(q) exponents for the two scaling regimes can
also be observed when examining the Renyi exponent spectra. We observed mostly linear
Renyi exponent spectra in the first scaling regime, while the second scaling regime shows
nonlinear Renyi exponent spectra as expected for multifractal time series (Kantelhardt,
2011) (see Figs. 6B, 6E, 6H, 6K, 6N, 6Q and 6T). This suggests that the first scaling regime
should either be monofractal or weakly multifractal, requiring a smaller range of scaling
exponents to account for the observed singularities. On the other hand, the second scaling
regime is characterized by strong multifractality, with a broader range of scaling exponent
values. As observed in previous results, shuffling destroys the observed scaling spectra, with
the exception of τ (q) values observed for positive q, which do not differ from the shuffled
spectra (Fig. 6). In all the time series we examined, the observed Renyi exponent spectra
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Figure 6 Multifractal Detrended Fluctuation Analysis ofMus musculus r(VO2) time series across different temperature treatments. The figure
shows the results of the multifractal scaling analysis for all mice studied. The results for the generalized Hurst exponent spectra (h(q)) are shown in
figures (A), (D), (G), (J), (M), (P) and (S). Figures (B), (E), (H), (K), (N), (Q) and (T) show the results for the Renyi exponent spectra (τ (q)). Fig-
ures (C ), (F), (I), (L), (O), (R) and (U) show the results for thesingularity spectra (f (α)). Each figure shows in dashed and continuous black lines
the smoothed conditional mean of the different spectra for the first and second scaling regimes respectively. For shuffled data, the smoothed condi-
tional mean of the different spectra for the first and second scaling regimes are shown by dashed and continuous red lines respectively. For figures
(C), (F) and (I), the singularity spectra of the first regime corresponds to a single point, shown by a filled circle. The singularity spectra reveal that
for temperatures in the range 0 ◦C< Ta < 10 ◦C the time scales in the 8< s< 100 range present a monofractal scaling, while all remaining tempera-
tures show a weak multifractal scaling. All data for the second scaling regime show strong multifractality, which is not completely lost when data are
shuffled.
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Figure 7 Temperature effects on the strength of multifractality in mice. The figure shows the average
widths1α, of the f (α) spectra as a function of environmental temperature Ta. Figures (A)–(C ) show the
average widths1α calculated for the raw r(VO2) time series with linear, quadratic and cubic polynomial
detrending respectively. Figures (D)–(F) show the average widths1α calculated for the AAFT shuffled
time series with linear, quadratic and cubic polynomial detrending respectively.

were fit extremely well my the MMCM model shown in Eq. (8), with R2 values for the
nonlinear fitting procedure being close to 1.0 in all cases (see Fig. S10). This allowed us to
use the fitted τ (q) values to estimate the singularity spectra f (α) for each individual, which
were then averaged across all the different temperature treatments.

Examination of the average singularity spectra f (α) for different temperature treatments
shows that the first scaling regime of these r(VO2) time series are monofractal or weakly
multifractal, as evidenced by either a single point or a narrower parabola in the (α, f (α))
plane (see dashed lines in graphs in Figs. 6C, 6F, 6I, 6L, 6O, 6R and 6U). These qualitative
patterns do not change when quadratic or cubic de-trending polynomials are used (see
right-hand columns of Figs. S11 and S12). Indeed, the average degree of multifractality,1α
shows that the first scaling regime the strength of multifractality decreases with temperature
(see Fig. 7). While a similar qualitative pattern is observed for all de-trending polynomial
orders, a the decrease with temperature is significant only for the linear de-trending case
(linear OLS regression, F = 8.202, d.f. = (1, 5), p= 0.035) (Figs. 7A, 7B and 7C). In
sharp contrast, the second scaling regime shows broad singularity spectra, indicating a
much larger degree of multifractality, 1α (see continuous lines in graphs on Figs. 6C,
6F, 6I, 6L, 6O, 6R and 6U). For this second scaling regime, no significant linear trends
with temperature were observed, with the exception of the cubic de-trended data (linear
OLS regression, F = 13.43, d.f. = (1, 5), p= 0.015) (Fig. 7C). Shuffled data tend to show
similar degrees of multifractality across different temperatures and orders of detrending
polynomials (Figs. 7D–7F).

On the other hand, when we examine the exponent αmax of the singularity spectra, we see
that the first scaling regime is characterized bymuch stronger singularities, with αmax taking
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Figure 8 Temperature effects on the dominant multifractal exponent in mice. The figure shows the av-
erage dominant fractal exponent αmax, for the different the f (α) spectra as a function of environmental
temperature Ta. Figures (A)–(C ) show the average αmax values calculated for the raw r(VO2) time series
using linear, quadratic and cubic polynomial detrending respectively. Figures (D)–(F) show the average
αmax values calculated for the AAFT shuffled time series using linear, quadratic and cubic polynomial de-
trending respectively.

values closer to 1.5, being slightly larger for 15 ◦C and 20 ◦C (Figs. 6I and 6O). On the other
hand, the second scaling regime is characterized by weaker stronger singularities, showing
values of αmax below 0.5 (see Figs. 6C, 6F, 6I, 6L, 6O, 6R, 6U, 8C and 8F). Examination of the
changes in αmax as a function of temperature for the first scaling regime indicates that the
value of αmax has significant increases with temperature only for the linear and cubic cases
(linear de-trending: F = 7.52, d.f.= (1, 5), p= 0.04; cubic de-trending: F = 7.52, d.f.= (1,
5), p= 0.04) (Figs. 8A–8C). In the case of quadratic de-trending, temperature values equal
or greater than 15 ◦C show high values of αmax, coherent with the persistent, Brownian
motion-like values of h(q) observed before. On the other hand, for the second scaling
regime, αmax does not show significant changes with temperature for any de-trending
order (Figs. 8A–8C). Shuffled data tend to show similar degrees of multifractality for
different temperatures and orders of de trending polynomials, with shuffled data for the
first scaling regime clustering around values close to αmax= 0.9, and shuffled data for the
second scaling regime clustering around values close to αmax= 0.3 (Figs. 8D–8F). Thus,
both the observed degree of multifractality 1α, and the dominant multifractal singularity
exponent αmax in these two scaling regimes cannot be attributed to random fluctuations.

DISCUSSION
Physiological systems, and their state variables and signals, have been recognized as complex
(Burggren & Monticino, 2005; Glass, 2001). To date, most studies examining the causes and
functional implications of the loss of complexity in organisms have largely focused on
human biomedicine, aiming to understand either pathologies or the senescence process
(Costa et al., 2008; Delignières & Torre, 2009; Goldberger et al., 2002; Hausdorff et al., 2001;
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Lipsitz, 2004). In this regard, our study aims to provide a better understanding of the role
of physiological complexity in the homeostatic response to thermal challenges, particularly
in the context of a changing world climate. Here, we analyzed the dynamics of metabolic
rate fluctuations, r(VO2),under different Ta’s using a well-studied model organism, the lab
mouseMus musculus. Using MF-DFA, our results show that within the TNZ, r(VO2) time
series show two distinct scaling regimes in the fluctuation functions Fq(s), with a crossover
time scale δ of approximately 102 s. Examination of the generalizedHurst exponents shows
that these two scaling regimes correspond to persistent and anti-persistent dynamics for
scales below and above the crossover time scale, with the strength ofmultifractality differing
between these two regimes. When environmental temperature Ta is decreased below the
TNZ, the observed pattern of multifractal, anti-persistent long-range correlations over
longer time scales does not vary a great deal. On the other hand, over short scales, the
persistent long-range correlations transition from a weakly multifractal to a monofractal
distribution. We now discuss these results.

The first aspect we discuss is the robustness of the rather complex long-correlation
structure observed for our data. While previous analysis of VO2 have reported long-
range persistent 1/f β fluctuations, described by a single dominant monofractal scaling
exponent (Chaui-Berlinck et al., 2002a; Chaui-Berlinck et al., 2002b), we show here that
that VO2 fluctuations of different magnitudes are clustered throughout the experimental
time series with varying types of long-range correlation, depending on the time scale
analyzed. Thus, r(VO2) is a multifractal self-affine signal. This suggests that the feedback
control mechanisms underlying rapid changes in energy consumption involve strongly
non-linear dynamic processes. Both the observed multifractal exponent spectra and the
scaling crossover differ from those observed under a random linear transformation in
the frequency domain (Kantelhardt, 2011; Schreiber & Schmitz, 1996; Schreiber & Schmitz,
2000). This indicates that the observed multifractality of r(VO2) is a robust property
of metabolic rate. The existence of this long-range correlation structure indicates the
potential for plastic dynamic responses to thermal stress (Goldberger et al., 2002; Ivanov et
al., 2007). In this regard, the existence of a crossover, with two characteristic long-range
correlation signatures may be related to the dynamics of both VO2 and r(VO2). As we
have shown for data within the TNZ (see Fig. 1), VO2 time series may show periods of
higher energy consumption interspersed with periods of lower energy use (Fig. 1B). These
periods present particularly different patterns of VO2 changes, which are reflected in the
pattern of r(VO2) fluctuations. Thus, higher average energy uses (larger mean VO2 values)
are associated with less variable values of r(VO2), in agreement with observed results
for inter-specific scaling of r(VO2) across different vertebrate species (Labra, Marquet &
Bozinovic, 2007), as well as in diverse complex systems (see references in Labra, Marquet
& Bozinovic, 2007). Examination of r(VO2) data using different approaches Fourier power
spectra, DFA andMF-DFA reveal that small-scale and larger scales present different scaling
relationships. The first two methods agree qualitatively with the pattern shown by the
MF-DFA Fq(s) fluctuation functions. It is important point to out that that in all series,
the scaling crossover was observed regardless of the de-trending polynomial order used in
MF-DFA. On the other hand, the type of long-range correlation structure identified was
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also robust. When data were analysed using MF-DFA using 2nd and 3rd order de-trending
polynomials, the scaling regime for smaller time scales is observed to be either weakly
multifractal or monofractal across most temperatures, while the second scaling regime is
found to be multifractal for all three de-trending orders used in MF-DFA. For the second
scaling regime, corresponding to larger time scales, the broadest singularity spectra are
observed for 15 ◦C and 20 ◦C, with either αmax≈ 0.5 for first de-trending order MF-DFA,
or 0.5>αmax> 1.0 for 2nd and 3rd de-trending order MF-DFA.

The second aspect we discuss is the possible explanations for the qualitative changes
observed in the long-range correlation structure in the vicinity of 15 ◦C, as well as their
potential significance.Metabolic rate changes are central for the control ofTb in endotherms
(Chaui-Berlinck et al., 2005; Karasov & Martinez del Rio, 2007). Thus, body temperature in
these organisms is regulated through a complex set of processes and feedback relationships
involving behavioral, endocrine, vasomotor and neural processes (Chaui-Berlinck et al.,
2005; Karasov & Martinez del Rio, 2007). A recent review on the thermal physiology ofMus
musculus shows that in this species the lower limit of normothermia ranges between 5 and
15 ◦C (Gordon, 2012). Below these temperatures, thermal homeostasis requires increased
VO2, which become nearly twice the BMR. These additional homeostatic requirements
may be offset with different thermoregulation strategies that include behavioral, postural
and physiological adjustments, all of which carry with them increased energetic costs. Over
longer periods of time, these energetic requirements may not be met without resorting to
alternative physiological strategies such as torpor (Gordon, 2012). Interestingly, individuals
in our measurements did not reach the torpor stage, resorting only to individual huddling
within the measurement chamber. Studies on thermoregulatory behavior have shown
that small mammals such as lab mice form groups by huddling together as a behavioral
thermoregulatory response to temperature challenges (Canals, Rosenmann & Bozinovic,
1997; Canals et al., 1998). Interestingly, this behavioral response behaves as a system with
a continuous (second-order) phase transition, with a critical environmental temperature
value found between 16 ◦C and 20 ◦C (Canals & Bozinovic, 2011). For low temperatures,
individuals spontaneously aggregate, forming groups with a higher fractal dimension and a
lower mass-specific metabolic rate. This change in behavior occurs in the same temperature
range where we have observed maximal values for the degree of multifractality, supporting
the idea that different physiological regimes may occur above and below this temperature
range. Hence, future work could examine the long-range correlation properties of VO2

fluctuations under different strategies such as torpor or group huddling, in order to
determine whether the degree of multifractality decreases below that observed at 0 ◦C,
giving rise either to monofractal scaling or to the loss of fractal autocorrelations.

A third point we discuss is the biological significance of these results. As mentioned
earlier, whole-bodymetabolic rate is an emergent phenomenon, resulting frommicroscopic
interactions with a large number of degrees of freedom and a complex set of opposing
feedback mechanisms acting at different time scales (Bozinovic, 1992; Chaui-Berlinck et
al., 2005). In this regard, the multifractal nature of metabolic rate highlights the complex
and non-linear nature of the multiple feedback loops involved in the maintenance of
physiological homeostasis (Chaui-Berlinck et al., 2005; Darveau et al., 2002; Hochachka et
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al., 2003). The existence of multifractality in metabolic rate fluctuations has several inter-
esting implications, particularly regarding the sensitivity to initial conditions. In general,
multifractal dynamics are generated by non-linear recursive processes, which show different
scaling or fractal properties depending on the initial conditions or on the particular history
of external disturbances to the system (Kantelhardt, 2011). As a result, the observed
singularities and scaling exponents of multifractal time series can change in time, leading
to the presence of local abrupt shifts in the dynamics of these systems (Kantelhardt, 2011).
In addition, these singularities are associated with the presence of both extreme events
and fat tailed power law distributions, which have been shown to be a universal feature
of metabolic rate across different vertebrate species (Labra, Marquet & Bozinovic, 2007).
Despite the seemingly irregular unpredictable nature of metabolic rate fluctuations, our
results show that they have a characteristic long-range correlation structure. Although in
many applications the proximal mechanistic causes of observed fractality or multifractality
have not been elucidated (Kantelhardt, 2011), the fact remains that multifractal processes
such as r(VO2) are completely different from simple linear random fluctuations. This
opens an interesting scenario regarding the potential use of multifractal properties as either
a diagnostic tool or as baseline to determine animal response to environmental stress.
This improved characterization may also eventually allow the modeling the dynamics and
projection of the likelihood of extreme events or prediction of future behavior (Kantelhardt,
2011). This may complement the empirical estimates of metabolic rate, which typically
correspond to the average value of VO2 registered in a small section of the time series
under specific environmental conditions (Lighton, 2008). Similarly, measurements of the
rate of VO2 under the maximum sustainable rate of exercise (i.e., maximal metabolic rate)
have been shown to be mostly a function of aerobic capacity of the muscle mass (Weibel
et al., 2004). In the light of our results, it seems reasonable to expect that VO2 fluctuations
under conditions of maximum sustainable exercise would also showmultifractal long-term
correlations as well as power law distributed fluctuations.

In addition to the physiological significance of long-range multifractal correlations of
r(VO2), a related aspect pertains the taxonomic and systemic generality and significance
of our results. It is relevant to discuss whether these observed patterns are expected to hold
true for all endothermic species. While previous work on r(VO2) has reported a universal
probability distribution function across different vertebrate species (Labra, Marquet &
Bozinovic, 2007), no systematic comparative assessment has been carried out to determine
if the long-range correlation structure may hold true for different endothermic species,
be these birds or mammals. A particularly interesting aspect of such comparisons would
be to examine the role of individual body size. Our work was carried out using a small
endothermic species, the lab mouse. Analysis of a theoretical model of body temperature
control by shifts in metabolic rate has suggested that the rate of heat loss and the capacity to
rapidly increase metabolic output may lead to non-equilibrium betweenmetabolic rate and
body temperature in micro-endotherms (such as hummingbirds and small mice), resulting
in non-random 1/f β persistent oscillations of VO2, even within the TNZ (Chaui-Berlinck
et al., 2002a). Our results indicate that VO2 are not only long-range correlated, but that
have a complex multifractal structure, which indicates that the model of Chaui-Berlinck
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et al. (2002a) yields predictions that are at least qualitatively correct. Interestingly, this
theoretical model also predicts that larger endotherms such as the rat may not exhibit
similar complex oscillations, due to a dynamic equilibrium between metabolic rate and
body temperature, given the smaller surface area-volume ratio. If correct, this model
predicts the absence of long-range correlated r(VO2) oscillations for larger endotherms,
with multifractal dynamics being found only in micro-endotherms, regardless of whether
they are mammals or birds. Whether a threshold body size may be identified below which
multifractalitymay be observedwould indicate the onset of a highly nonlinear configuration
of control processes acting in the regulation of body temperature. The alternative outcome
would be that multifractal long-range correlations also hold true for larger endotherms.
This alternative scenario would indicate that a more detailed model analysis is required to
account for the processes affecting metabolic rate oscillations.

GENERAL CONCLUSION
While an increasing number of authors have pointed out the complex nature of
physiological processes (Burggren & Monticino, 2005; Spicer & Gaston, 1999), an emerging
research question is what are the consequences and implications of physiological complexity
for the homeostatic adaptive capability of animals, particularly on a scenario of global
climate change. In addition to considering the potential role of organism body size, it
is important to determine whether the observed multifractal correlation structure is a
general trait of all endotherm taxa, or if it is a characteristic trait of mammals as a lineage.
Comparative experimental studies may help to untangle the relative importance of body
size and taxonomic inertia in the emergence of multifractality. A related question is
whether ectotherms do present any long-range correlation structure in their metabolic rate
dynamics. If complexity is an emergent characteristic arising from the different thermal
control feedback loops, then multifractality should be absent in metabolic rate dynamics
of reptiles or amphibians. The goal of such studies would be to allow the assessment of the
relative importance of universal emergent statistical behaviour and phylogenetic inertia in
morphological and physiological traits that may give rise to complex metabolic rate
fluctuations. Again, the use of a comparative, controlled experimental approach may allow
careful examination of the relationships between the complexity ofmetabolic rate dynamics
and the origins of endothermy.

Our results show that the dynamic response of the metabolic machinery in a model
mammal species facing thermal challenge do not reduce themselves to the linear variance
response expected, evidencing in addition that this response is regulated by environmental
history experienced of individual. In this regards, the humped shape observed from the
relationship between complexity level of VO2 and decrease of temperature agree with a
limit at the physiological capability to control of body temperature. Future work in this area
may focus on experimental explorations of the physiological basis of long-term correlations
and multifractality of VO2 fluctuations. For example, such work may examine the relative
importance of different control mechanisms regulating the rate of oxygen uptake as part
of a hierarchical cascade of feedback loops that lead to multifractality.
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