
Submitted 5 September 2016
Accepted 17 September 2016
Published 18 October 2016

Corresponding author
Torbjørn Rognes, torognes@ifi.uio.no

Academic editor
Tomas Hrbek

Additional Information and
Declarations can be found on
page 18

DOI 10.7717/peerj.2584

Copyright
2016 Rognes et al.

Distributed under
Creative Commons CC-BY 4.0

OPEN ACCESS

VSEARCH: a versatile open source tool
for metagenomics
Torbjørn Rognes1,2, Tomáš Flouri3,4, Ben Nichols5, Christopher Quince5,6 and
Frédéric Mahé7,8

1Department of Informatics, University of Oslo, Oslo, Norway
2Department of Microbiology, Oslo University Hospital, Oslo, Norway
3Heidelberg Institute for Theoretical Studies, Heidelberg, Germany
4 Institute for Theoretical Informatics, Karlsruhe Institute of Technology, Karlsruhe, Germany
5 School of Engineering, University of Glasgow, Glasgow, United Kingdom
6Warwick Medical School, University of Warwick, Coventry, United Kingdom
7Department of Ecology, University of Kaiserslautern, Kaiserslautern, Germany
8UMR LSTM, CIRAD, Montpellier, France

ABSTRACT
Background. VSEARCH is an open source and free of charge multithreaded 64-bit
tool for processing and preparing metagenomics, genomics and population genomics
nucleotide sequence data. It is designed as an alternative to the widely used USEARCH
tool (Edgar, 2010) for which the source code is not publicly available, algorithm details
are only rudimentarily described, and only a memory-confined 32-bit version is freely
available for academic use.
Methods. When searching nucleotide sequences, VSEARCH uses a fast heuristic based
on words shared by the query and target sequences in order to quickly identify similar
sequences, a similar strategy is probably used in USEARCH. VSEARCH then performs
optimal global sequence alignment of the query against potential target sequences, using
full dynamic programming instead of the seed-and-extendheuristic used byUSEARCH.
Pairwise alignments are computed in parallel using vectorisation and multiple threads.
Results. VSEARCH includes most commands for analysing nucleotide sequences
available in USEARCH version 7 and several of those available in USEARCH version 8,
including searching (exact or based on global alignment), clustering by similarity (using
length pre-sorting, abundance pre-sorting or a user-defined order), chimera detection
(reference-based or de novo), dereplication (full length or prefix), pairwise alignment,
reverse complementation, sorting, and subsampling. VSEARCH also includes com-
mands for FASTQ file processing, i.e., format detection, filtering, read quality statistics,
and merging of paired reads. Furthermore, VSEARCH extends functionality with
several new commands and improvements, including shuffling, rereplication, masking
of low-complexity sequences with the well-known DUST algorithm, a choice among
different similarity definitions, and FASTQ file format conversion. VSEARCH is here
shown to be more accurate than USEARCH when performing searching, clustering,
chimera detection and subsampling, while on a par with USEARCH for paired-ends
read merging. VSEARCH is slower than USEARCH when performing clustering and
chimera detection, but significantly faster when performing paired-end reads merging
and dereplication. VSEARCH is available at https://github.com/torognes/vsearch under
either the BSD 2-clause license or the GNU General Public License version 3.0.

How to cite this article Rognes et al. (2016), VSEARCH: a versatile open source tool for metagenomics. PeerJ 4:e2584; DOI
10.7717/peerj.2584

https://peerj.com
mailto:torognes@ifi.uio.no
https://peerj.com/academic-boards/editors/
https://peerj.com/academic-boards/editors/
http://dx.doi.org/10.7717/peerj.2584
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://github.com/torognes/vsearch
http://dx.doi.org/10.7717/peerj.2584


Discussion. VSEARCHhas been shown to be a fast, accurate and full-fledged alternative
to USEARCH. A free and open-source versatile tool for sequence analysis is now
available to the metagenomics community.

Subjects Biodiversity, Bioinformatics, Computational Biology, Genomics, Microbiology
Keywords Clustering, Chimera detection, Searching, Masking, Shuffling, Parallellization,
Metagenomics, Alignment, Sequences, Dereplication

INTRODUCTION
Rockström et al. (2009) and Steffen et al. (2015) presented biodiversity loss as a major threat
for the short-term survival of humanity. Recent progress in sequencing technologies
have made possible large scale studies of environmental genetic diversity, from deep sea
hydrothermal vents to Antarctic lakes (Karsenti et al., 2011), and from tropical forests to
Siberian steppes (Gilbert, Jansson & Knight, 2014). Recent clinical studies have shown the
importance of the microbiomes of our bodies and daily environments for human health
(Human Microbiome Project Consortium, 2012). Usually focusing on universal markers
(e.g., 16S rRNA, ITS, COI), these targeted metagenomics studies produce many millions
of sequences, and require open-source, fast and memory efficient tools to facilitate their
ecological interpretation.

Several pipelines have been developed for microbiome analysis, among which
mothur (Schloss et al., 2009), QIIME (Caporaso et al., 2010), and UPARSE (Edgar, 2013)
are the most popular. QIIME and UPARSE are both based on USEARCH (Edgar,
2010), a set of tools designed and implemented by Robert C. Edgar, and available at
http://drive5.com/usearch/. USEARCH offers a great number of commands and options to
manipulate and analyse FASTQ and FASTA files. However, the source code of USEARCH
is not publicly available, algorithm details are only rudimentarily described, and only a
memory-confined 32-bit version is freely available for academic use.

We believe that the existence of open-source solutions is beneficial for end-users and can
invigorate research activities. For this reason, we have undertaken to offer a high quality
open-source alternative to USEARCH, freely available to users without any memory
limitation. VSEARCH includes most of the USEARCH functions in common use, and
further development may add additional features. Here we describe the details of the
VSEARCH implementation. To assess its performance in terms of speed and quality of
results, we have evaluated some of the most important functions (searching, clustering,
chimera detection and subsampling) and compared them to USEARCH. We find that
VSEARCH delivers results that are better or on a par with USEARCH results.

MATERIALS AND METHODS
Algorithms and implementation
Below is a brief description of the most important functions of VSEARCH and details of
their implementation. VSEARCH command line options are shown in italics, and should
be preceded by a single (-) or double dash (- -) when used.

Rognes et al. (2016), PeerJ, DOI 10.7717/peerj.2584 2/22

https://peerj.com
http://drive5.com/usearch/
http://dx.doi.org/10.7717/peerj.2584


Reading FASTA and FASTQ files
Most VSEARCH commands read files in FASTA or FASTQ format. The parser for FASTQ
files in VSEARCH is compliant with the standard as described by Cock et al. (2010) and
correctly parses all their tests files. FASTA and FASTQ files are automatically detected
and many commands accept both as input. Files compressed with gzip or bzip2 are
automatically detected and decompressed using the zlib library by Gailly & Adler (2016)
or the bzip2 library by Seward (2016), respectively. Data may also be piped into or out of
VSEARCH, allowing for instance many separate FASTA files to be piped into VSEARCH
for simultaneous dereplication, or allowing the creation of complex pipelines without ever
having to write on slow disks.

VSEARCH is a 64-bit program and allows very large datasets to be processed, essentially
limited only by the amount of memory available. The free USEARCH versions are 32-bit
programs that limit the available memory to somewhere less than 4GB, often seriously
hampering the analysis of realistic datasets.

Writing result files
VSEARCH can output results in a variety of formats (FASTA, FASTQ, tables, alignments,
SAM) depending on the input format and command used. When outputting FASTA
files, the line width may be specified using the fasta_width option, where 0 means that
line wrapping should be turned off. Similar controls are offered for pairwise or multiple
sequence alignments.

Searching
Global pairwise sequence comparison is a core functionality of VSEARCH. Several
commands compare a query sequence against a database of sequences: all-vs-all alignment
(allpairs_global), clustering (cluster_fast, cluster_size, cluster_smallmem), chimera detection
(uchime_denovo and uchime_ref ) and searching (usearch_global). This comparison
function proceeds in two phases: an initial heuristic filtering based on shared words,
followed by optimal alignment of the query with the most promising candidates.

The first phase is presumably quite similar to USEARCH (Edgar, 2010). Heuristics
are used to identify a small set of database sequences that have many words in common
with the query sequence. Words (or k-mers) consist of a certain number k of consecutive
nucleotides of a sequence (8 by default, adjustable with the wordlength option). All
overlapping words are included. A sequence of length n then contains at most n−k+1
unique words. VSEARCH counts the number of shared words between the query and
each database sequence. Words that appear multiple times are counted only once. To
count the words in the database sequences quickly, VSEARCH creates an index of all the
4k possible distinct words and stores information about which database sequences they
appear in. For extremely frequent words, the set of database sequences is represented by a
bitmap; otherwise the set is stored as a list. A finer control of k-mer indexing is described
for USEARCH by the pattern (binary string indicating which positions must match) and
slots options. USEARCH has such options but seems to ignore them. Currently, VSEARCH
ignores these two options too. The minimum number of shared words required may be

Rognes et al. (2016), PeerJ, DOI 10.7717/peerj.2584 3/22

https://peerj.com
http://dx.doi.org/10.7717/peerj.2584


specified with theminwordmatches option (10 by default), but a lower value is automatically
used for short or simple query sequences with less than 10 unique words.

Comparing sequences based on statistics of shared words is a common method to
quickly assess the similarity between two sequences without aligning them, which is
often time-consuming. The D2 statistic and related metrics for alignment-free sequence
comparison have often been used for rapid and approximate sequence matching and their
statistical properties have been well studied (Song et al., 2014). The approach used here has
similarities to the D2 statistic, but multiple matches of the same word are ignored.

In the second phase, searching proceeds by considering the database sequences in a
specific order, starting with the sequence having the largest number of words in common
with the query, and proceeding with a decreasing number of shared words. If two database
sequences have the same number of words in common with the query, the shortest
sequence is considered first. The query sequence is compared with each database sequence
by computing the optimal global alignment. The alignment is performed using a multi-
threaded and vectorised full dynamic programming algorithm (Needleman &Wunsch,
1970) adapted from SWIPE (Rognes, 2011). Due to the extreme memory requirements
of this method when aligning two long sequences, an alternative algorithm described by
Hirschberg (1975) andMyers & Miller (1988) is used when the product of the length of the
sequences is greater than 25,000,000, corresponding to aligning two 5,000 bp sequences.
This alternative algorithm uses only a linear amount of memory but is considerably
slower. This second phase is probably where USEARCH and VSEARCH differ the most, as
USEARCH by default presumably performs heuristic seed-and-extend alignment similar to
BLAST (Altschul et al., 1997), and only performs optimal alignment when the option fulldp
(full dynamic programming) is used. Computing the optimal pairwise alignment in each
case gives more accurate results but is also computationally more demanding. The efficient
and vectorised full dynamic programming implementation in VSEARCH compensates
that extra cost, at least for sequences that are not too long.

If the resulting alignment indicates a similarity equal to or greater than the value
specified with the id option, the database sequence is accepted. If the similarity is too low, it
is rejected. Several other options may also be used to determine how similarity is computed
(iddef, as USEARCH used to offer up to version 6), and which sequences should be accepted
and rejected, either before (e.g., self,minqsize) or after alignment (e.g.,maxgaps,maxsubs).
The search is terminated when either a certain number of sequences have been accepted
(1 by default, adjustable with the maxaccepts option), or a certain number of sequences
have been rejected (32 by default, adjustable with the maxrejects option). The accepted
sequences are sorted by sequence similarity and presented as the search results.

VSEARCH also includes a search_exact command that only identifies exact matches to
the query. It uses a hash table in a way similar to the full-length dereplication command
described below.

Clustering
VSEARCH includes commands to perform de novo clustering using a greedy and heuristic
centroid-based algorithm with an adjustable sequence similarity threshold specified with

Rognes et al. (2016), PeerJ, DOI 10.7717/peerj.2584 4/22

https://peerj.com
http://dx.doi.org/10.7717/peerj.2584


the id option (e.g., 0.97). The input sequences are either processed in the user supplied
order (cluster_smallmem) or pre-sorted based on length (cluster_fast ) or abundance (the
new cluster_size option). Each input sequence is then used as a query in a search against
an initially empty database of centroid sequences. The query sequence is clustered with the
first centroid sequence found with similarity equal to or above the threshold. The search
is performed using the heuristic approach described above which generally finds the most
similar sequences first. If nomatches are found, the query sequence becomes the centroid of
a new cluster and is added to the database. If maxaccepts is higher than 1, several centroids
with sufficient sequence similarity may be found and considered. By default, the query
is clustered with the centroid presenting the highest sequence similarity (distance-based
greedy clustering, DGC), or, if the sizeorder option is turned on, the centroid with the
highest abundance (abundance-based greedy clustering, AGC) (He et al., 2015; Westcott &
Schloss, 2015; Schloss, 2016). VSEARCH performs multi-threaded clustering by searching
the database of centroid sequences with several query sequences in parallel. If there are
any non-matching query sequences giving rise to new centroids, the required internal
comparisons between the query sequences are subsequently performed to achieve correct
results. For each cluster, VSEARCH can create a simple multiple sequence alignment using
the center star method (Gusfield, 1993) with the centroid as the center sequence, and then
compute a consensus sequence and a sequence profile.

Dereplication and rereplication
Full-length dereplication (derep_fulllength) is performed using a hash table with an open
addressing and linear probing strategy based on the Google CityHash hash functions
(written by Geoff Pike and Jyrki Alakuijala, and available at https://github.com/google/
cityhash). The hash table is initially empty. For each input sequence, the hash is computed
and a lookup in the hash table is performed. If an identical sequence is found, the input
sequence is clustered with the matching sequence; otherwise the input sequence is inserted
into the hash table.

Prefix dereplication (derep_prefix) is also implemented. Aswith full-length dereplication,
identical sequences are clustered. In addition, sequences that are identical to prefixes of
other sequences will also be clustered together. If a sequence is identical to the prefix
of multiple sequences, it is generally not defined how prefix clustering should behave.
VSEARCH resolves this ambiguity by clustering the sequence with the shortest of the
candidate sequences. If they are equally long, priority will be given to the most abundant,
the one with the lexicographically smaller identifier or the one with the earliest original
position, in that order.

To perform prefix dereplication, VSEARCH first creates an initially empty hash table. It
then sorts the input sequences by length and identifies the length s of the shortest sequence
in the dataset. Each input sequence is then processed as follows, starting with the shortest:
If an exact match to the full input sequence is found in the hash table, the input sequence
is clustered with the matching hash table sequence. If no match to the full input sequence
is found, the prefixes of the input sequence are considered, starting with the longest prefix
and proceeding with shorter prefixes in order, down to prefixes of length s. If a match is

Rognes et al. (2016), PeerJ, DOI 10.7717/peerj.2584 5/22

https://peerj.com
https://github.com/google/cityhash
https://github.com/google/cityhash
http://dx.doi.org/10.7717/peerj.2584


now found in the hash table, the sequences are clustered, the matching sequence is deleted
from the hash table and the full input sequence is inserted into the hash table instead. If no
match is found for any prefix, the full sequence is inserted into the hash table. In the end,
the remaining sequences in the hash table will be output with accumulated abundances for
all sequences in each cluster.

In order to identify matches in the hash table during prefix dereplication, a hash is
computed for each full-length input sequence and all its prefixes. The hash function used
is the 64-bit Fowler–Noll–Vo 1a hash function (Fowler, Noll & Vo, 1991), which is simple
and quick to compute for such a series of sequences by adding one nucleotide at a time.

The sequences resulting from dereplication andmany other commandsmay be relabeled
with a given prefix followed by a sequentially increasing number. VSEARCH exclusively
also offers the possibility of relabelling each sequence with the SHA-1 (Eastlake & Jones,
2001) or MD5 (Rivest, 1992) message digest (hash) of the sequence. These are strings that
are highly likely to be unique for each sequence. Before the digest is computed, the sequence
is normalized by converting U’s to T’s and converting all symbols to upper case. VSEARCH
includes public domain code for the MD5 algorithm written by Alexander Peslyak, and for
SHA1 by Steve Reid and others.

VSEARCH also includes a new command (rereplicate) to perform rereplication that can
be used to recreate datasets as they were before full-length dereplication, but of course
original labels cannot be recreated.

Chimera detection
Chimeras are detected either de novo (uchime_denovo command) or with a reference
database (uchime_ref command) using the UCHIME algorithm described by Edgar et
al. (2011). VSEARCH will divide each query sequence into four segments and look for
similarity of each segment to sequences in the set of potential parents using the heuristic
search function described earlier. It will consider the four best candidates for each segment
using maxaccepts 4 and maxrejects 16, and an id threshold of 0.55. VSEARCH optionally
outputs borderline sequences, that is, sequences having a high enough score (as specified
with theminh option) but with too small a divergence from the closest parent (as specified
with the mindiv option). Multi-threading is supported for reference-based chimera
detection.

Low-complexity sequence masking
VSEARCH includes a highly optimized and parallelized implementation of the Dust algo-
rithm by Tatusov and Lipman formasking of simple repeats and low-complexity nucleotide
sequences. It is considerably faster than the implementation of the same algorithm in USE-
ARCH. Their code available at ftp://ftp.ncbi.nlm.nih.gov/pub/tatusov/dust/version1/src/
is in the public domain. VSEARCH uses this algorithm by default, while USEARCH by
default uses an undocumented rapid masking algorithm called fastnucleo. VSEARCH
performs soft-masking automatically for the pairwise alignment, search, clustering and
chimera detection commands. This behaviour can be controlled with the hardmask option
to replace masked symbols with N’s instead of lower-casing them, and the dbmask and
qmask options, which selects the masking algorithm (none, dust or soft) used for the

Rognes et al. (2016), PeerJ, DOI 10.7717/peerj.2584 6/22

https://peerj.com
ftp://ftp.ncbi.nlm.nih.gov/pub/tatusov/dust/version1/src/
http://dx.doi.org/10.7717/peerj.2584


database and query sequences, respectively. Masking may also be performed explicitly on
an input file using the fastx_mask and maskfasta commands.

FASTQ file processing
VSEARCH includes commands to detect the FASTQ file version and the range of quality
scores used (fastq_chars), as well as two commands for computing sequence quality statistics
(fastq_stats and fastq_eestats). It can also truncate and filter sequences in FASTQ files based
on various criteria (fastq_filter). A new command is added to convert between different
FASTQ file versions and quality encodings (fastq_convert ), e.g., from the old Phred+64
encoded Illumina FASTQ files to the newer Phred+33 format.

Merging of paired-end reads
Merging of paired-end reads is supported by VSEARCH using the fastq_mergepairs
command. The method used has some similarity to PEAR (Zhang et al., 2014) and
recognises options similar to USEARCH. The algorithm computes the optimal ungapped
alignment of the overlapping region of the forward sequence and the reverse-complemented
reverse sequence. The alignment requires a minimum overlap length (specified with the
fastq_minovlen option, default 10), a maximum number of mismatches (fastq_maxdiffs
option, default 5), and a minimum and maximum length of the merged sequence
(fastq_minmergelen option, default 1, and fastq_maxmergelen option, default infinite).
Staggered read pairs, i.e., read pairs where the 3′ end of the reverse read has an overhang
to the left of the 5′ end of the forward read, are not allowed by default, but may be turned
on by the fastq_allowmergestagger option. VSEARCH uses a match score (alpha) of +4
and a mismatch score (beta) of −5 for perfect quality residues. These scores are weighted
by the probability that these two residues really match or mismatch, respectively, taking
quality scores into account. These probabilities are computed in a way similar to PEAR
score method 2 described in ‘Algorithms and implementation’ of the PEAR paper (Zhang
et al., 2014), but VSEARCH assumes all nucleotide background frequencies are 0.25. When
merging sequences, VSEARCH computes posterior quality scores for the overlapping
regions as described by Edgar & Flyvbjerg (2015). For speed, scores and probabilities are
pre-computed for all possible quality scores.

Sorting and shuffling
VSEARCH can sort FASTA files by decreasing sequence length (sortbylength) or abundance
(sortbysize). VSEARCH can also perform shuffling of FASTA files in randomorder (shuffle).
A seed value for the pseudo random number generator may be provided by the randseed
option to obtain replicable results.

Subsampling
Sequences in FASTA and FASTQ files can be subsampled (fastx_subsample) by randomly
extracting a certain number (sample_size) or percentage (sample_pct ) of the input
sequences. Abundances may be taken into account, giving results as if the input sequences
were rereplicated, subsampled and then dereplicated.

Rognes et al. (2016), PeerJ, DOI 10.7717/peerj.2584 7/22

https://peerj.com
http://dx.doi.org/10.7717/peerj.2584


RESULTS AND DISCUSSION
Supported commands and options
VSEARCH implements the following commands available in USEARCH version 7:
allpairs_global, cluster_fast, cluster_smallmem, derep_fulllength, derep_prefix, fastq_chars,
fastq_filter, fastq_mergepairs, fastq_stats, fastx_mask, maskfasta, sortbylength, sortbysize,
uchime_denovo, uchime_ref and usearch_global. In addition, the following commands
available in USEARCH version 8 have been implemented: fastq_eestats, fastx_revcomp,
fastx_subsample and search_exact. VSEARCH additionally includes a few new commands
that do not exist in USEARCH: cluster_size, fastq_convert, rereplicate and shuffle.

SomeUSEARCHversion 7 commands have not yet been implemented inVSEARCH.We
have not prioritized commands related to amino acid sequences (findorfs), local alignment
(allpairs_local, pairs_local, search_local, ublast ), brute-force search (search_global,
pairs_global), UDB databases (makeudb_ublast, makeudb_usearch, udb2fasta, udbinfo,
udbstats), and the UPARSE pipeline (cluster_otus, uparse_ref ).

Almost all USEARCH 7 options are supported, except for those related to non-standard
database indexing (alpha, dbaccelpct, dbstep, pattern, slots) as well as local alignments and
alignment heuristics (band, hspw, lext, lopen,matrix,minhsp, xdrop_g, xdrop_nw, xdrop_u).

The same command and option names as in USEARCH version 7 have generally been
used in order to make VSEARCH an almost drop-in replacement. In fact, in QIIME many
commands will run fine if an alias or link from usearch to vsearch is made. Detailed
documentation of VSEARCH is available as a man page. We will consider adding further
commands and options to VSEARCH in the future.

Performance assessment
The performance of the most important functions of VSEARCH version 2.0.3 (64-bit) was
evaluated and compared to the 32-bit versions of USEARCH version 7.0.1090 and 8.1.1861.
All datasets used were small enough to fit comfortably in the memory allocated to a 32-bit
process. Chimera detectionwas also compared toUCHIMEversion 4.2. All tests were run on
GNU/Linux CentOS 6.7 compute nodes with 16 physical cores (Intel(R) Xeon(R) CPU E5-
2670 0@ 2.60GHz) and 64GBRAM. Programswere runwith 8 threads, if possible. All times
indicated are wall-clock times. All scripts and data necessary to perform the evaluations are
available in the GitHub repository at https://github.com/torognes/vsearch-eval/ to enable
independent replication.

Searching
Evaluation of search accuracy was carried out as described in the USEARCH paper (Edgar,
2010), its supplementary, and on the website (http://drive5.com/usearch/benchmark_rfam.
html), by assessing the ability of the programs to identify RNA sequences belonging to
the same family in RFAM (Burge et al., 2013). The 383,004 sequences in Rfam version 11
were randomly shuffled and then the first sequence from each of the 2,085 (out of 2,208)
families that contained at least 2 members was selected as a representative and used as a
query against the remaining 380,919 sequences. The programs were run with options id
0.0, minseqlength 1, maxaccepts 1, maxrejects 32, and strand plus. If the matching sequence

Rognes et al. (2016), PeerJ, DOI 10.7717/peerj.2584 8/22

https://peerj.com
https://github.com/torognes/vsearch-eval/
http://drive5.com/usearch/benchmark_rfam.html
http://drive5.com/usearch/benchmark_rfam.html
http://dx.doi.org/10.7717/peerj.2584


Figure 1 Search accuracy on the RFAM v11 dataset.USEARCH version 7 (blue), USEARCH version
8 (orange) and VSEARCH (black) was run using the usearch_global command on subsets of the RFAM
dataset to identify members of the same families. The plot shows the true positive rate (also known as the
recall or sensitivity) as a function of the false discovery rate at varying sequence similarity levels. This curve
is based on data from 20 shufflings of the dataset.

found belonged to the same family, it was considered a true positive, otherwise it was
considered as a false positive. We combined the results from 20 shufflings and plotted the
results in the ROC-like curve shown in Fig. 1. For a false discovery rate between 0.010 and
0.015, VSEARCH is more accurate than USEARCH’s latest version. For lower values, the
three programs have similar accuracies. At higher false discovery rates, USEARCH version
8 has an advantage.

The time to search the Rfam database as described above was measured. To avoid
extremely short running times, 1,000 replicates of the datasets were used. USEARCH
version 7 required on average 5 min 29 s for the search, USEARCH version 8 took 5 min
57 s, while VSEARCH took 5 min 26 s.

Clustering
Westcott & Schloss (2015) have already carried out an evaluation of the clustering
performance of VSEARCH. They tested the ability of several tools to assign OTUs for 16S
rRNA sequences and ‘‘demonstrated that for the greedy algorithms VSEARCH produced
assignments that were comparable to those produced by USEARCH making VSEARCH
a viable free and open source alternative to USEARCH’’. Schloss (2016) also evaluated de
novo clustering by VSEARCH.

We independently evaluated the clustering accuracy of USEARCH and VSEARCH as
described for Swarm (Mahé et al., 2014) using twomock datasets, one with an even and one

Rognes et al. (2016), PeerJ, DOI 10.7717/peerj.2584 9/22

https://peerj.com
http://dx.doi.org/10.7717/peerj.2584


with uneven composition of 57 archaea and bacteria. The datasets were first dereplicated.
Then the taxonomy of the unique sequences was assigned by a search against the set of
rRNA reference sequences representing the species in the mock datasets, carried out with
the usearch_global command of USEARCH. The sequences were shuffled randomly 10
times and clustering was performed at 20 different similarity levels ranging from 80% to
99% in steps of 1%. Clustering was carried out in two ways, first using the cluster_fast
command that pre-sorts the sequences by length, and then using the cluster_smallmem
command that simply processes the sequences in the user-supplied order (in that case,
we supplied sequences ordered by decreasing abundance using the sortbysize command).
We then compared the clusters obtained to the assigned species and computed the recall,
precision and the adjusted Rand index of the classifications. Recall measures to what extent
amplicons assigned to the same species are grouped together in the same OTU (i.e., not
over-splitting). Precision measures to what extent amplicons in an OTU are assigned to
the same species (i.e., not over-grouping). The adjusted Rand index (Rand, 1971;Hubert &
Arabie, 1985) summarises both precision and recall using a measure of agreement between
two clusterings while adjusting for expected values by chance. The average values over the all
shufflings are presented in Figs. 2 and 3 for the even and uneven datasets, respectively. For
abundance-sorted sequences, the difference between VSEARCH and USEARCH version
8 is negligible. The difference is larger for length-sorted sequences. When using length
sorting, USEARCH 8 (as well as version 7 on the even dataset) shows better precision
than VSEARCH for similarity levels below 93%. However, OTU delineation is usually
performed at higher similarity values, typically 97%. In the case of our benchmark, overall
accuracy as measured by the adjusted Rand index is maximised at 95–97% similarity. This
is precisely the region where for length sorting at least VSEARCH outperforms USEARCH.

The time used for clustering is shown in Fig. 4. The time used depended on the dataset,
algorithm and clustering threshold. The USEARCH programs were in general 2–3 times
faster than VSEARCH. In general the difference in speed was smaller for higher thresholds,
especially at 99% similarity. Clustering with USEARCH using the fulldp option is an order
of magnitude slower than VSEARCH, but contrary to our expectations it does not seem to
improve accuracy.

Dereplication
Measurements of dereplication speed were performed on the even and uneven datasets
described earlier as well as on the BioMarKs dataset (Logares et al., 2014). For full-length
dereplication (derep_fulllength) VSEARCH was about 40–50% faster than USEARCH
version 7 and 50–70% faster than version 8 on all three datasets. All programs were
approximately equally fast on prefix dereplication (derep_prefix) of the even and uneven
datasets. However, prefix dereplication of the BioMarKs dataset was extremely slow with
USEARCH. USEARCH version 7 used more than 4 min and version 8 more than 27 min,
while VSEARCH used less than 4 s. The prefix dereplication algorithm used in USEARCH
appears ineffective when dealing with short sequences. Removing the 811 sequences shorter
than 200 bp out of the 312,503 sequences of the BioMarKs dataset reduces the running
time of USEARCH version 7 and 8 down to just 5 and 6 s, respectively.

Rognes et al. (2016), PeerJ, DOI 10.7717/peerj.2584 10/22

https://peerj.com
http://dx.doi.org/10.7717/peerj.2584


Figure 2 Clustering accuracy on the even dataset.USEARCH version 7 (blue) and 8 (orange) and
VSEARCH (black) was run using abundance sorting (cluster_smallmem) (A, C, E) and length sorting
(cluster_fast ) (B, D, F) on the even dataset. The performance is indicated with the adjusted Rand index (A,
B), recall (C, D) and precision (E, F) metrics.

Chimera detection
We evaluated the chimera detection accuracy of VSEARCH and USEARCH in two ways,
first using a method similar to that performed for UCHIME, and then using a new chimera
simulation procedure based on sequences from Greengenes (DeSantis et al., 2006) and
SILVA (Quast et al., 2013) sequences.

First we repeated the evaluation of the uchime_ref command described in the
UCHIME paper (Edgar et al., 2011) using the SIMM dataset downloaded from
http://drive5.com/uchime/uchime_download.html. The dataset consists of 900 simulated
chimeras that are approximately 250 bp long. The chimeras were generated from 2, 3
or 4 segments selected randomly from 86 original sequences and have similarities in the
ranges 90–95%, 95–97% and 97–99% to the original sequences. They were either used
unmodified or with 1–5% indels or 1–5% substitutions. We assessed the performance
of (i) the original open-source UCHIME version 4.2 program, (ii) USEARCH version
7, (iii) USEARCH version 8, and (iv) VSEARCH. The results are shown in Table 1 and
indicate that VSEARCH is superior to the other tools in almost all cases, and in particular
when indels were added. The original UCHIME program was found to be quite, but also

Rognes et al. (2016), PeerJ, DOI 10.7717/peerj.2584 11/22

https://peerj.com
http://drive5.com/uchime/uchime_download.html
http://dx.doi.org/10.7717/peerj.2584


Figure 3 Clustering accuracy on the uneven dataset.USEARCH version 7 (blue) and 8 (orange) and
VSEARCH (black) was run using abundance sorting (cluster_smallmem) (A, C, E) and length sorting
(cluster_fast ) (B, D, F) on the uneven dataset. The performance is indicated with the adjusted Rand index
(A, B), recall (C, D) and precision (E, F) metrics.

considerably slower than all the other tools. USEARCH was better than VSEARCH in only
4 out of 99 cases.

Next, we tested reference-based (uchime_ref ) and de novo (uchime_denovo) chimera
detection using sequences from the 2011 version of Greengenes downloaded from
http://greengenes.lbl.gov/Download/Sequence_Data/Fasta_data_files/ and from version
106 (May 2011) of the SILVA database downloaded from https://www.arb-silva.de/no_
cache/download/archive/release_106/Exports/. Sequences from the 16S rRNA V4 region
was computationally extracted using the 515F (5′-GTGNCAGCMGCCGCGGTAA-3′) and
806R (5′-GGACTACHVGGGTWTCTAAT-3′) primers, and 8,000 reads were randomly
selected from each database. PCR was simulated using a new simulation algorithm known
as Simera (Nichols & Quince, 2016) (available at https://github.com/bnichols1979/Simera)
that includes amplification and creation of PCR artefacts like chimeras. We sampled 30,000
reads (-s 30,000) and generated 20,000 potential chimeras (-c 20,000). Defaults were used
for other options to Simera. The output sequences were then fed into an Illumina MiSeq
noise simulator (Schirmer et al., 2015) ending up with 14,966 reads based on Greengenes
and 14,952 reads based on SILVA, of which 1,262 and 1,640 reads contain chimeric
sequences, respectively. Next, the sequences were either clustered using the cluster_fast

Rognes et al. (2016), PeerJ, DOI 10.7717/peerj.2584 12/22

https://peerj.com
http://greengenes.lbl.gov/Download/Sequence_Data/Fasta_data_files/
https://www.arb-silva.de/no_cache/download/archive/release_106/Exports/
https://www.arb-silva.de/no_cache/download/archive/release_106/Exports/
https://github.com/bnichols1979/Simera
http://dx.doi.org/10.7717/peerj.2584


Figure 4 Clustering speed.Median wall time in seconds to cluster the even (A, B) and uneven (C, D)
datasets using USEARCH version 7 (blue) and 8 (orange) and VSEARCH (black) using abundance sorting
(cluster_smallmem) (A, C) and length sorting (cluster_fast ) (B, D).

command at 97% identity or dereplicated. VSEARCH and USEARCH version 7 and 8 were
run using the uchime_denovo command and then using the uchime_ref command with
the Gold database downloaded from http://drive5.com/uchime/uchime_download.html
as the reference database. To assess the performance, the results were sorted based on the
chimera score, and then the ability to classify individual sequences correctly into chimeric
and non-chimeric was plotted as ROC curves. The curves reflect the accuracy of classifying
individual reads, not clusters, as abundances were taken into account. The plots in Figs. 5
and 6 show that de novo chimera detection performs better than reference-based detection,
with the SILVA dataset in particular, but it does of course depend on the reference database
used. VSEARCH performs better than both versions of USEARCH for de novo chimera
detection. For reference-based detectionVSEARCHalso performs better for theGreengenes

Rognes et al. (2016), PeerJ, DOI 10.7717/peerj.2584 13/22

https://peerj.com
http://drive5.com/uchime/uchime_download.html
http://dx.doi.org/10.7717/peerj.2584


Table 1 Chimera detection performance with the SIMM dataset.UCHIME (UC), USEARCH version 7 (U7) and 8 (U8), and VSEARCH (V) was
run using the uchime_ref algorithm on the SIMM dataset that was originally also used to evaluate the UCHIME algorithm. Divergence is the per-
centage of similarity to the original sequences. Noise is either zero (–) or the percentage of indels (i1–i5) or substitutions (m1-5) added. The number
of chimeras detected out of 100 of each type is shown. The best results in each category are shaded.

2 segments 3 segments 4 segments

Divergence Noise UC U7 U8 V UC U7 U8 V UC U7 U8 V

97–99% – 89 88 88 89 56 52 52 55 38 33 34 35
i1 79 79 77 85 46 44 43 53 32 27 24 34
i2 64 57 56 77 33 32 31 56 24 20 18 33
i3 48 45 36 72 37 35 29 45 16 17 16 21
i4 29 24 23 65 18 11 13 40 9 9 8 25
i5 27 22 16 53 15 12 12 39 7 8 6 17
m1 83 83 83 81 53 48 48 53 33 29 29 30
m2 73 71 71 72 49 44 44 50 28 22 22 27
m3 66 66 66 68 40 40 39 44 21 20 21 21
m4 55 54 53 57 28 24 23 28 21 18 18 19
m5 44 44 42 48 20 19 18 28 16 14 12 12

95–97% – 100 100 100 100 80 77 76 79 64 60 59 63
i1 100 98 98 100 77 75 72 75 54 55 53 61
i2 96 94 93 99 60 55 55 71 48 44 44 60
i3 86 82 82 95 61 50 52 70 38 36 31 53
i4 75 66 64 95 48 41 39 64 29 29 22 47
i5 64 58 53 86 37 32 25 60 24 19 19 46
m1 99 99 99 99 76 73 73 76 60 57 57 60
m2 98 97 97 97 71 69 69 71 50 48 46 48
m3 93 94 94 96 63 61 61 64 41 41 41 42
m4 92 92 90 93 56 55 54 57 39 39 37 41
m5 86 86 85 86 53 51 51 56 35 35 34 34

90–95% – 100 100 100 100 93 93 93 93 88 88 88 86
i1 100 100 100 100 88 88 87 91 86 86 87 88
i2 99 97 99 99 83 79 78 88 74 72 72 84
i3 100 100 100 100 79 76 75 88 74 69 70 82
i4 99 94 96 99 80 71 72 84 66 62 61 79
i5 95 84 86 99 74 65 65 88 55 48 48 71
m1 100 100 100 100 89 89 89 92 87 87 86 85
m2 100 100 100 100 87 87 87 89 78 78 78 79
m3 100 99 99 100 86 86 86 89 76 76 78 80
m4 100 100 100 100 82 82 84 83 73 73 72 78
m5 99 98 98 99 82 81 82 84 75 73 75 79

dataset, while none of the programs work well with the SILVA dataset. Clustering at 97%
appears to be more appropriate than dereplication. In this test, the USEARCH programs
were about twice as fast as VSEARCH for de novo detection, while they were about 10–30%
faster than VSEARCH for reference-based detection.

Rognes et al. (2016), PeerJ, DOI 10.7717/peerj.2584 14/22

https://peerj.com
http://dx.doi.org/10.7717/peerj.2584


Figure 5 Chimera detection performance with the Greengenes dataset shown with ROC curves.USE-
ARCH version 7 (blue) and 8 (orange) and VSEARCH (black) was run using the uchime_denovo (A, B)
and the uchime_ref (C, D) commands on simulated Illumina data based on the Greengenes database that
has either been clustered with a 97% identity threshold (using the cluster_fast command in VSEARCH)
(A, C) or dereplicated (using the derep_fulllength command in VSEARCH) (B, D).

Merging of paired-end reads
Evaluation of paired-end reads merging performance was carried out in a manner similar
to that described for the evaluation of PEAR (Zhang et al., 2014). We used whole genome
sequencing data from Staphylococcus aureus subspecies aureus strain USA 300 TCH
1516 sequenced by MacCallum et al. (2009) and retrieved from the GAGE-B repository
(http://ccb.jhu.edu/gage_b/). The S.aureus reads were 101 bp long from on average 180
bp long fragments, giving a 45X coverage of the genome. We also used Methylococcus
capsulatus strain Bath 16S rRNA V3 region amplicon reads sequenced by Masella et al.
(2012). These reads were 108 bp long and the pairs should have an overlap of exactly 18
bp. Merging options were set to allow a minimum overlap of 10 bp and a maximum of 5

Rognes et al. (2016), PeerJ, DOI 10.7717/peerj.2584 15/22

https://peerj.com
http://ccb.jhu.edu/gage_b/
http://dx.doi.org/10.7717/peerj.2584


Figure 6 Chimera detection performance on the SILVA dataset shown with ROC curves.USEARCH
version 7 (blue) and 8 (orange) and VSEARCH (black) was run using the uchime_denovo (A, B) and the
uchime_ref (C, D) commands on simulated Illumina data based on the SILVA database that has either
been clustered with a 97% identity threshold (using the cluster_fast command in USEARCH) (A, C) or
dereplicated (using the derep_fulllength command in VSEARCH) (B, D).

mismatches (USEARCH7 and 8 have different default values for those), while other options
were left at defaults. All programs were run with 8 threads. Merged sequences that could
be perfectly aligned to their respective reference sequences (either the entire genome or
the specific rRNA region) using BWAMEM (Li & Durbin, 2009) were considered correctly
merged. The results are shown in Table 2. The numbers indicate that USEARCH version
7 merges the most reads for both bacteria, but also has the lowest percentage of correctly
merged pairs of those merged. USEARCH version 8 merges the fewest reads, but has the
highest percentage of correctly merged reads of those merged. VSEARCH is in the middle
by merging more reads than USEARCH 8 with only a small decrease in the percentage of

Rognes et al. (2016), PeerJ, DOI 10.7717/peerj.2584 16/22

https://peerj.com
http://dx.doi.org/10.7717/peerj.2584


Table 2 Paired-end reads merging performance. The number of sequence pairs, merged pairs, and correctly merged pairs are shown for each bac-
terium and program. The percentage of reads merged, as well as the percentage of correctly merged reads both of the merged reads and of all reads
are also shown. Times are in seconds using 8 threads.

Bacterium Program Pairs Merged Correct %Merged %Cor/Mer %Cor/All Time (s)

Staphylococcus aureus USEARCH 7 647,052 273,438 270,849 42.26 99.05 41.86 11.65
USEARCH 8 647,052 203,729 202,003 31.49 99.15 31.22 4.69
VSEARCH 647,052 214,988 213,103 33.23 99.12 32.93 2.15

Methylococcus capsulatus strain Bath USEARCH 7 673,845 643,903 642,720 95.56 99.82 95.38 14.43
USEARCH 8 673,845 554,099 553,747 82.23 99.94 82.18 6.27
VSEARCH 673,845 581,752 581,346 86.33 99.93 86.27 3.61

Figure 7 Subsampling performance. The observed distribution of the maximum amplicon abundance in
10,000 random subsamplings of 5% of the TARA V9 dataset using VSEARCH (A, black) and USEARCH
version 8 (B, orange) is shown. The expected mean abundance is 782,133.5 (blue dashed line).

correct merges. VSEARCH is about twice as fast as USEARCH 8 and 4–5 times faster than
USEARCH version 7.

Subsampling
We evaluated the subsampling commands of USEARCH version 8 and VSEARCH to
check if the results obtained correspond to those expected. We performed 10,000 random
subsamplings of 5% of the 9.5 million unique sequences in the TARA V9 dataset (Karsenti
et al., 2011). To make this possible with the 32-bit USEARCH, we first downsampled the
dataset once to 10% using VSEARCH and then randomly subsampled it again at 50%
with either USEARCH or VSEARCH. Plots of the distribution of the abundance of the
most abundant sequence in each subsampling are shown in Fig. 7. The highest amplicon
abundance in the original dataset is 15,638,316. After the initial 10% subsampling, the

Rognes et al. (2016), PeerJ, DOI 10.7717/peerj.2584 17/22

https://peerj.com
http://dx.doi.org/10.7717/peerj.2584


highest abundance was 1,564,267. After the second subsampling, the top abundances
should therefore have a distribution centred on a value of 782,133.5. As can be seen
from the figure, the USEARCH distribution has a mean that is about 2,000 too small,
while the VSEARCH distribution is correctly centred on the expected value. Subsampling
experiments were also performed at 2.5%, 1.5% and 0.5% with similar results, although
the errors were of decreasing size. USEARCH seems to under-sample abundant amplicons
and to over-sample rare amplicons.

CONCLUSIONS
VSEARCH supports almost all of the commands and options for nucleotide sequence
analysis in USEARCH version 7 as well as several new features. It has a 64-bit design
and handles large datasets virtually only limited by the amount of available memory. We
have demonstrated that VSEARCH is in general more accurate than USEARCH when
performing searching, clustering, chimera detection and subsampling. The accuracy is on
a par with USEARCH for paired-end reads merging. VSEARCH is faster than USEARCH
when performing dereplication and merging of paired-end reads, but slower for clustering
and chimera detection. We will continue to improve the accuracy, speed and robustness of
VSEARCH in the future, as well as adding new features.

ACKNOWLEDGEMENTS
We highly appreciate the feedback from numerous people who submitted bug reports and
suggestions for features. Thanks to Melanie Schirmer for noise generation on sequences
for chimera detection.

ADDITIONAL INFORMATION AND DECLARATIONS

Funding
This research was supported in part with computational resources at the University of Oslo
provided by UNINETT Sigma2 project NN9383K and funded by the Research Council
of Norway. BN was funded by BBSRC CASE studentship supported by Unilever. CQ was
funded through the MRC Cloud Infrastructure for Microbial Bioinformatics (CLIMB)
project (MR/L015080/1) through fellowship (MR/M50161X/1). FM was supported by the
Deutsche Forschungsgemeinschaft (grant #DU1319/1-1). The funders had no role in study
design, data collection and analysis, decision to publish, or preparation of the manuscript.

Grant Disclosures
The following grant information was disclosed by the authors:
UNINETT Sigma2: NN9383K.
Unilever.
MRC Cloud Infrastructure for Microbial Bioinformatics (CLIMB): MR/L015080/1,
MR/M50161X/1.
Deutsche Forschungsgemeinschaft: #DU1319/1-1.

Rognes et al. (2016), PeerJ, DOI 10.7717/peerj.2584 18/22

https://peerj.com
http://dx.doi.org/10.7717/peerj.2584


Competing Interests
The authors declare there are no competing interests.

Author Contributions
• Torbjørn Rognes, Ben Nichols and Frédéric Mahé conceived and designed
the experiments, performed the experiments, analyzed the data, contributed
reagents/materials/analysis tools, wrote the paper, prepared figures and/or tables,
reviewed drafts of the paper.
• Tomáš Flouri conceived and designed the experiments, performed the experiments,
analyzed the data, contributed reagents/materials/analysis tools, wrote the paper,
reviewed drafts of the paper.
• Christopher Quince conceived and designed the experiments, analyzed the data,
contributed reagents/materials/analysis tools, wrote the paper, reviewed drafts of the
paper.

Data Availability
The following information was supplied regarding data availability:

VSEARCH is freely available at https://github.com/torognes/vsearch under a dual license,
either the GNU General Public License version 3, or the BSD 2-clause license. Binaries are
provided for x86-64 systems running GNU/Linux or OS X (10.7 or higher). The repository
with scripts and data for the evaluation is available at https://github.com/torognes/vsearch-
eval.

Thanks to the work of several people, there is now a vsearch package in Debian and a
vsearch package for Homebrew, as well as a Galaxy wrapper for VSEARCH in the Galaxy
ToolShed.

REFERENCES
Altschul SF, Madden TL, Schäffer AA, Zhang J, Zhang Z, MillerW, Lipman DJ. 1997.

Gapped BLAST and PSI-BLAST: a new generation of protein database search
programs. Nucleic Acids Research 25(17):3389–3402 DOI 10.1093/nar/25.17.3389.

Burge SW, Daub J, Eberhardt R, Tate J, Barquist L, Nawrocki EP, Eddy SR, Gardner
PP, Bateman A. 2013. Rfam 11.0: 10 years of RNA families. Nucleic Acids Research
41(D1):D226–D232 DOI 10.1093/nar/gks1005.

Caporaso JG, Kuczynski J, Stombaugh J, Bittinger K, Bushman FD, Costello EK, Fierer
N, Peña AG, Goodrich JK, Gordon JI, Huttley GA, Kelley ST, Knights D, Koenig
JE, Ley RE, Lozupone CA, Mcdonald D, Muegge BD, PirrungM, Reeder J, Sevinsky
JR, Turnbaugh PJ, WaltersWA,Widmann J, Yatsunenko T, Zaneveld J, Knight
R. 2010. QIIME allows analysis of high-throughput community sequencing data.
Nature Methods 7:335–336 DOI 10.1038/nmeth.f.303.

Cock PJA, Fields CJ, Goto N, Heuer ML, Rice PM. 2010. The Sanger FASTQ file format
for sequences with quality scores, and the Solexa/Illumina FASTQ variants. Nucleic
Acids Research 38(6):1767–1771 DOI 10.1093/nar/gkp1137.

Rognes et al. (2016), PeerJ, DOI 10.7717/peerj.2584 19/22

https://peerj.com
https://github.com/torognes/vsearch
https://github.com/torognes/vsearch-eval
https://github.com/torognes/vsearch-eval
http://dx.doi.org/10.1093/nar/25.17.3389
http://dx.doi.org/10.1093/nar/gks1005
http://dx.doi.org/10.1038/nmeth.f.303
http://dx.doi.org/10.1093/nar/gkp1137
http://dx.doi.org/10.7717/peerj.2584


DeSantis TZ, Hugenholtz P, Larsen N, Rojas M, Brodie EL, Keller K, Huber T, Dalevi
D, Hu P, Andersen GL. 2006. Greengenes, a chimera-checked 16S rRNA gene
database and workbench compatible with ARB. Applied and Environmental Micro-
biology 72(7):5069–5072 DOI 10.1128/AEM.03006-05.

Eastlake D, Jones P. 2001. US Secure Hash Algorithm 1 (SHA). Internet RFC3174.
Available at ftp://ftp.rfc-editor.org/in-notes/rfc3174.txt.

Edgar RC. 2010. Search and clustering orders of magnitude faster than BLAST. Bioinfor-
matics 26(19):2460–2461 DOI 10.1093/bioinformatics/btq461.

Edgar RC. 2013. UPARSE: highly accurate OTU sequences from microbial amplicon
reads. Nature Methods 10(10):996–998 DOI 10.1038/nmeth.2604.

Edgar RC, Flyvbjerg H. 2015. Error filtering, pair assembly and error correction for next-
generation sequencing reads. Bioinformatics 31(21):3476–3482
DOI 10.1093/bioinformatics/btv401.

Edgar RC, Haas BJ, Clemente JC, Quince C, Knight R. 2011. UCHIME improves
sensitivity and speed of chimera detection. Bioinformatics 27(16):2194–2200
DOI 10.1093/bioinformatics/btr381.

Fowler G, Noll LC, Vo P. 1991. Fowler / Noll / Vo (FNV) hash. Available at http://www.
isthe.com/chongo/ tech/ comp/ fnv/ index.html .

Gailly JL, Adler M. 2016. zlib: a massively spiffy yet delicately unobtrusive compression
library. Available at http://www.zlib.net/ (accessed on 3 August 2016).

Gilbert JA, Jansson JK, Knight R. 2014. The Earth Microbiome project: successes and
aspirations. BMC Biology 12:69 DOI 10.1186/s12915-014-0069-1.

Gusfield D. 1993. Efficient methods for multiple sequence alignment with guaranteed
error bounds. Bulletin of Mathematical Biology 55(1):141–154
DOI 10.1007/BF02460299.

He Y, Caporaso JG, Jiang XT, Sheng HF, Huse SM, Rideout JR, Edgar RC, Kopylova E,
WaltersWA, Knight R, Zhou HW. 2015. Stability of operational taxonomic units:
an important but neglected property for analyzing microbial diversity.Microbiome 3:
Article 20 DOI 10.1186/s40168-015-0081-x.

Hirschberg DS. 1975. A linear space algorithm for computing maximal common subse-
quences. Communications of the ACM 18(6):341–343 DOI 10.1145/360825.360861.

Hubert L, Arabie P. 1985. Comparing partitions. Journal of Classification 2(1):193–218
DOI 10.1007/BF01908075.

HumanMicrobiome Project Consortium. 2012. Structure, function and diversity of the
healthy human microbiome. Nature 486:207–214 DOI 10.1038/nature11234.

Karsenti E, González Acinas S, Bork P, Bowler C, De Vargas C, Raes J, SullivanMB,
Arendt D, Benzoni F, Claverie J-M, FollowsM, Jaillon O, Gorsky G, Hingamp P,
Iudicone D, Kandels-Lewis S, Krzic U, Not F, Ogata H, Pesant S, Reynaud EG,
Sardet C, Sieracki ME, Speich S, Velayoudon D,Weissenbach J, Wincker P, the
Tara Oceans Consortium. 2011. A holistic approach to marine eco-systems biology.
PLoS Biology 9(10):e1001177 DOI 10.1371/journal.pbio.1001177.

Li H, Durbin R. 2009. Fast and accurate short read alignment with Burrows-Wheeler
transform. Bioinformatics 25(14):1754–1760 DOI 10.1093/bioinformatics/btp324.

Rognes et al. (2016), PeerJ, DOI 10.7717/peerj.2584 20/22

https://peerj.com
http://dx.doi.org/10.1128/AEM.03006-05
ftp://ftp.rfc-editor.org/in-notes/rfc3174.txt
http://dx.doi.org/10.1093/bioinformatics/btq461
http://dx.doi.org/10.1038/nmeth.2604
http://dx.doi.org/10.1093/bioinformatics/btv401
http://dx.doi.org/10.1093/bioinformatics/btr381
http://www.isthe.com/chongo/tech/comp/fnv/index.html
http://www.isthe.com/chongo/tech/comp/fnv/index.html
http://www.zlib.net/
http://dx.doi.org/10.1186/s12915-014-0069-1
http://dx.doi.org/10.1007/BF02460299
http://dx.doi.org/10.1186/s40168-015-0081-x
http://dx.doi.org/10.1145/360825.360861
http://dx.doi.org/10.1007/BF01908075
http://dx.doi.org/10.1038/nature11234
http://dx.doi.org/10.1371/journal.pbio.1001177
http://dx.doi.org/10.1093/bioinformatics/btp324
http://dx.doi.org/10.7717/peerj.2584


Logares R, Audic S, Bass D, Bittner L, Boutte C, Christen R, Claverie J-M, Decelle J,
Dolan JR, DunthornM, Edvardsen B, Gobet A, KooistraWHCF, Mahé F, Not
F, Ogata H, Pawlowski J, Pernice MC, Romac S, Shalchian-Tabrizi K, Simon N,
Stoeck T, Santini S, Siano R,Wincker P, Zingone A, Richards T, De Vargas C,
Massana R. 2014. The patterning of rare and abundant community assemblages
in coastal marine-planktonic microbial eukaryotes. Current Biology 24(8):813–821
DOI 10.1016/j.cub.2014.02.050.

MacCallum I, Przybylski D, Gnerre S, Burton J, Shlyakhter I, Gnirke A, Malek J,
McKernan K, Ranade S, Shea TP,Williams L, Young S, NusbaumC, Jaffe DB.
2009. ALLPATHS 2: small genomes assembled accurately and with high continuity
from short paired reads. Genome Biology 10(10):R103
DOI 10.1186/gb-2009-10-10-r103.

Mahé F, Rognes T, Quince C, De Vargas C, DunthornM. 2014. Swarm: robust and fast
clustering method for amplicon-based studies. PeerJ 2:e593 DOI 10.7717/peerj.593.

Masella AP, Bartram AK, Truszkowski JM, Brown DG, Neufeld JD. 2012. PAN-
DAseq: paired-end assembler for illumina sequences. BMC Bioinformatics 13:31
DOI 10.1186/1471-2105-13-31.

Myers EW,MillerW. 1988. Optimal alignments in linear space. Computer Applications in
the Biosciences 4(1):11–17.

Needleman SB,Wunsch CD. 1970. A general method applicable to the search for
similarities in the amino acid sequence of two proteins. Journal of Molecular Biology
48(3):443–453 DOI 10.1016/0022-2836(70)90057-4.

Nichols B, Quince C. 2016. Simera: Modelling the PCR Process to Simulate Realistic
Chimera Formation. bioRxiv DOI 10.1101/072447.

Quast C, Pruesse E, Yilmaz P, Gerken J, Schweer T, Yarza P, Peplies J, Glöckner
FO. 2013. The SILVA ribosomal RNA gene database project: improved data
processing and web-based tools. Nucleic Acids Research 41(D1):D590–D596
DOI 10.1093/nar/gks1219.

RandWM. 1971. Objective criteria for the evaluation of clustering methods. Journal of
the American Statistical Association 66(336):846–850 DOI 10.2307/2284239.

Rivest R. 1992. The MD5 message-digest algorithm. Internet RFC 1321. Available at
ftp://ftp.rfc-editor.org/in-notes/rfc1321.txt.

Rockström J, SteffenW, Noone K, Persson A, Chapin 3rd FS, Lambin EF, Lenton TM,
Scheffer M, Folke C, Schellnhuber HJ, Nykvist B, DeWit CA, Hughes T, Van
der Leeuw S, Rodhe H, Sörlin S, Snyder PK, Costanza R, Svedin U, Falkenmark
M, Karlberg L, Corell RW, Fabry VJ, Hansen J, Walker B, Liverman D, Richard-
son K, Crutzen P, Foley JA. 2009. A safe operating space for humanity. Nature
461(7263):472–475 DOI 10.1038/461472a.

Rognes T. 2011. Faster Smith-Waterman database searches by inter-sequence SIMD
parallelisation. BMC Bioinformatics 12:221 DOI 10.1186/1471-2105-12-221.

SchirmerM, Ijaz UZ, D’Amore R, Hall N, SloanWT, Quince C. 2015. Insight into biases
and sequencing errors for amplicon sequencing with the Illumina MiSeq platform.
Nucleic Acids Research 43(6):e37 DOI 10.1093/nar/gku1341.

Rognes et al. (2016), PeerJ, DOI 10.7717/peerj.2584 21/22

https://peerj.com
http://dx.doi.org/10.1016/j.cub.2014.02.050
http://dx.doi.org/10.1186/gb-2009-10-10-r103
http://dx.doi.org/10.7717/peerj.593
http://dx.doi.org/10.1186/1471-2105-13-31
http://dx.doi.org/10.1016/0022-2836(70)90057-4
http://dx.doi.org/10.1101/072447
http://dx.doi.org/10.1093/nar/gks1219
http://dx.doi.org/10.2307/2284239
ftp://ftp.rfc-editor.org/in-notes/rfc1321.txt
http://dx.doi.org/10.1038/461472a
http://dx.doi.org/10.1186/1471-2105-12-221
http://dx.doi.org/10.1093/nar/gku1341
http://dx.doi.org/10.7717/peerj.2584


Schloss PD. 2016. Application of a database-independent approach to assess the quality
of operational taxonomic unit picking methods.mSystems 1(2):e00027–16.

Schloss PD,Westcott SL, Ryabin T, Hall JR, HartmannM, Hollister EB, Lesniewski
RA, Oakley BB, Parks DH, Robinson CJ, Sahl JW, Stres B, Thallinger GG,
Van Horn DJ, Weber CF. 2009. Introducing mothur: open-source, platform-
independent, community-supported software for describing and comparing
microbial communities. Applied and Environmental Microbiology 75:7537–7541
DOI 10.1128/AEM.01541-09.

Seward J. 2016. bzip2 and libbzip2. Available at http://www.bzip.org/ (accessed on 3
August 2016).

Song K, Ren J, Reinert G, DengM,WatermanMS, Sun F. 2014. New developments
of alignment-free sequence comparison: measures, statistics and next-generation
sequencing. Briefings in Bioinformatics 15(3):343–353 DOI 10.1093/bib/bbt067.

SteffenW, Richardson K, Rockström J, Cornell SE, Fetzer I, Bennett EM, Biggs
R, Carpenter SR, De VriesW, DeWit CA, Folke C, Gerten D, Heinke J, Mace
GM, Persson LM, Ramanathan V, Reyers B, Sörlin S. 2015. Sustainability. Plan-
etary boundaries: guiding human development on a changing planet. Science
347(6223):1259855 DOI 10.1126/science.1259855.

Westcott SL, Schloss PD. 2015. De novo clustering methods outperform reference-based
methods for assigning 16S rRNA gene sequences to operational taxonomic units.
PeerJ 3:e1487 DOI 10.7717/peerj.1487.

Zhang J, Kobert K, Flouri T, Stamatakis A. 2014. PEAR: a fast and accurate Illumina
Paired-End reAd mergeR. Bioinformatics 30(5):614–620
DOI 10.1093/bioinformatics/btt593.

Rognes et al. (2016), PeerJ, DOI 10.7717/peerj.2584 22/22

https://peerj.com
http://dx.doi.org/10.1128/AEM.01541-09
http://www.bzip.org/
http://dx.doi.org/10.1093/bib/bbt067
http://dx.doi.org/10.1126/science.1259855
http://dx.doi.org/10.7717/peerj.1487
http://dx.doi.org/10.1093/bioinformatics/btt593
http://dx.doi.org/10.7717/peerj.2584

