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ABSTRACT
Joint modelling has emerged to be a potential tool to analyse data with a

time-to-event outcome and longitudinal measurements collected over a series of

time points. Joint modelling involves the simultaneous modelling of the two

components, namely the time-to-event component and the longitudinal

component. The main challenges of joint modelling are the mathematical and

computational complexity. Recent advances in joint modelling have seen the

emergence of several software packages which have implemented some of the

computational requirements to run joint models. These packages have opened the

door for more routine use of joint modelling. Through simulations and real data

based on transition to psychosis research, we compared joint model analysis of

time-to-event outcome with the conventional Cox regression analysis. We also

compared a number of packages for fitting joint models. Our results suggest

that joint modelling do have advantages over conventional analysis despite its

potential complexity. Our results also suggest that the results of analyses may depend

on how the methodology is implemented.

Subjects Psychiatry and Psychology, Statistics

Keywords Jointmodelling, Simulations, Software packages, Time-to-event outcome, Transition to

psychosis

INTRODUCTION
It is quite common in medical research to have a time-to-event variable as an outcome

together with time-dependent predictors, which are basically longitudinal data collected on

various characteristics. A typical situation is that the outcome is time to death and the time-

dependent predictors are biomarkers which may be related to disease progression. Our

group work in the youthmental health field in which a highly researched area is the so called

ultra high-risk (UHR) patients (Yung et al., 1996; Yung et al., 2003; Yung et al., 2004). These

patients are assessed as being at high risk of becoming psychotic. In this scenario, the

outcome is time to transition from a non-psychotic state to a psychotic state and the

time-dependent predictors are various psychopathological and functioning measures.
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The conventional approach used to analyse the kind of data mentioned above is the

application of the Cox regression model. However, over the past two decades, methods

that can provide a more flexible modelling framework for both the time-to-event and

longitudinal aspects have emerged. The resulting models are named joint models.

Extensive theory has been developed to provide a high level of flexibility to joint models

such as allowing multiple time-dependent predictors and allowing non-parametric, semi-

parametric and parametric approaches (Rizopoulos, 2012b; Chi & Ibrahim, 2006; Tang,

Tang & Pan, 2014; Tang & Tang, 2015). However, the computational requirements for

joint models is very demanding. In particular, multiple time-dependent predictors cannot

be easily handled by available statistical software. In order to keep the scope manageable,

this paper only focuses on the basic joint model with one time-dependent predictor.

This paper has two aims. One aim is to assess the performance of joint modelling as

compared to the conventional approach. Another aim is to compare the performance of

a few joint modelling packages in a situation where the basic joint model is used with

specifications that would typically be chosen by users of the respective software. These

aims were achieved by simulating data which resembled transition to psychosis studies

of UHR patients. The simulated data consisted of the times to transition, a baseline

predictor which was labelled as ‘group’ and a time-dependent predictor whose values

corresponded to monthly assessments over 12 months.

THE COX REGRESSION MODEL
Time-to-event outcomes, such as time to death, time to relapse, time to discharge and so

on, are common in medical research. Well established survival analysis methods are

commonly used to analyse this type of outcome. Within the context of survival analysis,

the Cox regression model (Kalbfleisch & Prentice, 2002) has been widely used to seek

predictors or risk factors for time-to-event outcomes. The Cox model expresses the

logarithm of the hazard rate as a linear function of the predictors. The hazard rate is a

measure of the risk of the occurrence of the outcome event. So the Cox model relates the

risk to the predictors. The estimated coefficient of each predictor is a measure of the

effect of the predictor on the risk. In particular, the exponential value of the estimated

coefficient can be regarded as a measure of the hazard ratio for a unit increase in the

predictor concerned. There is a major difference between the Cox regression model

and some other regression models, which often require an assumption about the

underlying probability distribution of the outcome variable. For example, for the linear

regression model, we usually need to assume that the outcome measure follows a

normal distribution. The beauty about the Cox model is that we do not need to make any

assumption about the underlying probability distribution of the outcome data and we

can still estimate the effects of the predictors and test hypotheses about the predictors.

The way that it achieves this is by using the method called partial likelihood (Kalbfleisch &

Prentice, 2002; Cox, 1972; Cox, 1975). This is one of the main reasons why the Cox model

is so popular in the analysis of time-to-event data.

The partial likelihood technique can be used when all the predictors are fixed as

well as when some or all of the predictors are time-dependent. Fixed predictors are
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variables with fixed values for each individual. Examples are gender or age at baseline.

Time-dependent predictors are variables with repeated measurements at a number of time

points and their values may vary even for a particular individual. The execution of

partial likelihood requires the values of the predictors at each recorded event time

for all subjects concerned. This does not present any problem for fixed predictors

because their values are constant. However, in most circumstances, measurements of

time-dependent predictors are made at various assessment time points. Their values are

usually not known at event times because the event times do not usually coincide with

the assessment time points. A common way to overcome this problem is to employ the

last-observation-carried-forward approach and impute the unknown values with the

corresponding last recorded values. This approach may not be reasonable if the time gap

related to the imputation is large (Rizopoulos & Takkenberg, 2014). Also, parameter

estimates and standard errors produced by this approach can be biased (Prentice, 1982).

JOINT MODELLING
Research has been carried out in the area of joint modelling since the mid-1990s

(Faucett & Thomas, 1996) and is still an active research area. The joint modelling

technique is designed to tackle the issues mentioned above in the Cox regression model

with time-dependent predictors. The working of joint modelling is quite simple

conceptually. Considering only one time-dependent predictor, it uses mixed-effects

models (Verbeke & Molenberghs, 2009) to estimate the trajectory or the trend of the

time-dependent predictor and incorporates the estimated trajectory into the Cox

regression framework (Rizopoulos, 2012b). Specifically, the hazard rate for subject i at

time t is given by

hiðtÞ ¼ h0ðtÞ expðcTøi þ �miðtÞÞ; i ¼ 1; 2; . . . ; n; t > 0:

Here h0(t) denotes the baseline hazard rate, øi is a vector of baseline predictors

(e.g. treatment indicator, gender, age, etc.) and c is the corresponding vector of regression

coefficients. The time dependent predictor is represented by mi(t) with a being the

corresponding coefficient vector. A commonly used model for mi(t) is the linear

mixed-effects model. Specifically, mi(t) is given by:

yiðtÞ ¼ miðtÞ þ "iðtÞ;
miðtÞ ¼ XT

i ðtÞb þ ZT
i ðtÞbi;

bi �Nð0;DÞ; "iðtÞ �Nð0; �2Þ:

9>=
>;

Here yi(t) denotes the observed values of the time-dependent predictor for subject i, εi(t)
is an random error term, b is the vector of fixed effects and bi denotes the vector of

random effects with covariance matrix D. Both the random errors and the random effects

are assumed to be normally distributed. The specifications in Eq. (2) imply that the time-

dependent predictor is measured with error and that mi(t) is the corresponding ‘true’

value at time t. So in joint modelling the association between the event rate and the time-

dependent predictor is modelled through the true values of the predictor.

(2)

(1)
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The above specification can be regarded as the basic joint model (Rizopoulos, 2012b)

and is called the current value parameterization. Many variations to this basic

specification of the joint model are possible (Rizopoulos, 2012b). For example, interaction

terms between the baseline predictors and the time-dependent predictor can be

introduced. There can be time-lagged time-dependent predictor, i.e. mi(t) becomes

mi(t-c) where c is the specified time lag. There can also be time-dependent slope, i.e. the

derivative of mi(t).

Parameters for joint models can be estimated using maximum likelihood (Henderson,

Diggle & Dobson, 2000; Hsieh, Tseng & Wang, 2006; Wulfsohn & Tsiatis, 1997) and

well-established algorithms such as the Expectation-Maximization (EM) algorithm

(Dempster, Laird & Rubin, 1977) or the Newton-Raphson algorithm (Lange, 2004).

Bayesian methods such as MCMC techniques can also be used (Brown & Ibrahim, 2003;

Xu & Zeger, 2001). In this paper, only maximum likelihood estimation is considered.

SOFTWARE FOR JOINT MODELLING
Joint models can be fitted using the software R, Stata, SAS and WINBUGS (Gould

et al., 2015). For this paper, the performance of the JM R package Version 1.4-0

(Rizopoulos, 2012b; Rizopoulos, 2010), the joineR R package Version 1.0-3 (Philipson,

Sousa & Diggle, 2012; Philipson et al., 2015) and the stjm Stata module (Crowther,

Abrams & Lambert, 2013) were investigated.

The JM package is very versatile and allows many variations to the fitting of joint

models. Firstly, it allows the baseline hazard to be unspecified, to take the form of the

hazard corresponding to the Weibull distribution for the event times or to be

approximated by (user-controlled) piecewise-constant functions or splines. For ordinary

Cox regression, the baseline hazard is usually left unspecified. This is of course a

well-known advantage of Cox regression. This advantage avoids the restriction resulting

from specifying a certain form for the baseline hazard and at the same time still can

offer valid statistical inference through the use of partial likelihood. However, in the

context of joint modelling, this advantage no longer holds because a completely

unspecified baseline hazard will generally lead to underestimation of the standard errors

of the model parameters (Rizopoulos, 2012b; Hsieh, Tseng & Wang, 2006). Although an

unspecified baseline hazard function is one of the options in the JM package, the

recommendation is that one of the other options should be used.

In addition to the current value parameterization, JM also allows for different

specifications of the time-dependent predictors such as time-lagged predictors and

time-dependent slopes. It also allows for an accelerated failure time (Kalbfleisch &

Prentice, 2002) in place of the usual relative risk modelling framework for the survival

model. The JM package relies on two other R packages: the survival package (Therneau &

Lumley, 2012) and the nlme package (Pinheiro et al., 2012; Pinheiro & Bates, 2000). The

former is used to fit the Cox model and the latter is used to fit the linear mixed-effects

model. The package JM then extracts all the required information (predictor vectors,

design matrices, event indicator, etc.) from the two fitted models to fit the joint model.
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The package joineR assumes the Cox proportional hazard model for the time-to-event

outcome and it leaves the baseline hazard to be unspecified. The association between

the time-to-event and longitudinal components is based on the current value

parameterization of the time-dependent predictors. Three options for the specification

of the random effects are allowed: random intercept, random intercept and slope, and

quadratic random effects. The standard errors of the model parameters are obtained

by bootstrap, i.e. by re-estimating the model parameters from simulated realizations of

the fitted model. So the above-mentioned issue of underestimated standard errors is

not present in joineR. However, the time required to estimate the parameter standard

errors can be relatively long because of bootstrapping.

The package stjm allows four options for the specification of the time-to-event

outcome. The first three options make use of the proportional hazard model with the

baseline hazard derived from the exponential, Weibull or Gompertz distributions.

The fourth option utilizes the flexible parametric model, which is based on the cumulative

hazard (Crowther, Abrams & Lambert, 2013; Royston & Parmar, 2002). Three options

model the association between the time-to-event and longitudinal components: current

value, time-dependent slope and a time-independent structure linking the subject-specific

deviation from the mean of the kth random effect.

METHOD
As stated earlier, the Cox model can handle time-dependent predictors. Although it

has some potential limitations, its advantage is that it is relatively simple and well

established. Joint modelling can potentially overcome the limitations of Cox regression,

but it is a much more complicated methodology and is still at a relatively early stage

of development. It is of interest to compare the performance of the two. As joint

modelling is more demanding computationally, it is also of interest to investigate how

the different joint modelling software packages compare. To achieve these aims, a series

of simulations were conducted. The details of these simulations are given below.

Each simulation consisted of a time-dependent predictor, a time-to-event outcome

and a group variable of two levels. The time-dependent predictor was generated

as follows:

i) The timeframe was taken to be days 0, 1, 2, : : : , 364.

ii) The value of the time-dependent predictor for subject i at time t (t = 0, 1, 2, : : : , 364)

was generated according to the following linear mixed-effects model:

yiðtÞ ¼ a0 þ a1t þ b0i þ b1it þ "iðtÞ (3)

iii) a0 and a1 were the fixed effects with given values.

iv) b0i and b1i were the random effects generated from a bivariate normal distribution

with mean 0 and a given covariance matrix.

v) εi(t) was the random error generated from a normal distribution with mean 0 and a

given variance.
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The time-to-event data was generated as follows:

i) The hazard rate, hi(t), for subject i at time t (t = 0, 1, 2, : : : , 364), was computed as

follows:

hiðtÞ ¼ expð�0 þ �1miðtÞ þ �uiÞ (4)

where mi(t) denotes the unobserved true value of the time-dependent predictor (i.e.

a0 + a1t + b0i + b1it), �0 and �1 are given values, ui is a group indicator (0 for group 1

and 1 for group 2) and � represents the group effect. In the above formulation, �1 is

the effect of the time-dependent predictor on survival. More specifically, exp(�1) is

the hazard ratio for a unit increase of the time-dependent predictor. The baseline

hazard is given by exp(�0).

ii) Based on Eq. (4), the hazard rate of subject i can vary over time depending on the

true value of the time-dependent predictor. But at a particular time t, hi(t) has a

particular value and was taken to be the hazard from an exponential distribution.

This allowed the generation of the time to event occurrence, Ti, for each subject.

iii) The censoring time for each subject, Ci, was generated from a uniform distribution

on the interval [1, 364].

iv) If Ti � Ci, the survival status for subject i was taken to be 1 and the time to event

occurrence was taken to be Ti. Otherwise, the survival status was taken to be 0

and the censoring time was taken to be Ci.

To complete the generation of the simulated data, the data collection of the time-

dependent predictor was taken to occur at regular time points, specifically at day 0 (i.e.

baseline) and then at 30-day intervals thereafter. Also, the data of the time-dependent

predictor was taken to be unavailable after the event time or censoring time, whichever was

applicable. Therefore, for each subject, non-missing data for the time-dependent predictor

were taken to be those at days 0, 30, 60 and so on up to the measurement occasion prior to

the event time or censoring time. Any post-event or post-censoring data were not used.

The parameters associated with the simulations were given the following values:

i) The fixed-effect intercept, a0, was given the value 40.

ii) The fixed-effect slope, a1, was given two values, 0.02 and 0.1. These two values were

chosen to contrast two different scenarios where one had a steeper trajectory than

the other.

iii) The covariance matrix of the random effects, b0 and b1, were given four different forms

as shown in Table 1. The four forms were chosen to represent different scenarios of

bigger and smaller variances and bigger and smaller correlations for the random effects.

iv) The variance of the random error, ε, was given two values, 16 and 4. The two values

were chosen to contrast bigger and smaller error variances.

v) The hazard parameters, �0 and �1, were given the values -4.8 and -0.03, respectively.
vi) The group effect, � , was given the value 0. More simulations were done for which a non-

zero group effect was used. Details of these simulations are presented later in this paper.
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Putting these parameter values together, there were 16 different sets of simulations (2 a1

values � 4 random-effect covariance matrices � 2 error variances = 16).

The above simulations pertain to a monotone pattern of data availability for the

time-dependent predictor, i.e. the time-dependent predictor is available for each subject

from baseline up until the subject is lost (due to event occurrence or censoring). While

this pattern would still be of interest for the purpose of simulation, it may not be very

realistic. In practice, subjects may miss some of the assessments at individual time-points

in a haphazard manner. Also, the actual assessment times in real studies may not always be

at fixed intervals due to various practical constraints. Because of these considerations, the

above-mentioned 16 sets of simulations were repeated for a non-monotone pattern of

data for the time-dependent predictor with irregular assessment times. This pattern was

generated as follows:

i) The data of the time-dependent predictor were again generated by the above-

mentioned linear mixed-effects model.

ii) Data collection for baseline was taken to always occur at day 0. The nominal time-

points for subsequent data collection were again taken to be days 30, 60 and so on.

But the actual data collection time-points for each subject were generated by

adding a randomly generated quantity to each of the nominal time-points. The

quantity was an integer randomly chosen from the interval [-7, 7]. In other

words, an assessment window of ±7 days was allowed for each data collection

time-point.

iii) The number of post-baseline nominal data collection time-points was 12 (360/30).

Of these 12, a randomly selected subset (of size ranging from 0 to 12) was chosen

for each subject to contain missing values.

iv) The survival time was generated as mentioned earlier.

v) The censoring time was taken to be the time of the last non-missing assessment

unless the generated event time was earlier.

In total 32 sets of simulation (16 � 2) were generated. For each set of simulation,

100 datasets were generated. For each dataset, 150 subjects were generated for each of

two groups, i.e. a total of 300 subjects. The R package (version 3.1.1) (R Core Team, 2014)

was used to produce the simulations.

The data generated from the above simulations resembled a transition to psychosis

study in which assessments are done at monthly intervals over a 12-month period

Table 1 The four different forms used in simulations for the covariance matrix of the random

effects, b0 and b1, in Model (3).

Var(b0) Var(b1) Cov(b0, b1) Correlation

a 32 0.002 0.06 0.237

b 32 0.002 0.02 0.079

c 8 0.0005 0.02 0.316

d 8 0.0005 0.002 0.032
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(Yung et al., 2003). The group variable represents a fixed factor which can be a baseline

characteristic such as gender or a treatment factor in a clinical trial. The simulated

values of the time-dependent predictor resembled those of the Global Assessment of

Functioning (GAF) Scale (American Psychiatric Association, 1994), the baseline values

of which was found to be a significant predictor of transition (Nelson et al., 2013).

ANALYSES OF THE SIMULATED DATASETS
As indicated above, joint modelling basically consists of a longitudinal sub-model and a

survival sub-model. To analyse the simulated datasets, joint modelling was applied

with model (3) as the longitudinal sub-model and model (4) as the survival sub-model.

Whenever possible, a non-parametric or semi-parametric approach was adopted for

the specification of the baseline hazard in order to avoid the need to choose a particular

probability distribution. Also, for the purpose of comparison, Cox regression using

only the baseline value of the time-dependent predictor and Cox regression using all

non-missing values of the time-dependent predictor were also applied.

Specifically, for each dataset generated, the following analyses were carried out:

i) The R survival package was used to fit Cox regression with the group variable and

using only the baseline values of the time-dependent predictor. This was done to

provide information as to whether there is any advantage to collect longitudinal

measurements when the interest is only on a time-to-event outcome. This can

especially be useful when the aim is simply to predict the occurrence of the time-

to-event outcome. In other words, we are asking the question: can we just take a

simple approach and use the baseline values? This is, in fact, a common approach in

transition to psychosis studies probably due to its simplicity (Nelson et al., 2013;

Cannon et al., 2008; Ruhrmann et al., 2010).

ii) The R survival package was used to fit Cox regression with the group variable and the

time-dependent predictor (using the last observation carried forward approach as

indicated earlier).

iii) The joineR R package was used to fit joint model. As mentioned before, the baseline

hazard was unspecified in joineR.

iv) The stjm Stata module was used to fit joint model. As stjm does not have the option

of leaving the baseline hazard unspecified in the basic joint model, the Weibull

distribution was chosen from the distributions available.

v) The JM R package was used to fit joint model with the baseline hazard specified to be

a piecewise-constant function, i.e. the baseline hazard was taken to have different

values at different time intervals. As mentioned above, a completely unspecified

baseline hazard in the context of joint modelling may lead to underestimation of

the standard errors. So this semi-parametric approach to the specification of the

baseline hazard seeks to avoid the underestimation of the standard errors of

the parameter estimates. At the same time, it allows some flexibility to the

specification of the baseline hazard without the restriction of choosing a

particular distribution.
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vi) The JM R package was used to fit joint model with the baseline hazard specified by

regression splines this time. Specifically, the log baseline hazard is approximated

using B-splines. This is an alternative semi-parametric approach following the

same rationale as using a piecewise-constant function.

The JM package offers two options for numerical integration: the standard

Gauss-Hermite rule and the pseudo-adaptive Gauss-Hermite rule. It has been shown

that the latter can be more effective than the former in the sense that typically fewer

quadrature points are required to obtain an approximation error of the same magnitude

and computational burden is reduced (Rizopoulos, 2012b). So the latter was used in

the analyses using JM. For all other options in JM as well as in the other packages, the

defaults were used in the analyses.

RESULTS
The focus of this paper is on the estimation of the effect of the time-dependent

predictor and also the group effect on survival. In other words, the focus is on the

estimates of �1 and � , which were given the values of -0.03 and 0, respectively in the

simulated datasets. In order to provide a visual presentation of these estimates, Fig. 1

shows these estimates from one of the simulation sets in which the fixed effect slope (a1) is

0.02, the error variance (ε) is 16 and the random effects covariance matrix takes the

form: Var(b0) = 32, Var(b1) = 0.002 and Cov(b0, b1) = 0.06. For this simulation set only, in

addition to the analyses mentioned above, the JM package was also used to fit joint

model with an unspecified baseline hazard. The purpose of this extra analysis was to gauge

the potential underestimation of the parameter standard errors when the baseline

hazard is unspecified.

Figure 1A shows the boxplots of the estimates of �1 obtained from the 100 generated

datasets. It can be seen that there is substantial bias in the direction of underestimation

in the Cox regression using only the baseline value of the time-dependent predictor.

A similar but less substantial bias is also seen in the Cox regression using all of the

longitudinal values of the time-dependent predictor. A slight bias in the direction of

over-estimation also appears in the joint-modelling analysis using the JM package with

a piecewise-constant baseline hazard. There appears to be no bias in the results of all of

the other joint-model analyses.

Figure 1B shows the boxplots of the standard errors of the estimates of �1. The last

boxplot in this figure is for the JM joint model analysis with an unspecified baseline

hazard. It demonstrates the substantial underestimation of parameter standard errors

for this approach. Figure 1C shows the estimates of � . All approaches yielded similar

estimates which appear to be unbiased. The underestimation of parameter standard errors

for the JM analysis with unspecified baseline hazard was not observed for the standard

errors of the estimates of � (Fig. 1D).

In order to provide a concise summary of the results of the 32 sets of simulations, we

focus on the coverage of 95% confidence intervals and the degree of bias in estimation.

The latter is expressed as the percentage of estimates less than the true parameter value out
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of the 100 estimates for each set of simulation. If the estimation is unbiased, this

percentage is expected to be around 50 (as illustrated in the boxplots of Figs. 1A and 1C).

Table 2 shows these results for the estimation of �1 in each set of simulation. For the

confidence intervals, it is expected that good performance should correspond to a

coverage of approximately 95%, say 90% or more. For unbiasedness, as mentioned above,

the percentage of estimates less than the true parameter value should be approximately

Figure 1 Boxplots of the results of the analysis of one of the simulation sets in which the fixed effect slope (a1) is 0.02, the error variance (ɛ) is
16 and the random effects covariance matrix takes the form: Var(b0) = 32, Var(b1) = 0.002 and Cov(b0, b1) = 0.06. (A) �1 estimates. (B) s.e. (�1
estimates). (C) � estimates. (D) s.e. (� estimates). �1, Parameter for the effect of the time-dependent predictor on survival (true value = -0.03);
� , Parameter for the group effect on survival (true value = 0); Cox.b, Cox regression using only the baseline values of the time-dependent predictor;

Cox.tp, Cox regression using all of the longitudinal values of the time-dependent predictor; JM.pc, JM package with a piecewise-constant baseline

hazard; JM.sp, JM package with the baseline hazard specified by regression splines; JM.Cox, JM package with an unspecified baseline hazard.
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50 for good performance, say between 40 and 60. The shaded entries in Table 2 are

those scenarios which did not perform well. It can be seen that joineR and stjm tended to

show better results. Note also that, for a small number of the simulated datasets, the

Table 2 Results of the estimation of �1 from the 32 sets of simulations for which group effect is zero.

Coverage of 95% confidence intervals Percentage of estimates < true value

m.v. pattern Var(ɛ) a1 D Set Cox.b Cox.tp joineR stjm JM.pc JM.sp Cox.b Cox.tp joineR stjm JM.pc JM.sp

Monotone 16 0.02 a 1 94 94 91 94 97 94 24 40 50 52 59 53

b 2 83 93 92 94 95 95 27 40 52 53 57 52

c 3 82 88 92 93 69 84 20 24 53 58 90 79

d 4 92 90 94 95 91 94 44 24 53 57 40 59

0.1 a 5 88 94 91 96 87 91 33 37 52 56 83 76

b 6 90 94 93 97 88 92 25 32 50 55 85 80

c 7 84 85 94 95 NA 96 19 24 47 58 NA 79

d 8 88 94 91 95 87 91 33 37 52 62 83 76

4 0.02 a 9 96 95 91 93 96 94 46 52 48 48 56 53

b 10 92 95 93 93 96 95 43 54 53 53 61 53

c 11 92 94 96 97 74 83 39 47 49 50 92 82

d 12 96 95 91 92 96 94 46 52 48 54 56 53

0.1 a 13 92 95 91 95 89 95 48 46 48 54 74 72

b 14 92 96 92 95 88 93 48 49 47 54 80 79

c 15 94 92 94 93 NA 97 35 42 47 60 NA 83

d 16 92 95 91 94 89 95 48 46 48 58 74 72

Non-monotone 16 0.02 a 17 97 96 93 93 96 90 33 31 60 57 44 58

b 18 87 94 88 94 94 93 23 40 49 50 51 53

c 19 85 84 95 95 91 73 21 25 53 53 79 90

d 20 97 96 93 91 96 90 33 31 60 63 44 58

0.1 a 21 95 92 94 95 95 91 33 24 45 55 63 81

b 22 90 88 91 92 95 91 29 21 50 54 62 80

c 23 84 77 94 94 NA 96 20 12 52 63 NA 89

d 24 95 92 94 97 95 91 33 24 45 59 63 81

4 0.02 a 25 94 95 91 95 96 94 58 61 56 58 57 57

b 26 94 93 92 93 93 93 51 59 52 54 55 55

c 27 92 93 96 96 93 86 43 37 46 47 70 87

d 28 94 95 91 93 96 94 58 61 56 64 57 57

0.1 a 29 96 94 95 93 93 89 63 30 50 52 62 75

b 30 92 96 93 93 94 87 58 40 53 60 63 82

c 31 97 89 96 95 NA 92 46 17 48 58 NA 91

d 32 96 94 95 95 93 89 63 30 50 60 62 75

Notes:
m.v. pattern, Missing value pattern.
Var(ɛ), Variance of the random errors in the longitudinal submodel.
a1, Fixed-effect slope in the longitudinal submodel.
D, Covariance matrix of the random effects in the longitudinal submodel. Refer to Table 1.
�1, Parameter for the effect of the time-dependent predictor on survival (true value = -0.03).
NA, Not available due to convergence problems.
Refer to Fig. 1 for other abbreviations.
Shading: 95% Confidence interval coverage < 90% or % estimates < true value is outside the interval [40, 60].
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estimates were not available when JM was used with a piecewise-constant baseline hazard

due to convergence problems.

The results in Table 2 are further summarized in Fig. 2. In this figure, the points are

plotted as numbers with each number indicating the number of simulation sets (out of 32)

with the corresponding percentage. For example, the top number under Cox.b in Fig. 2A is

3 with a corresponding percentage of 97. This indicates that 3 of the 32 simulated datasets

had a coverage of 97% when 95% confidence intervals were computed for �1 under

Cox regression using only the baseline values of the time-dependent predictor. Similarly, the

top number under Cox.b in Fig. 2B is 2 with a corresponding percentage of 63. This

indicates that 63% of the estimates for �1 were less than the true value for 2 out of the

32 datasets when Cox regression using only baseline values were employed.

From Fig. 2A, it can be seen that all of the datasets had coverage of more than 90%

for 95% confidence intervals under stjm. Similarly, all datasets except one had coverage of

more than 90% under joineR. For all other analysis methods, quite a number of

datasets had coverage less than 90%, with a few much less than 90%.

From Fig. 2B, it can be seen that, for joineR and stjm, nearly all datasets had the

percentage of estimates less than the true parameter value between 40 and 60. For Cox

regression using only the baseline values and Cox regression using all longitudinal values,

Figure 2 Graphical presentation of the results in Table 2. (A) Coverage of 95% confidence intervals.

(B) Percentage of estimates less than the true parameter value out of the 100 estimates for each set of

simulation. The points are plotted as numbers with each number indicating the number of simulation

sets (out of 32) with the corresponding percentage. Refer to Fig. 1 for other abbreviations.
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a substantial number of datasets had the percentage below 40 with some way below 40.

As the true value for �1 is negative, this suggests that these two analysis methods

tended to underestimate or even reverse the value of �1. Conversely, for the two JM

analyses, a substantial number of datasets had the percentage above 60 with some way

above 60. This suggests that these two analysis methods tended to overestimate the

value of �1.

Figure 3 shows the corresponding results for the estimation of � . It can be seen

from Fig. 3A that all analysis methods had 90% or more for the confidence interval

coverage. Figure 3B shows that, except for a few occasions, the percentage of estimates

less than the true parameter value were all between 40 and 60 for all the analysis methods.

These results suggest that the performance of the different analysis methods were all

good for the estimation of the group effect.

Recall that all of the 32 sets of simulations were for a zero group effect. Simulations

were repeated on four of the simulation sets for a non-zero group effect. These four

sets were sets 3, 7, 19 and 23 in Table 2. These sets were chosen because they showed the

worst results for the two Cox analyses and the two JM analyses. The reason that a non-zero

group effect was not applied to all the 32 simulation sets was that it was very time

consuming to run the simulations. The non-zero group effect was taken to be -0.5. Table 3
shows the results of these simulations, which are very similar to the corresponding

results in Table 2.

Figure 3 Graphical presentation of results of the estimation of � from the 32 sets of simulations for

which � is zero. Refer to Figs. 1 and 2 for the meaning of the labels and the plots.
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ANALYSIS OF TRANSITION TO PSYCHOSIS STUDY DATA
As a further assessment of the joint modelling methodology and the various software

packages, the same analyses described above were applied to a set of real data collected in a

study of risk factors of transition to psychosis in which a group of UHR patients were

followed up for a maximum period of 12 months (Yung et al., 2003). Patients were

recruited as they were admitted into the PACE Clinic, which was an outpatient clinical

service specifically developed to assess, manage and follow up subjects at high risk of

developing a psychotic disorder. Assessments were conducted at study entry and

subsequently at approximately monthly intervals until transition to frank psychotic illness

occurred, or until 12 months from study entry, whichever came first. For the purpose

of illustration, two potential risk factors were considered: family history of mental illness

and severity of depression. The former was ascertained as present/absent at entry,

indicating whether any first or second degree relatives had mental illness. The latter was

measured by the total score of the Hamilton Rating Scale for Depression (HAMD)

(Hamilton, 1960) which was administered on each occasion of measurement. Scores

can range from 0 to 96. Data were available from 47 participants, 29 of whom had a

family history of mental illness. The mean HAMD score was 17.7 with an observed range

of 2 to 39, representing negligible to severe depression. The number of participants

established as having transitioned to psychosis was 21. The time to transition ranged from

7 to 742 days from entry with a mean of 168 days (median 118 days). For those who

did not transition, the censoring time ranged from 339 to 707 days with a mean of

450 days. (Transition time and censoring time could exceed 12 months from entry because

information from medical records were also used).

The same analytic methods investigated above were applied to the data with family

history of mental illness as the group variable and depression score as the time-dependent

predictor. The results are shown in Table 4. For the estimation of �1, it can be seen that

the estimates can be divided into two groups—those based on the two Cox regressions

Table 3 Results of the estimation of �1 and � from four sets of simulations for which group effect is non-zero.

Coverage of 95% confidence intervals Percentage of estimates < true value

Estimation of Set Cox.b Cox.tp joineR stjm JM.pc JM.sp Cox.b Cox.tp joineR stjm JM.pc JM.sp

�1 33 84 96 97 97 92 94 11 22 55 61 95 80

34 92 93 97 94 NA 98 23 27 56 59 NA 79

35 83 92 94 96 83 68 20 26 54 58 90 95

36 89 76 91 93 NA 96 19 9 42 58 NA 84

� 33 97 97 95 97 97 97 52 52 51 53 54 56

34 97 97 94 97 NA 97 52 49 51 50 NA 56

35 97 98 98 98 99 97 54 51 52 52 54 56

36 93 93 94 93 NA 95 49 50 49 50 NA 54

Notes:
�1, Parameter for the effect of the time-dependent predictor on survival (true value = –0.03).
� , Parameter for the group effect on survival (true value = -0.5).
Sets 33–36 are the same as sets 3, 7, 19, 23, respectively in Table 2 except that the group effect is non-zero.
Refer to Fig. 1 for the abbreviations.
Shading: 95% Confidence interval coverage < 90% or % estimates < true value is outside the interval [40, 60].
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and those based on the others. The former are considerably smaller—they are about

60% of the others. This pattern appears to agree with the results of the simulations, which

showed that the two Cox regression methods tended to underestimate �1. However, the

tendency of the JM analysis to overestimate �1 as observed in the simulations did not

appear in this analysis. Neither did the tendency of the JM analysis with unspecified

baseline hazard to underestimate the standard error of �1. As the p-values are usually the

focus of clinical researchers, it is of interest to note that all the estimates of �1 were

significant at the 0.05 level, but the levels of significance varied widely.

For the estimation of � , while there were also substantial differences between

estimates, the standard errors were similar. It is again of interest to note that

there was considerable variation among the p-values, although all of them were

non-significant at the 0.05 level.

DISCUSSION
For time-to-event studies with longitudinal predictors, it is conceptually desirable to

be able to incorporate the longitudinal data in the prediction of the outcome event.

Joint modelling is a welcome addition to the set of analysis tools in such a situation.

However, the implementation of joint modelling is computationally challenging

(Rizopoulos, 2012b;Wu et al., 2012;McCrink, Marshall & Cairns, 2013). In fact, in the early

days of joint modelling, a two-stage approach was suggested (Self & Pawitan, 1992;

Tsiatis, Degruttola & Wulfsohn, 1995). The basic idea of this approach is to firstly estimate

the longitudinal trajectories using linear mixed-effects models. Then, the estimates

obtained from this first stage are used in the survival models as observed values of the

predictors. Strictly speaking, this approach is not joint modelling because the two models

are fitted separately. Also, while such an approach is computationally less demanding, the

resulting estimates can be biased (Tsiatis & Davidian, 2001; Ye, Lin & Taylor, 2008;

Ratcliffe, Guo & Ten Have, 2004; Sweeting & Thompson, 2011). The main computational

difficulty in joint modelling is that the integrals involved in likelihood estimation are

usually intractable in that they have no analytical solutions. So numerical approximations

Table 4 Results of the estimation of �1 and � from the real dataset.

Method

Estimation of �1 Estimation of �

Estimate se p-value Estimate se p-value

Cox.b 0.065 0.0265 0.013 0.92 0.519 0.077

Cox.tp 0.077 0.0226 0.001 0.77 0.523 0.139

joineR 0.116 0.0425 0.006 1.00 0.600 0.095

stjm 0.128 0.0463 0.006 0.58 0.512 0.257

JM.pc 0.118 0.0448 0.008 0.56 0.511 0.276

JM.sp 0.129 0.0478 0.007 0.69 0.544 0.203

JM.Cox 0.114 0.0229 < 0.00001 0.67 0.501 0.184

Notes:
�1, Parameter for the effect of the time-dependent predictor on survival (depression score).
� , Parameter for the group effect on survival (family history of mental illness).
Refer to Fig. 1 for method abbreviations.
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are usually required to evaluate these integrals. Much research has been done in this

aspect (Henderson, Diggle & Dobson, 2000; Wulfsohn & Tsiatis, 1997; Song, Davidian &

Tsiatis, 2002; Rizopoulos, Verbeke & Molenberghs, 2008; Rizopoulos, Verbeke & Lesaffre,

2009; Rizopoulos, 2012a). Bayesian methods for the estimation of joint models have also

been studied by various authors. But for the purpose of this paper, only estimation

based on maximum likelihood is considered.

Much progress has been made in devising techniques to resolve the computational

issues involved in joint modelling. As mentioned before, a number of software packages

are already available with some of these techniques implemented. However, as joint

modelling is still an emerging technique, it is certainly of interest to investigate its

performance in practice. Wu et al. (2012) conducted a simulation in which the

longitudinal predictor followed a linear mixed-effects model with both fixed and

random intercepts and slopes. The covariance matrix of the random effects was set to be

diagonal and the baseline hazard was set to be constant. They compared the joint-

likelihood approach and the two-stage approach and found that the former produced less

biased estimates and more reliable standard errors than the latter. Ibrahim, Chu &

Chen (2010) conducted simulation studies on joint modelling with the longitudinal data

generated from a linear mixed-effects model with random effects for an intercept and a

slope and also a treatment effect (equivalent to the group effect in this paper). The survival

data were generated from the same model as in Eq. (4). They found that, for the treatment

effect on survival, both the Cox model with the longitudinal data as a time-dependent

covariate and the joint model gave nearly unbiased estimates and gave similar

performance in terms of confidence interval coverage. However, for a non-zero effect of

the longitudinal data on survival, they found that the former gave biased estimates

whereas the latter gave unbiased estimates. Also, the performance of the former was less

satisfactory than the latter in terms of confidence interval coverage.

The results presented in this paper broadly agree with these simulation results in the

sense that joint modelling could perform better in terms of unbiasedness and

confidence interval coverage, especially in terms of the estimation of the effect of the

time-dependent predictor on survival. However it seems that the existence of these

advantages may depend on how joint modelling is implemented. The joineR package

performed very well in our simulations. But its relative weakness at this stage is that it

is not very flexible as to how the joint model can be specified. Also, as it utilizes bootstrap

to obtain the parameter standard errors, it generally takes much longer to run. For

example, for each of the data sets considered in this paper (both simulated and real),

joineR took two to three minutes to run; whereas the other packages only took a few

seconds. The stjm package also performed quite well, but a potential limitation is that it

does not allow a completely unspecified baseline hazard.

Given that joint modelling allows better capture of the information of the changing

values of the longitudinal data over time, it would be expected that joint modelling would

out-perform the two Cox models considered in this paper especially in a situation when

there is much error variation in the longitudinal values. This can be seen in Table 2, which

shows that the performance of the two Cox models were especially poor when the error
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variance was large (Var(ε) = 16). In such a situation, joint modelling should certainly be

considered.

The analysis of the real data was consistent with the simulations in two respects. The first

is that different methodologies and different software may show non-trivial differences in

results. The second is that the two Cox-based models do appear to underestimate the

parameter of the time-dependent predictor. As this could have a substantive impact on

interpretation of effects, it is advisable to use these approaches with caution.

In conclusion, the results in this paper support the conceptual and theoretical notions

that joint modelling has the potential to provide better statistical inference when time-to-

event outcomes are to be analysed with longitudinal data. The focus of this paper has been

on the estimation of the parameters associated with the time-to-event process. But joint

modelling can also be utilized to provide predictions for the survival probabilities,

estimation for the longitudinal profile as well as prediction for the time-dependent

characteristics (Rizopoulos, 2012b). So it has the potential to be a powerful and useful

statistical tool. Since joint modelling is still a relatively new technique, further development

of corresponding statistical software is required. However, existing joint modelling packages

have already demonstrated their potential usefulness and should be utilized to apply joint

modelling in the analysis of relevant data, subject to the caveats raised in this paper.
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