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ABSTRACT
The Early Jurassic of China has long been recognized for its diverse array of

sauropodomorph dinosaurs. However, the contribution of this record to our

understanding of early sauropod evolution is complicated by a dearth of

information on important transitional taxa. We present a revision of the poorly

known taxon Sanpasaurus yaoi Young, 1944 from the late Early Jurassic Ziliujing

Formation of Sichuan Province, southwest China. Initially described as the

remains of an ornithopod ornithischian, we demonstrate that the material

catalogued as IVPP V156 is unambiguously referable to Sauropoda. Although

represented by multiple individuals of equivocal association, Sanpasaurus is

nonetheless diagnosable with respect to an autapomorphic feature of the holotypic

dorsal vertebral series. Additional material thought to be collected from the type

locality is tentatively referred to Sanpasaurus. If correctly attributed, a second

autapomorphy is present in a referred humerus. The presence of a dorsoventrally

compressed pedal ungual in Sanpasaurus is of particular interest, with taxa

possessing this typically ‘vulcanodontid’ character exhibiting a much broader

geographic distribution than previously thought. Furthermore, the association of

this trait with other features of Sanpasaurus that are broadly characteristic of basal

eusauropods underscores the mosaic nature of the early sauropod–eusauropod

transition. Our revision of Sanpasaurus has palaeobiogeographic implications for

Early Jurassic sauropods, with evidence that the group maintained a cosmopolitan

Pangaean distribution.

Subjects Biogeography, Evolutionary Studies, Paleontology, Taxonomy

Keywords Early Jurassic, China, Middle Jurassic, Sauropoda, Eusauropoda, ‘Vulcanodontidae’

How to cite this article McPhee et al. (2016), A revision of Sanpasaurus yaoi Young, 1944 from the Early Jurassic of China, and its

relevance to the early evolution of Sauropoda (Dinosauria). PeerJ 4:e2578; DOI 10.7717/peerj.2578

Submitted 2 August 2016
Accepted 16 September 2016
Published 20 October 2016

Corresponding author
Blair W. McPhee,

blair.mcphee@gmail.com

Academic editor
Fabien Knoll

Additional Information and
Declarations can be found on
page 36

DOI 10.7717/peerj.2578

Copyright
2016 McPhee et al.

Distributed under
Creative Commons CC-BY 4.0

http://dx.doi.org/10.7717/peerj.2578
mailto:blair.�mcphee@�gmail.�com
https://peerj.com/academic-boards/editors/
https://peerj.com/academic-boards/editors/
http://dx.doi.org/10.7717/peerj.2578
http://www.creativecommons.org/licenses/by/4.0/
http://www.creativecommons.org/licenses/by/4.0/
https://peerj.com/


INTRODUCTION
The Early Jurassic was a critical period in the early evolution of sauropod dinosaurs,

witnessing the initial radiation of eusauropods and the appearance of several non-

eusauropod lineages that did not survive into the Middle Jurassic (e.g., Yates & Kitching,

2003; Upchurch, Barrett & Dodson, 2004; Upchurch, Barrett & Galton, 2007; Allain &

Aquesbi, 2008; Yates et al., 2010; Cúneo et al., 2013). However, tracking the early radiation

and diversification of Sauropoda has been complicated by its extremely poor early fossil

record, with largely incomplete skeletal material from sites that are often imprecisely

dated, and compounded by a lack of general consensus regarding the precise diagnosis and

definition of Sauropoda (Upchurch, Barrett & Dodson, 2004; Yates, 2007; McPhee et al.,

2015a). This is perhaps most evident with respect to the sauropod record from the Early

Jurassic of China. Although China is well-known for its diverse array of eusauropod

dinosaurs from Middle Jurassic horizons such as the Shaximiao Formation (e.g.,

Dong, Zhou & Zhang, 1983; Zhang, 1988; He, Li & Cai, 1988; Ouyang, 1989; Pi, Ouyang &

Ye, 1996; Peng et al., 2005; Xing et al., 2015), the contribution of the Chinese record to our

understanding of basal sauropod evolution remains under-exploited (see Table 1). The

stratigraphically lower-most sauropodomorph-bearing horizon within China—the Lower

Jurassic Lower Lufeng Formation (Yunnan Province)–while preserving a relative wealth of

basal (= non-sauropod) sauropodomorphs, has thus far only produced fossils of

equivocal referral to Sauropoda (Dong, 1992; Barrett, 1999; He et al., 1998; Lü et al., 2010)

(Fig. 1). For example, the partial skeleton known as ‘Kunmingosaurus’ (Young, 1966;

Dong, 1992) still awaits a formal description and diagnosis before its putative basal

sauropod status can be confirmed (Upchurch, 1995; Upchurch, 1998; P.M. Barrett, P.D.

Mannion & S.C.R. Maidment, 2011, unpublished data). The only other named basal

‘sauropod’ from the Lower Lufeng Formation, Chuxiongosaurus (Lü et al., 2010), appears

to be better considered as a non-sauropodan sauropodomorph, similar in general

appearance to Yunnanosaurus. The Fengjiahe Formation (Yunnan Province), which is

hypothesised to be a lateral equivalent of the Lower Lufeng Formation, has produced

the putative basal sauropod Chinshakiangosaurus (Dong, 1992; Upchurch et al., 2007).

However, this taxon is known only from a single dentary and partial associated

postcranium that, while exhibiting an intriguing mosaic of plesiomorphic and derived

features (Upchurch et al., 2007), provides only limited phylogenetic information.

Moreover, the whereabouts of the associated post-crania is currently unknown;

consequently, character scores for these elements have thus far been based on a small

number of published images rather than direct examination of the material (Upchurch

et al., 2007). Although better-known than ‘Kunmingosaurus’ and Chinshakiangosaurus,

and recovered as a basal sauropod by several recent cladistic analyses (e.g., Yates et al.,

2010), the partial skeleton and skull of Gongxianosaurus (Dongyuemiao Member,

Ziliujing Formation, Sichuan Province) still awaits a full description (He et al., 1998).

In addition, certain aspects of its anatomy (e.g., proportionally low, non-pneumatised

dorsal neural arches; three-vertebra sacrum) caution against its inclusion within

Sauropoda.
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Several other sauropod taxa named from the ‘Early’ Jurassic of China appear

appreciably more derived than those already mentioned and, for this reason, we

recommend caution in accepting the current age estimates for these units. This comment

is especially salient with respect to Tonganosaurus from the Yimen Formation of Sichuan

Province, which has been assigned to Mamenchisauridae (Li et al., 2010), a group

otherwise restricted to the Middle–Late Jurassic (Xing et al., 2015). Material assigned to

‘Zizhongosaurus’ (known primarily from a well-laminated partial dorsal neural arch

with an anteroposteriorly compressed neural spine) from the Daanzhai Member of the

Ziliujing Formation has often been noted as Early Jurassic in age, but potentially

dates to the early Middle Jurassic (Dong, Zhou & Zhang, 1983). Relatively little recent

study has been carried out on the precise ages of these various Early–Middle Jurassic

terrestrial units and more work is needed to establish inter- and intrabasinal correlations

between them.

In 1944, C.C. Young described an assemblage of material collected from several quarries

in the Maanshan (= Ma’anshan) Member of the Ziliujing Formation close to the town of

Changshanling, near Weiyuan City in Sichuan Province. Young (1944) named this

material Sanpasaurus yaoi and originally interpreted it as the remains of an ornithopod

ornithischian. However, subsequent investigations suggested that at least some of this

assemblage was composed of a small-bodied (possibly juvenile) sauropod dinosaur

(Rozhdestvensky, 1967; Dong, Zhou & Zhang, 1983; Dong, 1992). Although its sauropod

affinities have since been accepted by some authors (but see Weishampel et al., 2004),

Sanpasaurus has been largely ignored in the recent literature, and was listed as a nomen

dubium byUpchurch, Barrett & Dodson (2004). The Maanshan Member lies directly above

the Dongyuemiao Member (from which the remains of Gongxianosaurus were derived

Table 1 Named ‘sauropod’ taxa from the Early Jurassic of China (not including Sanpasaurus).

Taxon Formation and putative age Status as sauropod

Chinshakiangosaurus Fengjiahe formation Tentative

Dong (1992); Upchurch et al. (2007) ?Hettangian

Chuxiongosaurus Lower Lufeng formation Negative

Lü et al. (2010) Hettangian–Sinemurian

‘Damalasaurus’ Duogaila member, Daye Group Unknown

Zhao (1985) ?Lower Jurassic

Gongxianosaurus Dongyuemiao member, Ziliujing formation Tentative

He et al. (1998) ?Toarcian

‘Kunmingosaurus’ Lower Lufeng formation Tentative

Dong (1992) Hettangian–Sinemurian

Tonganosaurus Yimen formation Positive

Li et al. (2010) ?Lower–Middle Jurassic

cf. Eusauropoda Lower Lufeng formation Tentative

Barrett (1999) Hettangian–Sinemurian

‘Zizhongosaurus’ Daanzhai member, Ziliujing formation Positive

Dong, Zhou & Zhang (1983) ?Toarcian/Aalenian–Bajocian
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and which itself is situated directly above rocks potentially dating to the earliest Jurassic,

the Zhenzhuchong Formation) and below the ‘Zizhongosaurus’-bearing Daanzhai

Member. Consequently, the Sanpasaurus assemblage has the potential to provide new

insights into the sauropod fauna of the Chinese Early Jurassic either prior to, or

penecontemporaneous with, the origin of Eusauropoda. Here we provide a detailed

description of the identifiable material found within this assemblage, followed by an

assessment of its monospecificity and potential taxonomic relationships.

SYSTEMATIC PALAEONTOLOGY
DINOSAURIA Owen, 1842

SAURISCHIA Seeley, 1887

SAUROPODOMORPHA Huene, 1932

SAUROPODA Marsh, 1878

Sanpasaurus yaoi Young, 1944

Holotype: IVPP V156A (IVPP V156 partim); Disarticulated middle-posterior dorsal

vertebral series, consisting of three complete centra with partial neural arches.

Referred material: IVPP V156B (material removed from holotype, IVPP V156 partim);

two centra from the dorsal vertebral series, lacking neural arches; two sacral centra from a

Figure 1 Geographic and stratigraphic provenance of Sanpasaurus. (A) Location of Weiyuan Region

within Sichuan Province, People’s Republic of China; (B) Generalized stratigraphic relationships of Early

and early Middle Jurassic Chinese sauropodomorphs, based primarily on Dong, Zhou & Zhang (1983),

Dong (1992), and Chen et al. (2006). Citations for taxa not mentioned in the text are as follows:

Yimenosaurus (Bai, Yang & Wang, 1990), Jingshanosaurus (Zhang & Yang, 1994), and Xixiposaurus

(Sekiya, 2010). Geographic details of Sichuan supplied by Map data © 2016 Google.
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small individual; an almost complete anterior-middle caudal vertebra; several distal

caudal centra; numerous fragmentary rib shafts; proximal chevron; scapular remains from

at least three different elements, potentially including the left and right elements of a

single individual; a partial left forelimb consisting of the distal half of a humerus, complete

ulna and radius, and the proximal half of a single metacarpal; a femoral head from a small

individual; a small ?distal tibia; a proximal fibula; a non-first digit pedal ungual. (N.B.

Confusingly, Young noted that the humerus was missing in his original description of

Sanpasaurus, but it is figured in Plate I (Young, 1944). As the humerus referred herein

matches that figured by Young, we assume that it was relocated subsequent to his

publication).

Comments: The majority of the specimens are consistent in preservation—being pale,

chalky-brown in color and relatively smooth in texture. This provides some support for

Young’s (1944) assertion that at least a subset of the material was discovered in association.

However, other included specimens differ from this in being more abraded and somewhat

darker in colour. This raises the possibility that IVPP V156 might have been collected

from at least two different localities. Moreover, Young (1944) stated that when he received

this material some of the labels had been mixed up, as it formed part of a shipment that

also contained specimens from other localities around Weiyuan. This suggests caution is

warranted with respect to the presumed association of IVPP V156 (Table 2).

In addition, on the basis of size, more than one individual is catalogued within IVPP

V156—potentially as many as four on the basis of isolated scapulae (see below). This, and

the lack of clear evidence for association between the included elements, renders the taxon

unstable, although at least some of the material appears to be taxonomically diagnostic. To

protect the taxonomic stability of this species, we hereby restrict the holotype to three dorsal

vertebrae, which bear clear autapomorphies that enable it to be diagnosed adequately.

Henceforth, we designate the holotype as IVPP V156A. The other material included

within IVPP V156 is regarded as potentially referable to the same taxon (see below), but to

different individuals and is designated IVPP V156B. This action complies with Article 73.1.5

of the International Code of Zoological Nomenclature (International Commission on

Zoological Nomenclature, 1999) in defining the content of the holotype and conferring

taxonomic stability.

Diagnosis: Sanpasaurus can be diagnosed by the following autapomorphy: middle-

posterior dorsal neural arches with thin, dorsoventrally oriented ridges on the lateral

surfaces of the arch, at approximately the anteroposterior mid-point, just above the

neurocentral suture. Additionally, following the referral above, Sanpasaurus could be

diagnosed by a second potential autapomorphy of the humerus: a distinct midline

protuberance between the ulnar and radial condyles.

Locality and horizon: The material was collected from the Maanshan Member of the

Ziliujing Formation, Weiyuan region, Sichuan Province, People’s Republic of China in

1939 (Young, 1944;Dong, Zhou & Zhang, 1983) (Fig. 1).Dong, Zhou & Zhang (1983) noted

that Dong confirmed this via a prospecting trip in 1978 during which an ungual and

vertebral material closely matching that of Sanpasaurus were recovered, though the
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Table 2 Select measurements of Sanpasaurus (in mm).

Holotype

IVPP V156AI

Anteroposterior length of centrum 103

Anterior height of centrum 73

Transverse width anterior centrum face 72

Neural arch width across parapophyses 96

IVPP V156AII

Anteroposterior length of centrum 100

Anterior height of centrum 82

Transverse width anterior centrum face 75

Material potentially associated with holotype on grounds of either size and/or preservation

Anterior caudal vertebra (IVPP V156B)

Anteroposterior length of centrum 84

Anterior height of centrum 103

Transverse width anterior centrum face 94

Humerus (IVPP V156B)

Length as preserved 310

Minimum shaft circumference 262

Distal end mediolateral width 155

Anteroposterior length of ulnar conyle 85

Ulna (IVPP V156B)

Maximum length 440

Maximum transverse width proximal end 135

Minimum shaft circumference 166

Anteroposterior length distal end 56

Transverse width distal end 85

Radius (IVPP V156B)

Maximum length ∼425
Mediolateral width of proximal end 93

Anteroposterior length of proximal end 53

Minimum shaft circumference 141

Mediolateral width of distal end 76

Anteroposterior length of distal end 57

Pedal ungual (IVPP V156B)

Transverse width of proximal end 63

Dorsoventral height of proximal end 39

Proximodistal length as preserved 78

Material of less confident association

Proximal femur (IVPP V156B)

Length as preserved 137

Transverse width across proximal end 175

Anteroposterior depth of proximal end 86
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whereabouts of this additional material is currently unknown. The Ziliujing Formation

has been considered to be late Early Jurassic in age (Dong, Zhou & Zhang, 1983; Wang &

Sun, 1983; Chen et al., 2006), and the underlying Gongxianosaurus-bearing Dongyuemiao

Member has been regarded as Toarcian in age (Meng, Li & Chen, 2003). If the latter is

accurate, then the age of the Maanshan Member is no older than the late Early Jurassic.

Previously referred material: In addition to IVPP V156, Young (1944) referred remains

(IVPP V221 and V222) from two nearby localities to Sanpasaurus yaoi, and regarded two

isolated vertebrae (catalogue numbers unknown) from the Ziliujing Formation near to

Chongqing as cf. Sanpasaurus yaoi. Young & Chow (1953) referred another specimen

(IVPP V715) from near Chongqing to cf. Sanpasaurus yaoi, although the stratigraphic

unit of this locality is unknown. Lastly, Dong (1992: 51)mentioned the discovery of “three

incomplete small sauropod skeletons” in the Maanshan Member of Chongqing in 1984

which were suggested to represent Sanpasaurus; however, no further information has been

published on this material. Based on a lack of overlapping diagnostic elements, none of

these remains can be confidently referred to Sanpasaurus, and we regard them as

indeterminate sauropods, restricting Sanpasaurus yaoi to IVPP V156.

DESCRIPTION
Middle-posterior dorsal vertebrae (IVPP V156A)
The newly restricted holotype of Sanpasaurus is composed of three dorsal vertebrae with

partially preserved neural arches. The most complete is referred to as V156AI (Fig. 2),

whereas the other, less complete vertebrae, are referred to as V156AII (Fig. 3) and

V156AIII (Fig. 4), respectively.

The centra are mostly intact, whereas the neural spines, postzygapophyses, and

diapophyses are missing in all specimens. V156AI preserves both the base and anterior

portions of the neural arch, including most of the left prezygapophysis. V156AII is

represented primarily by the posteroventral corner of the neural arch, although the

ventral part of the anterior surface of the neural arch is also present. V156AIII

preserves the right half of the neural arch to the level of the parapophysis. Due to

the marked dorsal displacement of the parapophyses (being located well above the

neurocentral suture), it is clear that these specimens derive from at least the middle

part of the dorsal series.

The centra are amphiplatyan, with a shallowly concave or irregularly flat anterior

articular surface and a concave posterior surface. The ventral surfaces are broad and gently

convex transversely, rounding smoothly into the lateral surfaces with no distinct ridges.

The lateral surfaces have shallow depressions, but no true pleurocoels. This absence is

Table 2 (continued).

Probable distal tibia (IVPP V156B)

Total length as preserved 138

Transverse width distal end 130

Anteroposterior width distal end 68
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a common feature in the middle-to-posterior dorsal vertebrae of most basal sauropods

(e.g., Tazoudasaurus (Allain & Aquesbi, 2008); Shunosaurus (Zhang, 1988); Jobaria (Sereno

et al., 1999)). The anteroposterior length of the centrum of V156AI is 1.4 times the height

of the anterior surface of the centrum. This is a relatively high ratio, contrasting with

0.96 (middle dorsal) and 0.74 (posterior dorsal) in Tazoudasaurus (Allain & Aquesbi,

2008), and 0.76 (posterior dorsal) in Spinophorosaurus (Remes et al., 2009). By contrast,

Shunosaurus appears to have retained relatively elongate centra into the posterior dorsal

series, with a length/height ratio of ∼1.2 (Zhang, 1988: Fig. 32). As neither of the isolated

Figure 2 Dorsal vertebra (IVPP V156AI). (A) Anterior view; (B) posterior view; (C) dorsal view;

(D) left lateral view; (E) right lateral view. Abbreviations: cdf, centrodiapophyseal fossa; cpol,

centropostzygapophyseal lamina; lar, lateral ridge; ms, midline septum; pp, parapophyses; prpl,

prezygoparapophyseal lamina; prz, prezygapophyses; tprl, intraprezygapophyseal lamina. Scale bars

equal 5 cm. Photographs by B.W.M. and C.S.
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dorsal centra (see above) display any marked anteroposterior shortening, it is possible that

all elements come from either the anterior or middle part of the dorsal series, or that

marked anteroposterior shortening of the dorsal centra did not occur along the dorsal

sequence in Sanpasaurus.

The suture dividing the centrum from the neural arch is still clearly visible in all three

specimens as a flat, non-interdigitated connection. Although the arch and centrum were

clearly semi-fused at the time of death, the apparent lack of complete fusion potentially

Figure 3 Dorsal vertebra (IVPP V156AII). (A) Anterior view; (B) posterior view; (C) left lateral view;

(D) right lateral view. Abbreviations: cpol, centropostzygapophyseal lamina; lar, lateral ridge; tpol,

intrapostzygapophyseal lamina. Scale bars equal 5 cm. Photographs by B.W.M. and C.S.
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indicates that the relatively small size of the vertebrae is due to either juvenile or

subadult status.

The neural arches appear to have been relatively tall, potentially reaching >1.5 times

the height of their respective centra (neural spines excluded). This is a derived

sauropodomorph feature and is observed in most basal sauropods (e.g., Tazoudasaurus

(Allain & Aquesbi, 2008)). The neural canals are slot-shaped, being considerably taller

Figure 4 Dorsal vertebra (IVPP V156AIII). (A) Anterior view; (B) posterior view; (C) left lateral view;

(D) right lateral view. Abbreviations: cpol, centropostzygapophyseal lamina; lar, lateral ridge; nc, neural

canal; pp, parapophyses. Scale bars equal 5 cm. Photographs by B.W.M.
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dorsoventrally than transversely wide. A vertically elongate projection on the anterolateral

margin of the neural arch of V156AI is interpreted as the parapophysis and lies at

approximately arch midheight or slightly higher. The base of the parapophysis lies just

below the level of the dorsal extreme of the neural canal. The arch extends well above the

top of the neural canal and it seems that the anterior surface of the arch was shallowly

excavated. Two small, parallel ridges extend dorsally across the anterior surface of the arch,

beginning at the dorsal opening of the neural canal and possibly extending to the

ventromedial corner of each prezygapophysis. These structures, interpreted herein as the

intraprezygapophyseal laminae (TPRLs sensu Wilson (1999)) are only minimally separated

from one-another with respect to the midline of the anterior surface. Similar, albeit

slightly more widely-spaced, TPRLs are potentially present within a posterior dorsal

vertebra of Tazoudasaurus (Allain & Aquesbi, 2008: Fig. 14A). The area between the left

TPRL ridge and the left parapophysis is moderately excavated, forming a shallow

centroprezygapophyseal fossa (CPRF sensu Wilson et al. (2011)). A rounded ridge extends

anterodorsally from the top of the parapophysis, forming the anterolateral margin of the

arch. This ridge represents the prezygoparapophyseal lamina (PRPL) and is relatively

complete apart from the missing anterior tip of the prezygapophysis. A second thinner,

sharper ridge extends posterodorsally and would have perhaps joined the dorsal margin of

the parapophysis to the ventral margin of the diapophysis as the paradiapophyseal lamina

(PPDL). Posterior to this lamina, on the lateral surface of the arch, there is a deep

excavation (centrodiapophyseal fossa (CDF)), observable on both sides of V156AI.

Internally, the left and right excavations are separated along the sagittal midline of the

element by a thin, bony septum. This morphology is potentially homologous to the lateral

excavations (= ‘neural cavity’) observed in several other basal sauropod genera (e.g.,

Barapasaurus, Cetiosaurus, Patagosaurus; see Bonaparte (1986) and Upchurch & Martin

(2002: 1059) for discussion). In contrast, although a CDF is commonly observed directly

ventral to the diapophysis in most sauropodomorphs (Wilson et al., 2011; Yates, Wedel &

Bonnan, 2012), this feature rarely invades the neural arch body to the extreme extent

observed in IVPP V156AI.

As mentioned above, the base of the left prezygapophysis is preserved in V156AI,

including what appears to be the posterior part of the flattened articular surface and the

wall of the hypantrum. If this identification is correct, the prezygapophyseal articulation

would have faced inwards at an angle of about 45� to the horizontal. The prezygapophyses
appear to have been positioned very close to each other with respect to the midline.

The beginning of a ridge extends backwards from the posterodorsal base of the

prezygapophysis—towards either the diapophysis or the base of the neural spine (in the

case of the former it would be the prezygodiapophyseal lamina (PRDL), in the latter the

spinoprezygapophyseal lamina (SPRL)). There is a vertical ridge along the midline of

the posterior surface of the neural arch of V156AII, extending dorsally from the roof of

the neural canal opening. This potentially represents either the intrapostzygapophyseal

lamina (TPOL) or the broken ventral base of the hyposphene (although neither is

entirely mutually exclusive). V156AII and V156AIII also preserve the bases of the

centropostzygapophyseal laminae (CPOLs). In V156AII these structures bracket either
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side of the TPOL and are directed steeply posteroventrally, forming the posterolateral

margins of the neural arch. The right CPOL of V156AIII is more complete dorsally than in

V156AII, and undergoes a marked anteroposterior compression at the level of the dorsal

extent of the parapophysis. This narrow lamina forms the posterior wall of a deep,

possibly natural, fossa that is walled medially by a thin ridge of bone similar to the median

septum observed in V156AI.

In all specimens an unusual structure is present on the lateral surfaces of the neural

arch. In V156AI and V156AII it consists of two short and low ridges, subparallel to each

other, that extend vertically to produce a low scar or prominence. The dorsal termination

of these ridges is roughly level with the ventral termination of the parapophyses, and the

ridges themselves are approximately equidistant between the anterior and posterior

margins of the neural arch. In V156AIII there is a single ridge that has a more

posterodorsal inclination (although only the right lateral surface is preserved), which

merges ultimately with the CPOL at roughly the level of the dorsal apex of the neural

canal. No similar structures appear to be present in any other Early–Middle Jurassic

sauropods, and we provisionally regard the presence of these ridges as an autapomorphy

of Sanpasaurus.

Two isolated dorsal centra (IVPP V156B)
In addition to the holotypic dorsal elements (see below) there are two isolated dorsal

centra amongst the IVPP V156 assemblage. Both agree in general morphology: the

anterior surfaces are nearly flat whereas the posterior surfaces are concave. Both appear

to be slightly longer anteroposteriorly than dorsoventrally high or transversely wide

(see also below). Their ventral surfaces are concave longitudinally due to the expansion of

the anterior and posterior articular surfaces, but are mildly convex transversely. Neither

of the dorsal centra possess a sharply-lipped lateral fossa (= pleurocoel). However, one of

the centra, possibly from the anterior part of the dorsal series, possesses moderately deep

lateral depressions, just posterior to the anterior surface (Fig. 5). On account of these

depressions, the lateral and ventral surfaces meet each other abruptly along a rounded

ridge that is more developed than that observed in any other dorsal centrum within the

assemblage.

Left dorsal rib (IVPP V156B)
A proximally and distally incomplete left thoracic rib is preserved in five pieces (Fig. 6).

The tuberculum and capitulum are missing, but the broken proximal portion shows

the rib starting to expand into the proximal plate. A groove extends ventrally along

the posterior surface throughout most of the proximal half of the preserved length,

formed largely by a plate-like ridge that extends along the posterolateral margin and

that projects posteriorly. This ridge therefore makes the lateral surface of the rib wider

anteroposteriorly. The cross section below the proximal end can thus be described as

‘P’-shaped, with the stem of the ‘P’ formed by the posterolateral ridge or plate, and the

rounded part of the ‘P’ formed by the main body of the rib. The anterior surface has a very

shallow concavity extending ventrally across its surface, bounded laterally and medially by
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very subtle ridges along the anteromedial and anterolateral margins. The distal portion

has an elliptical cross-section with a flattened lateral surface and a more rounded medial

surface. There is no indication of pneumaticity.

Sacral vertebrae (IVPP V156B)
Although Young (1944) mentioned that IVPP V156 contained at least five sacral

vertebrae, only two unambiguous sacral vertebrae could be located (Fig. 7). Of these,

only one preserves the remains of a sacral rib. All of the potential sacral material is

notably small, and probably does not pertain to the same individual as either the dorsal

vertebral or forelimb (see below) material. The centrum of the most complete sacral

element is solid, with no lateral or ventral excavations. The articular surfaces are

irregular, but appear to have been predominantly flat. The lateral and ventral surfaces

merge smoothly into each other, forming a single rounded convex surface. The rib base

Figure 5 ?Mid-anterior dorsal centrum (IVPP V156B). (A) Left lateral view; (B) ventral view. Scale bar

equals 5 cm. Photographs by B.W.M.
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is situated on the left side of what we interpret as the ‘anterior’ end of the sacral

centrum, and extends posterodorsally from the anteroventral corner at a slightly

oblique angle. Little detail can be observed, with the exception that the anterior

articular surface appears to be larger than the posterior one, but this might be due to

damage and the presence of the rib base.

Anterior caudal vertebra (IVPP V156B)
This specimen is missing the dorsal apex of the neural spine, the postzygapophyses, and

all but the bases of the transverse processes (= caudal ribs) (Fig. 8). The centrum is solid

and amphicoelous, with the anterior surface being somewhat more concave than the

posterior one. It is essentially subcircular in cross-section throughout, with the lateral and

ventral surfaces of the centrum forming a single rounded convexity. The dorsoventral

height of the anterior surface is 1.2 times the anteroposterior length of the centrum. This

suggests that the element derives from the posterior end of the anterior caudal series, given

Figure 6 Dorsal ribs (IVPP V156B). Abbreviations: lp, lateral plate. Scale bar equals 5 cm. Photographs

by B.W.M.
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that the anterior-most caudal vertebrae of most sauropods tend to possess centra that

are considerably shorter anteroposteriorly (e.g., the anterior-most caudal vertebrae of

Pulanesaura (McPhee et al., 2015a) and Tazoudasaurus (Allain & Aquesbi, 2008) are

Figure 7 Sacral vertebrae (IVPP V156B). (A–C) Isolated sacral vertebra in (A) ?anterior; (B) ?left

lateral; and (C) ventral views. (D–F) Possible sacral vertebra in (D) anterior/posterior; (E) lateral; and

(F) dorsal views. Abbreviation: sr, sacral rib. Scale bars equal 2 cm. Photographs by B.W.M.

Figure 8 Anterior caudal vertebra (IVPP V156B). (A) Anterior view; (B) posterior view; (C) left lateral

view. Abbreviations: hyp, hyposphene; prz, prezygapophysis; sprl, spinoprezygapophyseal lamina; tp,

transverse process. Scale bar equals 5 cm. Photographs by B.W.M.
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roughly twice as high as long). There are no grooves, ridges or hollows on the ventral

surface. A single large chevron facet is present on the posterior margin of the ventral

surface of the centrum, although the right half of this facet encroaches slightly more

anteriorly towards the transverse midline of the centrum than the left half. The chevron

facet projects anteroventrally to a level slightly below the ventral margin of the anterior

articular face.

The position of the neural arch on the centrum exhibits a strong anterior bias, although

it remains set back from the anterior margin by ∼1.5 cm. The bases of the transverse

processes extend for a short distance onto the lateral surface of the centrum and are

elliptical in cross-section. The prezygapophyses are narrowly spaced and steeply inclined,

with the angle of the articular facets being just under 90� from the horizontal. Finely

delimited SPRLs connect the posterior ends of the prezygapophyses with the anterior

surface of the neural spine. The SPRLs are still observable at the dorsal termination of the

broken neural spine. The fossa located at the base of the spine and bounded by these

laminae (spinoprezygapophyseal fossa (SPRF) sensu Wilson et al. (2011)) is relatively

shallow. Although the postzygapophyses are missing, a pronounced ridge is preserved

ventral to each of their broken bases, which extends to the dorsal margin of the neural

canal. This suggests that a hyposphene-like structure was retained until at least the middle

of the anterior caudal vertebral series. The neural spine is transversely compressed and

directed posterodorsally.

Middle–posterior caudal centra (IVPP V156B)
Several relatively complete middle–posterior caudal vertebrae are present, all lacking

their neural arches (Fig. 9). The lateral surfaces of the centra converge ventrally to

form a blunt midline ridge, although it is not pinched into a keel. The most complete

centrum is amphiplatyan to mildly amphicoelous, and is very gently excavated laterally

(Figs. 9A–9C). Its dorsoventral height is 0.75 times its anteroposterior length. There is

some indication of a small transverse process, suggesting that this is from the distal part of

the middle caudal series. This is consistent with its proportions; in contrast, more derived

sauropods lose the transverse ribs earlier in the caudal series—with only the anterior-most

15 caudals bearing ribs (e.g., Haplocanthosaurus (Hatcher, 1903)). The larger of the

preserved posterior caudal centra lacks any lateral excavations and has a ventral surface

that is smoothly convex (Figs. 9D and 9E). Its dorsoventral height is 0.7 times its

anteroposterior length.

Chevrons (IVPP V156B)
A single proximal chevron (Fig. 10) and part of a more distally located shaft are preserved.

The former has a well-developed strut of bone proximally bridging the forked arms of the

chevron. This distinguishes the element from the chevrons of Shunosaurus, which are

unbridged (Zhang, 1988). The proximal surface appears to have been composed of a single

large facet that exhibits a subtle anterior slope. The haemal canal is slot-shaped, being

taller dorsoventrally than wide transversely. This differs from the triangular haemal canals

of more basal sauropodomorph taxa such as Antetonitrus (McPhee et al., 2014). The walls
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of the haemal canal open onto the posterior surface of the chevron to form an acute lip of

90� or more. In contrast, the walls of the haemal canal merge more gradually with the

anterior surface of the chevron. Moreover, a shallow, fossa-like extension of the haemal

canal continues down the anterior surface until at least the level of the missing distal half.

Scapulae (IVPP V156B)
A maximum of four and minimum of three partial scapulae are present. All are

fragmentary, although most of the scapular blade of one can be reconstructed (Fig. 11).

The preservation and size of this element and another partial blade within IVPP

V156B are similar, and these are potentially referable to the same individual. A third

scapular fragment is an anteroposteriorly narrow, dorsoventrally complete section

from somewhere along the mid-length of the scapular blade. This fragment has different

preservational features (being generally more abraded and slightly darker in colour) to

the former two and is potentially associated with a wedge of heavily eroded glenoid

region that is also present in IVPP V156B (although this might represent a fourth

separate element). The following description focuses on the most completely preserved

scapular blade.

Overall, the scapular blade shares the general morphology seen in basal sauropod taxa

such as Vulcanodon (Cooper, 1984) and Shunosaurus (Zhang, 1988). This is supported by

Figure 9 Isolated caudal vertebrae (IVPP V156B). (A–C) ?Middle caudal vertebra in (A) anterior;

(B) left lateral; and (C) dorsal views. (D, E) Posterior caudal vertebra in (D) lateral; and (E) anterior/

posterior views. Scale bars equal 2 cm. Abbreviation: tp, transverse process. Photographs by B.W.M.
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the relatively broad ‘neck’ (the area that would have merged with the proximal plate) and

the manner in which this appears to have expanded gradually towards the moderately-

broadened distal end. As such, neither the ventral nor dorsal scapular margins appear to

have been particularly concave in lateral view. In contrast, the scapular blades of more

derived sauropods (e.g., Mamenchisaurus (Ouyang & Ye, 2002); Camarasaurus (Wilson &

Sereno, 1998)) are relatively attenuated at their base, with a concomitantly pronounced

dorsoventral expansion of the distal blade (see also Mateus, Mannion & Upchurch, 2014:

Fig. 7). However, poor preservation and the absence of the proximal plate precludes a

more detailed assessment of the proportional relationships of the scapula. The lateral

surface of the scapular blade is gently convex dorsoventrally, whereas the medial surface

is very gently concave. This differs from the basal sauropodomorph condition whereby

the medial surface is either flat or slightly convex (e.g., Antetonitrus, BP/1/4952;

McPhee et al., 2014).

Distal half of left humerus (IVPP V156B)
The humerus is broken at roughly mid-shaft, just below the level of the

deltopectoral crest; however, when viewed laterally, a slight expansion at its

Figure 10 Chevron (IVPP V156B). (A) Anterior view; (B) posterior view; (C) lateral view. Scale bar

equals 5 cm. Photographs by B.W.M.

Figure 11 Scapular blade (IVPP V156B). Lateral view. Scale bar equals 5 cm. Photograph by B.W.M.
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proximal termination probably marks the distal-most extent of the deltopectoral crest.

The shaft is subelliptical in cross-section with the long-axis of this section angled at

roughly 45� with respect to the transverse axis of the distal end (Fig. 12). The anterolateral

corner of the mid-shaft cross-section represents the anterior-most point of the ellipse, and

is slightly mediolaterally constricted compared to the rest of the shaft, which is relatively

broad transversely. In lateral view the shaft bows slightly posteriorly.

The anterior surface of the distal end, although shallowly concave, lacks the

pronounced depression (= cuboid fossa) of basal sauropodomorph taxa (Remes, 2008).

There is a similarly shallow supracondylar fossa on the posterior surface, located

approximately 10 cm from the distal margin. No prominent ridges demarcate the

supracondylar fossa. The two distal condyles send out small projections from their

anterolateral (ulnar condyle) and anteromedial (radial condyle) margins close to the

midline. Within the intercondylar space formed by these projections there is another,

smaller anterior projection located at roughly the midline of the distal end. These

projections recall the ‘accessory condyles’ previously described as unique to

Mamenchisaurus and Spinophorosaurus (Remes et al., 2009), although Upchurch,

Mannion & Taylor (2015) have demonstrated that these features are present in many

non-titanosaurian sauropods. Nonetheless, the median anterodistal projection (= median

tubercle) is a potentially unique feature and is regarded as an autapomorphy of

Sanpasaurus herein. Consistent with the derived sauropod condition (Remes, 2008;

McPhee et al., 2015a), the distal condyles are not greatly expanded transversely, with

the transverse width of the distal end being 1.8 times the anteroposterior depth of the

ulnar condyle. The ulnar articulation is the larger of the two condyles and projects

anteromedially in distal end view. The distal end is rugose and nearly flat, rounding

slightly towards the edges, but does not notably expand onto the anterior or posterior

surfaces of the shaft.

Left ulna (IVPP V156B)
Although broken at mid-length and missing a small portion from the proximal end of

the anterior (= anterolateral) process, the element is mostly complete (Fig. 13). The

ulna is highly elongate, resembling the condition in Vulcanodon and more derived

sauropods (Cooper, 1984). Measured from the posterior-most margin of the proximal

surface to the estimated tip of the anterior process, the proximal end is approximately

0.3 times the total length of the bone. This contrasts with a ratio of approximately 0.4 or

greater for most non-sauropodan sauropodomorphs (e.g., Massospondylus [BP/1/4860];

Antetonitrus [BP/1/4952]). Consistent with the morphology of other sauropods,

the proximal end of the ulna is triradiate, with shorter and robust medial and

lateral (= posterolateral) processes (these are virtually equal in prominence), and a longer

and thinner anterior process. The latter curves strongly laterally towards its termination

in proximal view. The resulting concavity for the reception of the proximal radius is

thus relatively deep, approaching the condition of Camarasaurus, for example

(Wilson & Sereno, 1998). The articular surface, at the point where the three proximal
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Figure 12 Distal half of left humerus (IVPP V156B). (A) Anterior view; (B) posterior view; (C) lateral

view; (D) medial view; (E) proximal view; (F) distal view. Abbreviations: mt, median tubercle; rac, radial

condyle; ulc, ulnar condyle. Scale bars equal 5 cm. Photographs by B.W.M.
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processes meet, is mildly domed and appears to lie a little above the rest of the articular

surface. Despite this doming, there is little evidence of a ‘prosauropod’-like olecranon

process. The proximal surface is pitted and rugose.

Figure 13 Left ulna (IVPP V156B). (A) Anterior view; (B) posterior view; (C) proximal view;

(D) lateral view; (E) medial view. Abbreviations: ap, anterior process; lp, lateral process; mp, medial

process; olp, olecranon process; rl, ligamentous attachment for radius. Scale bars equal 5 cm. Photo-

graphs by B.W.M.
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In medial view, the shaft bows slightly anteriorly. The proximal part of the shaft is

subtriangular in cross-section, with flat surfaces facing anteromedially, anterolaterally

and posteriorly. At mid-shaft the ulna becomes more elliptical in cross-section, with

the long-axis extending anteroposteriorly. The distal part expands lateromedially but

does not expand much anteroposteriorly. The distal articular surface appears to be

mildly convex and is highly rugose. There is no evidence of either a ridge or double ridge

for ligamentous attachments to the radius on the distolateral corner of the shaft.

However, there is a prominent bulge on the lateral surface towards the distal end, but it

is not clear how much of this feature is real and how much has been caused by repairs

to the shaft. The anterior surface of the distal shaft is planar whereas the other surfaces

are gently convex.

Left radius (IVPP V156B)
This is probably the corresponding antebrachial element to the left ulna. Although

complete, the shaft is broken into three segments, joined together in a nail and socket

arrangement (Fig. 14). The imperfect join at the mid-shaft means that a clean match

between these parts is not possible.

The proximal end is compressed anteroposteriorly and has an oval outline, with the

sharper end of the oval forming the medial process. This process extends proximomedially

from the articular surface in a manner similar to that observed in Vulcanodon and other

sauropods (see Upchurch, Mannion & Taylor, 2015: Fig. 10). An accompanying (if less

laterally-projecting) rise in the lateral corner results in a proximal articular surface that is

slightly concave with respect to the transverse plane.

The proximolateral corner of the radius has suffered some slight erosion. The

medial margin of the shaft is concave, but it is difficult to say to what degree this

morphology is exaggerated due to the abovementioned breakage. In contrast, the

radius of Vulcanodon appears to exhibit the opposite condition (see Cooper, 1984: Fig. 6).

The distal end of the Sanpasaurus radius has a rugose texture and is relatively flat. If

this element is correctly interpreted as a left radius, then the distal surface slopes

slightly upwards as it approaches the medial margin. This is the opposite condition

to most other sauropods, including Vulcanodon, in which the beveled distal end

slopes proximally towards the laterodistal margin (Cooper, 1984; Upchurch, Mannion &

Taylor, 2015: Fig. 6) (however, it remains possible that this morphology is either the

result of, or has been augmented by, plastic deformation experienced by the shaft).

In distal view, the radius has a rounded, subtriangular outline, with a relatively

straight posterior margin. This is consistent with the morphology of most sauropods

in which the distal end of the radius is circular-to-subrectangular with a flat posterior

margin (Wilson & Sereno, 1998; see Upchurch, Mannion & Taylor, 2015: Fig. 9).

In contrast, the distal end of the radius in most basal sauropodomorph taxa is an

anteroposteriorly elongate ellipse with a relatively acute posterior margin (e.g.,

Aardonyx: BP/1/5379) (N.B. although Wilson & Sereno (1998) inferred the derived

condition for Vulcanodon, examination of Cooper (1984: Fig. 6) suggests that this is
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potentially an artefact of either erroneous or ambiguous orientation, the distal end

of Vulcanodon still being strongly subelliptical-to-rectangular in outline as in more

basal taxa).

Figure 14 Left radius (IVPP V156B). (A) Anterior view; (B) posterior view; (C) medial view; (D) prox-

imal view; (E) distal view. Abbreviations: mp, medial process. Scale bars equal 5 cm. Photographs by B.W.M.
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Proximal end of metacarpal ?IV (IVPP V156B)
Approximately one-third to half of the proximal end of the metacarpal is preserved

(Fig. 15). It is triangular in proximal view, with two longer sides of subequal length and

one shorter one. The general outline recalls the central (digits II–IV) metacarpus of most

basal sauropod taxa (e.g., Allain & Aquesbi, 2008: Fig. 24). In lateral view the proximal

surface slopes dorsally towards the most acute corner of this triangle. On the edge of the

shaft, directly beneath the least acute corner of the proximal triangle, there is a small,

dorsoventrally elliptical tuberosity. This likely represents a site of ligamentous attachment

within the metacarpus. The shaft strongly tapers distally, and is roughly square-shaped

in cross-section.

Proximal end of ?right femur (IVPP V156B)
The femur is clearly from a smaller individual than the forelimb elements. Moreover,

poorer preservation, coupled with a slightly darker colouring, suggests that the femur

might come from a different locality than the forelimb elements. Although its

incompleteness makes identification of the femur difficult, we interpret it as coming from

the right side.

The proximal head projects mainly anteromedially in anterior view, as in other basal

sauropods (e.g., Isanosaurus (Buffetaut et al., 2000), Spinophorosaurus (Remes et al., 2009))

(Fig. 16). This contrasts with other taxa that display a more medially oriented femoral

head resulting in a sharper angle between the proximomedial apex of the shaft and the

distolateral corner of the head (e.g., Antetonitrus (McPhee et al., 2014); Vulcanodon

(Cooper, 1984)). There is no distinct neck between the head and greater trochanter region.

The middle part of the anterior surface is crushed inwards to form a pronounced

hollow. Lateral to this hollow there is a distinct step separating the femoral head from the

lateral margin of the proximal end. This step, which forms a small platform just below

the level of the medial termination of the femoral head, is more developed anteriorly than

posteriorly and is interpreted as the greater trochanter, based on the similar morphology

present in taxa like Spinophorosaurus (Remes et al., 2009).

Distal left tibia (IVPP V156B)
We interpret this element as the distal end of a left tibia from a smaller sized animal

than the forelimb elements. The distal end expands prominently transversely from a

relatively narrow shaft that is subelliptical in cross-section (Fig. 17). The anterior surface is

relatively broad and flat whereas the posterior surface is more convexly rounded—

consistent with the morphology of sauropodomorph distal tibiae generally. The distal

articular surface is eroded, obscuring the morphology of the ankle-articular joint.

However, it appears that the anterior ascending process (= lateral malleolus) was strongly

laterally offset from the rest of the shaft.

Proximal left fibula (IVPP V156B)
In lateral view, the proximal head of the fibula is roughly hatchet-shaped, with a pointed

posteroproximal corner and more gently rounded anterior margin (Fig. 18). Although the
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latter surface (= the anteroproximal crest) appears to have been slightly modified by

erosion, this morphology is consistent with that seen in most sauropodomorph taxa (e.g.,

Antetonitrus (McPhee et al., 2014); Camarasaurus (Wilson & Sereno, 1998)). The lateral

surface of both the head and the preserved segment of the fibular shaft is highly irregular

owing to poor preservation, precluding assessment of any natural ridges and/or

excavations that might also be preserved. The incompleteness of the shaft also precludes

determination of the extent of the lateral migration of the M. iliofibularis attachment

scar (i.e. whether or not this is located anteriorly, as in basal sauropodomorphs). The

medial surface of the proximal head is highly rugose and pitted. This texture appears to

Figure 16 Femoral head (IVPP V156B). (A) ?anterior view; (B) dorsal view. Abbreviations: gt, greater

trochanter. Scale bar equals 5 cm. Photographs by B.W.M.

Figure 15 Metacarpal (IVPP V156B). (A) Proximal view; (B–D) indeterminate side views. Abbrevia-

tions: lt, ligamentous tuberosity. Scale bars equal 2 cm. Photographs by B.W.M.
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have covered most of the medial surface of the fibular head, extending from the

posteroproximal corner in a diagonal line to a point several centimeters proximal to the

base of the anteroproximal crest.

Pedal ungual from the ?left pes (IVPP V156B)
The ungual is complete apart from the loss of its distal tip. It is dorsoventrally flattened,

such that the long-axis of its cross-section is transverse throughout its length (Fig. 19).

This establishes the ungual as coming from a digit other than the first, given the

Figure 17 Distal left ?tibia (IVPP V156B). (A) Anterior view; (B) posterior view; (C) lateral view. Scale

bar equals 5 cm. Photographs by B.W.M.

Figure 18 Proximal left fibula (IVPP V156B). (A) Anterior view; (B) lateral view; (C) medial view.

Scale bar equals 5 cm. Photographs by B.W.M.
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characteristic scythe-like morphology of the first pedal ungual in sauropods (Upchurch,

Barrett & Dodson, 2004; McPhee et al., 2015a). Within Sauropoda, extreme dorsoventral

flattening of the (non-first digit) unguals has only previously been described in the

Early Jurassic African taxa Vulcanodon and Tazoudasaurus and represents a potential

synapomorphy uniting the two within Vulcanodontidae sensu Allain & Aquesbi (2008; but

see Discussion, below). In this regard the digit IV ungual of Vulcanodon (Cooper, 1984:

Fig. 35) is a close morphological match for IVPP V156B.

The proximal surface is elliptical in outline and deeply concave, largely due to the

prominent overhang (‘lappet’) exhibited by its dorsal margin. The dorsal surface is convex

transversely and also slightly convex proximodistally. Near each margin is a prominent

groove, each extending virtually the entire length of the claw as preserved. The margin

with the slightly shallower groove is interpreted as the lateral because it is slightly concave

in dorsal view, whereas the other is regarded as medial because it is slightly convex. This

suggests that it is a left claw. It is worth noting, however, that if the unguals figured in

Cooper (1984) belong with the left metatarsus of Vulcanodon, then the asymmetrical

deflection of the distal end is directed medially in that taxon, suggesting that the ungual

described here is potentially from the right side. In contrast, the non-first unguals of

Tazoudasaurus are symmetrical in dorsal view. The ventral surface of the IVPP V156B

ungual is gently convex transversely and arched upwards in lateral view such that it

is mildly concave proximodistally. There are two small foramina located at the

proximolateral and proximomedial corners of the ventral surface. A similar foramen

is potentially present in the ungual of Vulcanodon (Cooper, 1984: Fig. 35l).

Figure 19 Pedal ungual (IVPP V156B). (A) Dorsal view; (B) ventral view; (C) ?lateral view; (E)

proximal view; (F) distal view. Abbreviations: lg, lateral groove; vf, ventral foramen. Scale bars equal

2 cm. Photographs by B.W.M.

McPhee et al. (2016), PeerJ, DOI 10.7717/peerj.2578 27/41

http://dx.doi.org/10.7717/peerj.2578
https://peerj.com/


DISCUSSION
The new information presented on Sanpasaurus confirms it as a provisionally valid taxon

pending the discovery of further associated and/or referable material. Its validity stems

from the two above-mentioned autapomorphic features (see Diagnosis) pertaining to the

holotypic dorsal vertebral series and referred distal humerus. These features and other

taxonomically significant characters are discussed in more detail below. Given that

Sanpasaurus was originally interpreted as an ornithopod ornithischian (Young, 1944),

and that this claim is still partially reflected in recent taxonomic lists (e.g., Weishampel

et al., 2004: 534), it is worth taking systematic account of the elements within the

assemblage that could potentially be interpreted as ornithischian in nature. We also assess

the impact of Sanpasaurus on our knowledge of the early sauropod record and its

palaeobiogeographical signal.

Is ornithischian material present in IVPP V156?
Although Rozhdestvensky (1967) reinterpreted Sanpasaurus as a small sauropod dinosaur,

its identification has remained unresolved in the literature, with some authors regarding

at least some of the material as referable to an ornithopod (Weishampel et al., 2004).

Rozhdestvensky (1967) correctly pointed out that, in addition to the (now Early)

Jurassic age inferred for Sanpasaurus being inconsistent with its identification as an

iguanodontid, the lateral excavations of the dorsal neural arches are not seen in any

ornithopod dinosaur. Although some iguanodontians possess saurischian-like laminae

beneath the diapophyses that frame associated fossae (e.g., Barrett et al., 2011), no

known ornithischian possesses dorsal neural arches that are laterally excavated to such a

degree that all that separates the paired centrodiapophyseal fossae is a thin, bony septum.

Instead, this is a feature more typical of eusauropod dinosaurs such as Cetiosaurus,

Patagosaurus and Barapasaurus (e.g., Bonaparte, 1986; Upchurch & Martin, 2002;

Upchurch & Martin, 2003).

Although incomplete, it is clear that the dorsal neural arches were originally

dorsoventrally tall relative to the height of their respective centra—as observed in

Sauropoda (Upchurch, Barrett & Dodson, 2004;McPhee et al., 2014). Within Ornithischia,

the only taxa that adopt similarly extreme dorsoventral elongation of the neural arches

of the dorsal vertebrae are stegosaurs (Galton & Upchurch, 2004; Maidment et al., 2008)

(N.B. This refers to the main body of the arch, excluding the neural spines, which can

become very elongate in many other ornithischians, e.g., iguanodontian ornithopods

(Horner, Weishampel & Forster, 2004; Norman et al., 2004)). The earliest known

unequivocal stegosaur occurrence is Huayangosaurus from the Middle Jurassic Shaximiao

Formation of China (Zhou, 1984). Although not as elongate as in Stegosaurus

(Maidment, Brassey & Barrett, 2015), Huayangosaurus possesses the heightened neural

arch proportions typical of the group (Zhou, 1984). Nonetheless, the dorsal vertebrae of

Huayangosaurus differ from those of Sanpasaurus (and other sauropods) with respect

to: (1) the anteroposterior restriction of their neural arch bases relative to the lengths

of their respective centra (inHuayangosaurus the bases of the neural arches are constricted

as they approach the centrum and their anterior and posterior margins are deeply concave
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in lateral view, whereas in sauropods they are unconstricted, occupy more of the dorsal

margin of the centrum and have straighter, subparallel anterior and posterior margins);

(2) the lack of anterior centrodiapophyseal/centroparapophyseal laminae; and (3) the

apparent absence of any pronounced excavations on the lateral surfaces of the neural arch.

Consequently, on the basis of these features, the dorsal vertebrae of IVPP V156 can be

considered to be unambiguously referable to Sauropoda.

Rozhdestvensky (1967: 556) also stated that the shape of the caudal vertebrae of

Sanpasaurus was inconsistent with the more cross-sectionally “trapeziform” caudal

vertebrae of ornithopod dinosaurs. To this we can add that the anterodorsally projecting

prezygapophyses of the anterior caudal vertebra of Sanpasaurus contrast with the more

anteriorly oriented prezygapophyses in Huayangosaurus (Zhou, 1984).

The forelimb represents the most unambiguously non-ornithischian material within

the assemblage, clearly belonging to that of a columnar-limbed, parasagittal quadruped

(i.e., even most ornithischian quadrupeds, such as stegosaurs, retain a laterally flexed

forelimb posture:Maidment & Barrett, 2012). With respect to the proximal femur (which

is dubiously associated with the rest of the assemblage), a proximomedially oriented

femoral head is distributed throughout both Sauropoda and Ornithischia (e.g.,

Weishampel, Dodson & Osmólska, 2004). However, its incompleteness precludes further

discussion of its affinities.

Prior to the discovery of Vulcanodon from the late Early Jurassic of southern Africa

(Raath, 1972), dorsoventrally compressed pedal ungual phalanges would have been seen as

the strongest evidence of an ornithischian within the assemblage. Dorsoventrally low pedal

unguals occur early in ornthischian evolution (e.g., Scelidosaurus (Owen, 1863);

Scutellosaurus (Colbert, 1981)) and persist throughout the remainder of the group’s

history, becoming especially marked in derived members of Thyreophora, Ornithopoda,

and Ceratopsia (Weishampel, Dodson & Osmólska, 2004). Although some non-sauropodan

sauropodiforms possess pedal unguals that are as wide transversely as dorsoventrally

high in proximal aspect (e.g., Blikanasaurus, Antetonitrus; see McPhee et al., 2014), the

general condition within Sauropoda is that of a large, mediolaterally compressed,

scythe-like ungual on the first digit of the pes, with a similar—if less strongly

mediolaterally compressed—morphology observed in the remaining digits (e.g.,

Apatosaurus: Gilmore, 1936). However, beginning with the revised description of

Vulcanodon (Cooper, 1984), and followed more recently by the complete description of

Tazoudasaurus (Allain & Aquesbi, 2008), it is now clear that dorsoventrally compressed

(non-first digit) pedal unguals were present within at least some basal members of

Sauropoda. The question then is whether the morphology observed in IVVP V156 is closer

to that of basal sauropods or to Early–Middle Jurassic ornithischian taxa? As stated

above, the Sanpasaurus ungual is an extremely close morphological match for that of

Vulcanodon (Cooper, 1984). This is evinced by the strongly tapered distal end, deep

colateral grooves and the small foramina on the proximoventral surface. Furthermore, the

relative transverse width and general absolute proportions of the IVPP V156B ungual

are suggestive of a heavy-set, graviportal animal—an ecomorphospace exclusively

occupied by Sauropoda during the Early Jurassic. Although basal thyreophorans were

McPhee et al. (2016), PeerJ, DOI 10.7717/peerj.2578 29/41

http://dx.doi.org/10.7717/peerj.2578
https://peerj.com/


beginning to enter this ecomorphospace, the pedal unguals of taxa such as Scelidosaurus

(Owen, 1863; NHMUK PV R1111) are relatively narrow compared to IVPP V156B (the

pedal unguals of the earliest stegosaurs are incompletely unknown: Zhou, 1984). Moreover,

the pedal unguals of basal ornithopod dinosaurs are relatively narrow in dorsal view,

even if the ventral surface is somewhat broadened (Norman et al., 2004). Given the

association of the ungual with a suite of material that is clearly referable to Sauropoda, and

its similarity to those of Vulcanodon and Tazoudasaurus, we argue that it is best

considered as pertaining to a sauropod.

Phylogenetic affinities
Assessing the phylogenetic position of Sanpasaurus is difficult due to its incompleteness

and the ambiguous associations of the type assemblage. It can be referred to

Sauropoda based on a number of features that are derived within Sauropodomorpha

(e.g., slender ulna with a deep radial fossa (Bonnan & Yates, 2007); advanced laminar

configuration of the dorsal vertebrae (e.g., Wilson & Sereno, 1998; Upchurch, Barrett &

Dodson, 2004); see Description above). However, determining its affinities within this

clade is much more problematic, with several features arguing against its inclusion

within Eusauropoda (e.g., all dorsal centra are non-opisthocoelous and lack lateral

depressions; dorsoventrally flattened pedal unguals: Wilson & Sereno, 1998; Upchurch,

Barrett & Dodson, 2004). The elements that are of greatest diagnostic utility are the dorsal

vertebrae with partial neural arches and the pedal ungual. Although the incompleteness

of the dorsal vertebrae limits their information content, several features warrant

discussion.

The laminae most clearly developed in Sanpasaurus that are absent in non-sauropodan

sauropodomorphs (‘prosauropods’) are the TPRLs, PRPLs and TPOLs. Unfortunately,

the absence of cervical and dorsal vertebrae in the available material of Vulcanodon limits

our understanding of the timing of acquisition of these features. Allain & Aquesbi (2008:

Table 2) summarized the distribution of the major laminar structures across several

basal sauropod taxa (as well as the neosauropods Apatosaurus and Camarasaurus).

Confusingly, the presence/absence of TPRLs in the middle-to-posterior dorsal vertebrae of

all included taxa is listed as an inapplicable character (Allain & Aquesbi, 2008: Table 2),

probably reflecting Wilson’s (1999: 647) assertion that the TPRL disappears from the

∼fourth dorsal vertebrae onwards as the anterior surface of the neural arch is modified by

the hyposphene-accommodating hypantrum. However, Sanpasaurus clearly possesses

a set of paired, well-defined ridges extending from the median convergence of the

prezygapophyses to the dorsal margin of the neural canal—structures interpreted herein

as homologous with the TPRLs sensu Wilson (1999) (in contrast, the CPRLs are more

laterally positioned, extending all of the way to the neurocentral junction). Furthermore,

examination of a posterior dorsal vertebra of Tazoudasaurus (To1-156, Allain & Aquesbi

(2008: Fig. 14); also a high quality colour photograph of the element supplied to B.W.M.

by Allain in 2013) suggests that the medial margins of both prezygapophyses were

ornamented with finely delineated TPRLs that extend to the dorsal margin of the neural

canal in a fashion similar to that in Sanpasaurus. If this interpretation is correct, then

McPhee et al. (2016), PeerJ, DOI 10.7717/peerj.2578 30/41

http://dx.doi.org/10.7717/peerj.2578
https://peerj.com/


TPRLs developed relatively early in sauropod evolution, either becoming lost in the

middle-to-posterior dorsal vertebrae of more derived eusauropod taxa, or being modified

to a thick, horizontal ridge connecting the prezygapophyses at the rear of the

hypantrum (and thus separating the SPRF from the CPRF) (e.g., Haplocanthosaurus

(Hatcher, 1903: Plate I); Camarasaurus (Osborn & Mook, 1921)).

Both PRPLs and TPOLs also appear to have developed relatively early in sauropod

evolution, being present in all sauropods from Tazoudasaurus onwards (Allain &

Aquesbi, 2008), and hence the presence of these features in Sanpasaurus is not particularly

informative with respect to phylogenetic relationships (although the condition in

Kotasaurus remains ambiguous (Yadagiri, 2001)). With respect to the TPOL, it is worth

noting that Wilson (1999: 647) stated that this lamina is also lost in most sauropod

taxa with the appearance of the hyposphene at the end of the anterior dorsal series (an

exception being diplodocids). However, in taxa that develop relatively attenuated

hyposphenes (e.g., Tazoudasaurus (Allain & Aquesbi, 2008); Mamenchisaurus (Ouyang &

Ye, 2002); Bellusaurus (Mo, 2013)), this feature can persist well into the posterior end of

the dorsal vertebral series. The absence and/or poor development of other common

laminae (i.e., CPRL, CPOL, PCPL) in Sanpasaurusmight reflect the posterior positioning

of the preserved dorsal neural arches within the dorsal series, with some taxa (e.g.,

Mamenchisaurus: Ouyang & Ye, 2002) exhibiting relatively undeveloped CPOLs in more

posterior dorsal vertebrae, whereas in Bellusaurus (Mo, 2013) these structures persist

throughout the dorsal series. Likewise, CPRLs in both Tazoudasaurus and Bellusaurus

appear more developed in anterior dorsal vertebrae than in posterior ones. Nonetheless,

the paucity of well-preserved dorsal vertebral series for the majority of Early Jurassic

sauropod taxa precludes further assessment of laminar morphological evolution within

the group. This same concern applies to the lack of well-figured information for

important Middle Jurassic taxa such as Shunosaurus.

A final point worth mentioning with respect to the dorsal vertebrae of Sanpasaurus is

the lateral excavation of the base of the neural arches, which is positioned directly ventral

to where the diapophyses would have been located. Although there is no evidence of a

Barapasaurus- or Patagosaurus-like cavity within the arch itself, which is linked to the

external surface via a lateral foramen (Jain et al., 1979; Bonaparte, 1986), Upchurch &

Martin (2003: 218) noted that in some of the dorsal vertebrae in these specimens,

and also in Cetiosaurus (Upchurch & Martin, 2002; Upchurch & Martin, 2003), there is a

deep pit on either side of the arch which is separated from its partner on the opposite

side by a thin midline septum. The presence of a similar feature in Sanpasaurus might

indicate that these taxa are related. However, Barapasaurus, Cetiosaurus and Patagosaurus

all possess dorsal vertebrae in which at least the anterior-most centra are opisthocoelous.

Although no anterior-most dorsal centra are present in IVPP V156 (based on the

absence of parapophyses from the centra), all of the centra of Sanpasaurus are

amphicoelous, and it is possible that the centrum with a shallow lateral fossa might

represent an anterior dorsal vertebra. Furthermore, the lateral centrum surfaces in

Barapasaurus, Cetiosaurus and Patagosaurus possess pronounced fossae, if not ‘true’
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pluerocoels (i.e., sharp-rimmed, invasive foramina)—a feature not seen in any of the

dorsal centra within IVPP V156.

The forelimb is relatively typical for sauropods (Upchurch, Barrett & Dodson, 2004;

Remes, 2008). However, at least two features distinguish it from the Early Jurassic taxa

Vulcanodon and Tazoudasaurus. As mentioned above, the anterodistal margin of the

humerus is ornamented with accessory projections of the distal condyles, a feature

common (if variable in expression) to a number of sauropod genera (Remes et al., 2009;

Upchurch, Mannion & Taylor, 2015). These features are clearly absent in Tazoudasaurus

(Allain & Aquesbi, 2008), and possibly Barapasaurus too (Bandyopadhyay et al., 2010;

Fig. 9). Unfortunately, the distal humerus of Vulcanodon is incomplete, precluding

comparison with Sanpasaurus. The proximal ulna of Vulcanodon, however, differs in

appearance from that of Sanpasaurus in being somewhat transitional between the

‘prosauropod’ condition and that of later sauropods. This is seen in the minimally-

deflected, elongate anterior process and comparatively undeveloped lateral process

(Cooper, 1984: Fig. 8). In contrast, the proximal ulna of Sanpasaurus exhibits the more

typically sauropodan triradiate condition with a laterally curved anterior process. The

proximal ulna of Tazoudasaurus is too incomplete to permit comparison (Allain &

Aquesbi, 2008: Fig. 22). With these differences in mind, the forelimb morphology of

Sanpasaurus appears to have been relatively derived compared to that of Vulcanodon and

Tazoudasaurus.

Although differing in forelimb morphology, the most striking similarity between

Sanpasaurus, Vulcanodon and Tazoudasaurus is the dorsoventrally compressed non-first

pedal ungual. Both Wilson & Sereno (1998) and Upchurch, Barrett & Dodson (2004)

suggested that transversely compressed pedal unguals II and III are synapomorphic for

Eusauropoda. However, until recently, Vulcanodon possessed the only known unguals for

a non-eusauropod sauropod (Cooper, 1984). Confirmation of the same morphology in

the (non-first digit) unguals of Tazoudasaurus and Sanpasaurus underscores the extent

to which dorsoventral flattening of the unguals appears to have been distributed among

basal sauropods (see also Rhoetosaurus (Nair & Salisbury, 2012: Fig. 12) for something of

an intermediary morphology). Nonetheless, the absence of this morphology from any

taxa more derived than Shunosaurus suggests that transversely compressed pedal unguals

can tentatively be considered a genuine synapomorphy of Eusauropoda for the time being

(although an ungual collected with material referred to the eusauropod Jobaria also

displays this dorsoventrally compressed morphology (MNN TI-22: P.D. Mannion,

personal observation, 2013), and thus might indicate a more complicated distribution

for this feature).

In summary, it is clear that the IVPP V156 assemblage includes an animal that is

transitional between the relatively plesiomorphic morphology of basal sauropods, and

the more derived conditions present in eusauropods. The former is supported by the

non-opisthocoelous, fully-acamerate condition of the dorsal vertebral centra, the

similarities in laminar configuration shared with basal sauropods such as Tazoudasaurus,

and the dorsoventrally compressed pedal ungual (see below for discussion regarding

the ‘Vulcanodontidae’). An affinity with eusauropods is supported by the (probably)
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pneumatic excavations of the lateral surfaces of the dorsal vertebral neural arches, and

the modifications to the distal condyles of the humerus. Based on these observations, we

refer Sanpasaurus to Sauropoda incertae sedis, while highlighting the possibility that

Sanpasaurus represents one of the most derived non-eusauropodan sauropods currently

known (see also Spinophorosaurus: Remes et al., 2009). Although this possibility could

be tested via a cladistic analysis, we have opted to exercise caution in treating IVPP V156

as a distinct operational taxonomic unit due to both its incompleteness and the

potentially chimerical nature of the assemblage (thus heightening the possibility of

artificially inflating character-conflict within the analysis).

Relevance of Sanpasaurus to basal sauropod palaeobiogeography
The affinities discussed above for Sanpasaurus have implications for the global

distribution of basal sauropods in the Early Jurassic. Remes et al. (2009) reviewed the

palaeobiogeography of early sauropods and suggested that expansion of the Central

Gondwanan Desert during the late Early Jurassic acted as an ecological barrier separating a

South Gondwanan clade of Barapasaurus (India) + Patagosaurus (Argentina) from the

rest of Eusauropoda. This was not the first time that a form of early sauropod endemism

has been hypothesized, with the grouping of Vulcanodon (Zimbabwe) and Tazoudasaurus

(Morocco) into the subfamily ‘Vulcanodontidae’ suggestive of an African radiation of

basal sauropods (Allain & Aquesbi, 2008). However, both of these interpretations are

subject to concerns associated with a poor and patchily sampled fossil record, incomplete

taxa, and mutable phylogenetic relationships.

The latter two uncertainties are perhaps best exemplified by the basal position

Remes et al. (2009) recovered for Cetiosaurus (United Kingdom) outside of Eusauropoda.

This is incompatible with almost all other recent analyses, which place Cetiosaurus well

within Eusauropoda, and sometimes as the sister-taxon to Neosauropoda (e.g.,Upchurch,

Barrett & Dodson, 2004; Upchurch, Mannion & Taylor, 2015; Yates, 2007; McPhee et al.,

2014; Otero et al., 2015). Furthermore, placement of Cetiosaurus in a pectinate grade

between Vulcanodon and Tazoudasaurus (Remes et al., 2009: Fig. 6) is incompatible

with the above-mentioned ‘vulcanodontid’ hypothesis, as well as numerous analyses that

find the two Early Jurassic African taxa to be more closely related to each other than

either is to the Middle Jurassic Cetiosaurus (e.g., Allain & Aquesbi, 2008; Yates et al., 2010;

McPhee et al., 2015a; McPhee et al., 2015b). With respect to the hypothesis of South

Gondwanan endemism, it is interesting that Remes et al. (2009: 7) noted that the only

unambiguous synapomorphy of a Barapasaurus + Patagosaurus clade is the presence of a

“subdiapophyseal pneumatopore,” a feature presumably synonymous with the lateral

excavations described above for Sanpasaurus and also present in Cetiosaurus (Remes et al.

(2009) also identified the same feature in Tazoudasaurus and Mamenchisaurus; however,

although it appears that the former possessed well-developed infradiapophyseal

subfossae sensu Yates, Wedel & Bonnan, (2012), the degree to which these structures

impacted into the body of the neural arch cannot currently be determined. In contrast,

neither lateral excavations nor invasive subfossae of any sort can be confirmed in

the one well-figured description of Mamenchisaurus (Ouyang & Ye, 2002); also
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P. Upchurch & P.M. Barrett, 2010, personal observation). This (now) geographically

widespread feature can therefore be regarded as either symplesiomorphic for a wide range

of basal sauropods, or highly homoplastic (and likely variable in expression). As a final

cautionary note, it is worth mentioning that Barapasaurus is primarily based on a

(heavily reconstructed) composite mount from a large bone-bed, the monospecificity

of which is yet to be fully demonstrated (see Bandyopadhyay et al., 2010). This, along

with the fact that a detailed treatment of the taxonomy and osteology of Patagosaurus is

still awaited, clearly limits the utility of these taxa in palaeobiogeographical

reconstructions of early sauropod evolution.

Although support for a south Gondwanan basal eusauropod clade is weak, the evidence

for a monophyletic radiation at the base of Sauropoda—the ‘Vulcanodontidae’—is

somewhat stronger. This is due to a number of similarities between Vulcanodon and

Tazoudasaurus (e.g., transverse compression of the tibia; relatively elongate proportions

of the pes; dorsoventral flattening of the pedal unguals; Allain & Aquesbi, 2008).

Although the sister-taxon relationship between these taxa is sensitive to the position

of the highly incomplete Isanosaurus (Buffetaut et al., 2000; see McPhee et al., 2014;

McPhee et al., 2015a), and to the inclusion of Spinophorosaurus (Nair & Salisbury, 2012),

a close phylogenetic relationship has been resolved in most analyses that have included

both African genera (e.g., Allain & Aquesbi, 2008; Otero et al., 2015). The possession

of the ‘vulcanodontid’ condition of a dorsoventrally compressed pedal ungual in

Sanpasaurus can be interpreted as evidence that either: (1) ‘vulcanodontids’ extended

beyond Africa; or (2) that dorsoventrally compressed pedal unguals characterized a

wider range of basal sauropod taxa than currently recognized (as is also the case in the

lateral excavations on the dorsal neural arches—see above). Given that the limited

information currently available for Sanpasaurus suggests a character suite broadly

intermediary between basal sauropods and eusauropods, we argue that ‘vulcanodontid’

monophyly in a maximally inclusive sense is probably unlikely—an observation

further supported by the depauperate taxonomic content of the proposed subfamily

(i.e., two taxa). Nonetheless, additional sampling of the Early Jurassic is required in

order to establish a better sense of the phylogenetic distribution of these typically

‘vulcanodontid’ characters.

With respect to the above, and contrary to the scenario posited by Remes et al. (2009),

our revision of Sanpasaurus tentatively suggests that early sauropod faunas were probably

cosmopolitan throughout Pangaea in the Early Jurassic, with little evidence of

geographically-bounded endemism. Although it remains possible that a grade of basal

forms originated in Africa prior to its isolation by expansion of the Central Gondwanan

Desert, uncertainties remain as to the degree to which aridity could restrict sauropod

distributions, with the earliest representatives of the group possibly inhabiting semi-arid

environments (e.g., Antetonitrus, Pulanesaura, Vulcanodon: Cooper, 1984; Yates &

Kitching, 2003; McPhee et al., 2015a). Nonetheless, the features shared between

Sanpasaurus and later near-or-basal eusauropods (e.g., the modifications to the distal

humerus) are consistent with Remes et al.’s (2009) observation of a high-degree of

faunal exchange between the low-latitude climes of North Gondwana and East and
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West Laurasia well into the Middle Jurassic. Further exploration and sampling of the Early

Jurassic record of China, along with comprehensive reexamination of important Middle

Jurassic taxa like Shunosaurus, are necessary to more closely integrate these taxa into

overviews of early eusauropod diversification.

CONCLUSIONS
Our reassessment of the basal sauropod Sanpasaurus has shown it to be a provisionally

valid taxon pending additional sampling of Early–Middle Jurassic strata of China. The

unique combination of plesiomorphic and apomophic characters observable in

Sanpasaurus underscores the mosaic manner of trait-acquisition that likely

characterized the basal sauropod–eusauropod transition. This is perhaps most evident

with respect to the presence of dorsoventrally compressed pedal unguals in

Sanpasaurus. Whereas the taxa possessing this feature can now be shown to have had a

geographic distribution far beyond Africa, its association with eusauropod-like

alterations of the dorsal vertebrae and distal humerus also provides additional support

to previous assertions of ‘vulcanodontid’ paraphyly (e.g., Upchurch, 1995; Barrett &

Upchurch, 2005). Although the incompleteness of this material, coupled with its

equivocal association, means that these conclusions must be treated as tentative for the

time being, this study also highlights the additional information that can be gleaned

from the in-depth re-examination of historically collected and poorly characterized

Chinese taxa. Further fossil sampling, as well as the comprehensive reanalysis of other

poorly known taxa (e.g., Kunmingosaurus), will be necessary to corroborate the

above observations and to better elucidate the contribution of the Chinese Early

Jurassic fossil record to our understanding of basal sauropod evolution generally.

However, the limited information available from Sanpasaurus provides evidence that at

least some sauropod lineages had a global, or near-global, distribution during the

Early Jurassic.
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