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Background This paper evaluates the performance of gene set association methods in a re-analysis of a
recent, high-profile dataset which was used to show opposing effects of hedonic and eudaimonic well-
being on the expression levels of a set of genes that have been correlated with social adversity (the
CTRA gene set). These effects were inferred using a linear model (GLS) of fixed effects with correlated
error to estimate partial regression coefficients.

Methods The standardized effects of hedonic and eudaimonic well-being on CTRA gene set expression
estimated by GLS was compared to estimates using multivariate (OLS) linear models and generalized
estimating equation (GEE) models. The OLS estimates were tested using O'Brien's OLS test, Anderson's
permutation r2

F test, two permutation F-tests (including GlobalAncova), and a rotation z test (Roast). The
GEE estimates were tested using a Wald test with robust standard errors. The performance (type I, II S,
and M errors) of all tests was investigated using a Monte Carlo simulation of data modeled on the re-
analyzed dataset.

Results Standardized OLS effects (mean partial regression coefficients) of Hedonia and Eudaimonia on
gene expression levels are very small in both the 2013 and 2015 data, as well as the combined data. The
GEE estimates and tests are nearly identical to the OLS estimates and tests. By contrast, the GLS
estimates are inconsistent between data sets, but in each dataset, at least one coefficient is large and
highly statistically significant. Bootstrap and permutation GLS distributions suggest that the GLS model
not only results in downward biased standard errors but also inflated coefficients. Both distributions also
show the expected, strong, negative correlation between the coefficients for Hedonia and Eudaimonia.
The Monte Carlo simulation of error rates shows highly inflated type I error from the GLS test and slightly
inflated type I error from the GEE test. By contrast, type I error for all OLS tests are at the nominal level.
Of the OLS tests, the permutation F-tests have ~ 1.8X the power of the O'Brien's, Anderson's, and Roast
tests. This increased power comes at a cost of high sign error (~ 10\%) if tested on small effects.

Discussion The apparently replicated pattern of hedonic and eudaimonic effects on gene expression is
most parsimoniously explained as "correlated noise" due to the geometry of multiple regression. A linear
mixed model for estimating fixed effects in designs with many repeated measures or outcomes should be
used cautiously because of the potentially inflated type I and type M error. By contrast, permutation F
tests of OLS estimates have good performance, including moderate power (0.42 --.47) for very small
effects.
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ABSTRACT8

Background This paper evaluates the performance of gene set association methods in a re-analysis
of a recent, high-profile dataset which was used to show opposing effects of hedonic and eudaimonic
well-being on the expression levels of a set of genes that have been correlated with social adversity (the
CTRA gene set). These effects were inferred using a linear model (GLS) of fixed effects with correlated
error to estimate partial regression coefficients.
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Methods The standardized effects of hedonic and eudaimonic well-being on CTRA gene set expression
estimated by GLS was compared to estimates using multivariate (OLS) linear models and generalized
estimating equation (GEE) models. The OLS estimates were tested using O’Brien’s OLS test, Anderson’s
permutation r2

F test, two permutation F-tests (including GlobalAncova), and a rotation z test (Roast). The
GEE estimates were tested using a Wald test with robust standard errors. The performance (type I, II
S, and M errors) of all tests was investigated using a Monte Carlo simulation of data modeled on the
re-analyzed dataset.
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Results Standardized OLS effects (mean partial regression coefficients) of Hedonia and Eudaimonia on
gene expression levels are very small in both the 2013 and 2015 data, as well as the combined data.
The GEE estimates and tests are nearly identical to the OLS estimates and tests. By contrast, the GLS
estimates are inconsistent between data sets, but in each dataset, at least one coefficient is large and
highly statistically significant. Bootstrap and permutation GLS distributions suggest that the GLS model
not only results in downward biased standard errors but also inflated coefficients. Both distributions also
show the expected, strong, negative correlation between the coefficients for Hedonia and Eudaimonia.
The Monte Carlo simulation of error rates shows highly inflated type I error from the GLS test and slightly
inflated type I error from the GEE test. By contrast, type I error for all OLS tests are at the nominal level.
Of the OLS tests, the permutation F-tests have ∼ 1.8× the power of the O’Brien’s, Anderson’s, and Roast
tests. This increased power comes at a cost of high sign error (∼ 10%) if tested on small effects.
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Discussion The apparently replicated pattern of hedonic and eudaimonic effects on gene expression is
most parsimoniously explained as “correlated noise” due to the geometry of multiple regression. A linear
mixed model for estimating fixed effects in designs with many repeated measures or outcomes should
be used cautiously because of the potentially inflated type I and type M error. By contrast, permutation
F tests of OLS estimates have good performance, including moderate power (0.42 –.47) for very small
effects.
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INTRODUCTION40

The motivation for this work is the recent implementation of a linear model (GLS) with correlated41

error to estimate the mean effect of a phenotype on a set of expression levels for a gene set identified a42

priori (Fredrickson et al., 2015). Specifically, the authors reported a large, negative, highly statistically43

significant, standardized effect (partial regression coefficient) of eudaimonic well-being on the “conserved44

transcriptional response to adversity” (CTRA) gene set (Fredrickson et al., 2015). Additionally, using45
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OLS estimates, the authors reported opposing effects of eudaimonic and hedonic well being on CTRA46

expression (Fredrickson et al., 2015), a pattern that they argue replicates the results of an earlier 201347

study (Fredrickson et al., 2013). The development of such gene set association methods is an active48

area of research in genomics (Tian et al., 2005; Goeman and Bühlmann, 2007; Hummel et al., 2008; Wu49

et al., 2010; Tripathi and Emmert-Streib, 2012; Zhou et al., 2013). The effect of a phenotype on the mean50

response of multiple outcomes, has a long and rich history in applied statistics, especially in the context51

of clinical outcomes in medicine (O’Brien, 1984; Pocock et al., 1987; Lauter, 1996; Bull, 1998). The52

development of test methods within the field of genomics has advanced largely without reference to this53

earlier literature (but see Chen et al., 2007; Tsai and Chen, 2009). The authors of the CTRA gene set54

association paper (Fredrickson et al., 2013, 2015) failed to draw on either this earlier clinical literature or55

the more recent gene set association literature.56

Here, I re-analyze the dataset of Fredrickson et al. (2015), and the earlier ”discovery” dataset (Fredrick-57

son et al., 2013), with two goals in mind. First, and more specifically, I re-analyze the datasets using58

alternatives to GLS for testing for fixed effects on multiple responses. The alternative methods include59

O’Brien’s OLS test for multiple outcomes (O’Brien, 1984), a permutation r2
F -test (Anderson and Robin-60

son, 2001), two different permutation partial F-tests, including GlobalAncova (Hummel et al., 2008), a61

rotation z-test (Roast) (Wu et al., 2010), and a Wald test using robust standard errors (Zeger and Liang,62

1986). Second, and more generally, I use Monte Carlo simulation experiments to evaluate the GLS with63

correlated error and the alternative gene set association methods when used on simulated data explicitly64

modeled on the dataset from Fredrickson et al. (2015). By simulating a specific dataset, I can compare65

test methods without extrapolating from more general, theoretical studies. Type I, Type II, Type M and66

Type S errors errors are investigated, where type S and M errors are errors in the sign and magnitude of67

the effect when p≤ 0.05 (Gelman and Carlin, 2014).68

Background69

The 2015 study (Fredrickson et al., 2015) was a replication of an earlier study that reported not only a70

negative effect of eudaimonic well-being on CTRA expression but also a positive effect of hedonic well-71

being on CTRA expression (Fredrickson et al., 2013). While the 2015 study did not report a statistically72

significant effect of hedonic well-being on CTRA expression, it did report plots showing opposing effects73

of hedonic and eudaimonic scores on mean CTRA gene expression that ”replicated” that of Fredrickson74

et al. (2013). This apparent replication of opposing effects was again emphasized in a published correction75

(Fredrickson et al., 2016).76

The CTRA gene set includes 19 pro-inflammatory, 31 anti-viral, and 3 antibody-stimulating genes.77

The Fredrickson et al. (2013) data included all 53 genes but the Fredrickson et al. (2015) data is missing78

IL-6 from the pro-inflammatory subset. Fredrickson et al. (2013) used 53 univariate multiple regressions79

to estimate the effects (the regression coefficient) of each well-being (hedonic and eudaimonic) score80

on log2(normalized gene expression) for each gene. The regression model included both well-being81

scores, seven covariates to adjust for demographic and general health confounding (sex, age, ethnicity,82

BMI, a measure of alcohol consumption, a measure of smoking, and a measure of recent illness), and83

eight expression levels of T-lymphocyte markers to adjust for immune status confounding. Hedonic and84

eudaimonic scores were transformed to z-scores prior to the analysis. The 53 multiple regressions (one85

for each gene) yielded 53 coefficients for hedonic score and 53 coefficients for eudaimonic score. The86

coefficients of the 31 anti-viral and 3 antibody genes were multiplied by -1 to make the direction of the87

effect consistent with the CTRA response. Fredrickson et al. (2013) used a simple one-sample t-test88

of the 53 coefficients to test for a mean effect of hedonic or eudaimonic score on CTRA expression. A89

mean coefficient greater than zero reflects a positive CTRA response (increased pro-inflammatory and90

decreased anti-viral and antibody-stimulating genes).91

Fredrickson et al. (2013) used a bootstrap to re-sample the coefficients in order to generate a standard92

error (the denominator of their t-value and then tested the statistic using m−1 degrees of freedom, where93

m is the number of outcomes (gene expression levels). There are two fundamental problems with this94

t-test. First, the coefficients are not independent of each other because of the correlated expression levels95

among genes and as a consequence the standard error in the denominator will be too small, which should96

result in an inflated Type I error rate. Second, their degrees of freedom does not account for the number97

of subjects in the study. At the extreme, if only a single gene expression level is measured, Fredrickson’s98

t cannot even be computed. This second error should result in loss of power. The combined effect on99

Type I and Type II error will depend on the magnitude of the correlations among the expression levels.100
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Through simulation, however, Brown et al. (2014) discovered an inflated Type-I error in their exploration101

of the data using the Fredrickson et al. (2013) t-test. O’Brien (1984) developed an appropriate t-test for102

the effects of an an independent variable on multiple outcomes (see below).103

Fredrickson et al. (2015) replicated the 2013 study but treated the 52 gene expression levels as104

“repeated” measures (or multiple outcomes) of a single expression response and used a linear model with105

fixed-effects and correlated error to estimate the regression coefficients of expression on hedonic and106

eudaimonic score. Specifically, Fredrickson et al. (2015) used generalized least squares (GLS) with a107

heterogenous compound symmetry error matrix to estimate the marginal (population-averaged) fixed108

effects. Compound symmetry assumes equal correlation (conditional on the set of predictors) among109

all expression levels. This is not likely to approximate the true error structure for a set of expression110

levels for different genes, as these expression levels will share different sets of underlying regulatory111

factors. Fredrickson et al. (2015) re-ran the analysis using an unstructured error matrix, with results112

contradicting the compound symmetry results, but chose to report this in the supplement and not the113

main text. Regardless, linear mixed models for repeated measures or multiple outcomes are prone to114

inflated Type I error due to both upward biased effect estimates and downward biased standard errors115

(Kackar and Harville, 1984; Kenward and Roger, 1997; Guerin and Stroup, 2000; Littell et al., 2006;116

Jacqmin-Gadda et al., 2007; Gurka et al., 2011). The amount of bias depends on the true and specified117

correlation structure, as well as effective sample size (a function of the number of subjects, the number of118

outcomes, and the correlations among the outcomes), but can be large even with large samples (Gurka119

et al., 2011). When only the marginal effects are of interest (as here), population-averaged effects are120

typically estimated using Generalized Estimating Equations (GEE) instead of GLS and standard errors121

robust to model misspecification are computed using the sandwich estimator (Liang and Zeger, 1986;122

Zeger and Liang, 1986).123

Finally, Cole et al. (2015) replicated the 2015 study, using the same GLS method, but only reported124

the effect of Eudaimonia and not Hedonia on CTRA expression. For this study, an unstructured error125

matrix was specified and the expression levels were not standardized to z-scores. Again, a negative effect126

of Eudaimonia on CTRA expression was reported but the magnitude cannot be easily compared to other127

values because of the lack of standardization.128

METHODS129

Data were downloaded as .txt Series Matrix Files from http://www.ncbi.nlm.nih.gov/geo/ using accession130

numbers GSE45330 (the 2013 dataset, hereafter FRED13), GSE55762 (the focal 2015 dataset, hereafter131

FRED15) and GSE68526 (the replicate 2015 dataset, hereafter COLE15). The CTRA (response) ex-132

pression data were log2 transformed. The T-lymphocyte expression data that formed part of the set of133

covariates were log2 transformed in the downloaded data. The downloaded hedonic and eudaimonic134

scores in FRED13 had means and variances close but not equal to that expected of z-scores, which135

suggests that the public data slightly differs from that analyzed by Fredrickson et al. (2013); these were136

re-standardized to z-scores Three rows of FRED13 had missing covariate data (two rows were completely137

missing) and were excluded; the number of rows (subjects) in the cleaned matrix was 76. The downloaded138

hedonic and eudaimonic scores in FRED15 were the raw values and were transformed to z-scores. There139

was no missing data in FRED15 and the number of subjects was 122. The FRED15 data did not include a140

measure for Hedonia. Excluding rows with missing values left complete data for 108 subjects.141

Prior to all analyses, Hedonia or Eudaimonia scores and the expression levels of all genes were142

standardized to mean zero and unit variance. Additionally, the 31 anti-viral and 3 antibody genes were143

multiplied by -1 to make the direction of the effect consistent with the CTRA response (Fredrickson et al.,144

2013, 2015).145

Null hypothesis tests146

If β j is the the effect (partial regression coefficient) of Hedonia or Eudaimonia on the expression147

level of the jth gene, the overall effect of Hedonia or Eudaimonia on expression of the CTRA gene148

set is simply the averaged coefficient over all genes, β̄ = 1
m ∑β j where m is the number of genes.149

The three focal null hypotheses that are tested here are H0 : β̄hedonia = 0, H0 : β̄eudaimonia = 0, and150

H0 : δhed−eud = β̄hedonia− β̄eudaimonia = 0. All three hypotheses are directional, that is, the mean effect151

differs from zero. This differs from the general multivariate test that at least one of the coefficients152
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differs from zero, but the mean response may be zero. While the hypotheses are directional, the tests are153

two-tailed, that is, the mean response may be up or down regulation of the CTRA gene set.154

OLS inferential tests155

The effects of Hedonia and Eudaimonia on the mean of the m gene expression levels are estimated with
the multivariate linear model

Y = XB+E (1)

where Y is the n×m matrix of gene expression levels for the n subjects, X is the model matrix of156

dummy variables and covariates, E is the matrix of residual error, and B is the p×m matrix of partial157

regression coefficients. For the combined data, the model matrix includes a dummy variable indicating158

dataset (2013 or 2015). The coefficients of the jth column of B are precisely equal to those from a159

univariate multiple regression of the jth gene on X (and why the model is sometimes called a multivariate160

multiple regression). In R, estimating the m effects of Hedonia and Eudaimonia is much faster using this161

multivariate model than looping through m univariate multiple regressions. The mean of the m coefficients162

is the OLS estimate of the effect of Hedonia or Eudaimonia on overall CTRA expression level. Because163

the well-being scores for Hedonia and Eudaimonia and the m expression levels were mean-centered and164

variance-standardized, the reported OLS estimates are mean (averaged over the m genes) standard partial165

regression coefficients.166

O’Brien’s OLS t-test167

O’Brien’s OLS test (O’Brien, 1984; Logan and Tamhane, 2004; Dallow et al., 2008) was developed
explicitly for testing the directional hypothesis that the mean effect of multiple outcomes differs from
zero, which is precisely the question pursued in both Fredrickson papers. Given m standardized regression
coefficients and associated t-values, O’Brien’s test statistic is

tObrien =
j>t√
j>Rj

(2)

where j is a m vector of 1s, t contains the t-values associated with each of the m partial regression168

coefficients, and R is the conditional correlation matrix of the m expression levels. R was computed169

separately for Hedonia and Eudaimonia from the residuals of the multivariate linear model (equation 1)170

with all covariates in the model except the focal covariate (the reduced model). A t distribution with n−m171

degrees of freedom was used to test tObrien against the null.172

Anderson’s permutation r2
F -test173

As an alternative to the parametric O’Brien’s OLS test, I use four different permutation, or permutation-
like tests. The first of these is Anderson’s permutation r2

F -test of the partial correlation between the focal
predictors (Z) and the outcomes (Y ) conditional on the covariates (X) (any of these can be univariate
or multivariate) (Anderson and Robinson, 2001; Anderson, 2001). This test uses a permutation of the
residuals of the null model (”permutation under the null”) as these residuals, but not the Y , X , or Z, are
exchangeable. Freedman and Lane (1983), initially developed the permutation under the null using a
t-value of the effect (for a gene set with m > 1, this statistic would be the mean or sum of the t-values for
each gene). Anderson provided both theoretical and empirical evidence for the superior performance of
the permutation under the null, but used the squared partial correlation coefficient r2

F = ρ2
zy.x in place of

t. For a permutation under the null, the predictor variables are divided into main effects Z (hedonic or
eudaimonic scores were tested independently) and nuisance covariates X (the demographic and immune
variables plus the well-being score not being tested) and the model becomes

Y = XA+ZB+E (3)

and the two-sided test statistic is

r2
F =

(∑Eπ(F)EZ|X )
2

∑E2
π(F) ∑E2

Z|X
(4)

Where E are the residuals from different fit models. The computations for this are174

4/15

PeerJ reviewing PDF | (2016:03:9774:1:0:NEW 2 Aug 2016)

Manuscript to be reviewed



1. Compute EZ|X , which are the residuals of Z regressed on X175

2. Set B = 0 and fit model 3. The residuals from this model are the estimated residuals under the null176

(EY |X ) and the predicted values are the estimated Y under the null (Ŷ).177

3. Permute the residuals under the null and add to the predicted values under the null, Yπ = Ŷ+Eπ
Y |X ,178

where π indicates permutation179

4. Fit model model 3, again with B = 0 but substitute Yπ for Y, and compute the residuals from this180

fit, which are the Eπ(F)181

To generate the null distribution of the test statistic, 10,000 permutations were run, including an iteration182

of non-permuted data. The two-sided p-value of each hypothesis was computed as the fraction of r2
F ≥183

the observed r2
F .184

Permutation Fga-test (GlobalAncova)185

Because it is implemented in the GlobalAncova package (Mansmann et al., 2010), the permutation F-test186

described in Hummel et al. (2008) is an attractive alternative to the permutation r2
F -test. The GlobalAncova187

test statistic, Fga compares the residual sums of squares of the reduced model not including the predictor(s)188

of interest (Z) to the residual sums of squares of the full model. The full model 3 is fit but substituting189

the residuals of the reduced model (Eπ
Y |X ) for Y. GlobalAncova permutes the main effects (Z), and thus190

does not preserve the covariance relationship between the main effects and the nuisance effects. While191

the Z are exchangeable under the null in experimental designs when they are assigned randomly, they are192

not exchangeable under the null in observational designs (Freedman and Lane, 1983; Anderson, 2001).193

The consequences of this violation of exchangeability is unknown but may be minor for these data given194

the small covariances between the main and nuisance effects. 10,000 permutations were run.195

Permutation Fpun-test196

The GlobalAncova Fga-test had high power with these data (see results) but a concern was this high197

power was due to the violation of exchangeability. Consequently, I implemented a modification of the198

GlobalAncova test by permuting the residuals under the null to generate a permuted response (Yπ ) (see199

above description for the permutation r2
F -test). Each iteration, the full models and reduced models were200

fit to Yπ and the respective residual sums of squares were computed (note that in GlobalAncova, the201

reduced-model residual sums of squares are only computed once, for the observed data). I refer to this as202

the permutation Fpun-test (for ”permutation under the null”). 10,000 permutations were run, including an203

iteration of non-permuted data. The two-sided p-value of each hypothesis was computed as the fraction204

of Fpun ≥ the observed Fpun.205

Rotation z-test (ROAST)206

The rotation-test described in Wu et al. (2010) is an attractive alternative to the permutation tests as it is207

small-sample exact and is implemented in the function roast from the limma package (Ritchie et al., 2015)208

(by contrast, permutation tests are only asymptotically exact). The test statistic, zrot , is a mean z-score209

computed from the set of m moderated t-statistics computed for each gene. Using a hierarchical model,210

the moderated t-statistic uses information on the error of all genes in the set to estimate the gene specific211

standard error. A p-value for the test statistic is evaluated in a very similar manner to the permutation212

tests described above, but, instead of permutation, the n-vector of reduced-model residuals is rotated by213

a random vector r, which is constant for all genes within each iteration but variable among iterations.214

The observed and rotated z-scores from 10,000 rotations were used to generate the null distribution. The215

p-value for the “UpOrDown” test was used as this is the test of the two-tailed directional hypothesis.216

Inference using linear model with fixed effects and correlated error217

The model used by Fredrickson et al. (2015) is

yi = Xiβββ + εεε i (5)

where yi is the vector of m responses for subject i, Xi is the model matrix for subject i, which includes the218

main effect Gene to identify the jth element of yi, and βββ is the vector of fixed (or population-averaged)219

effects. In this model, εεε i ∼ N(0,ΣΣΣ), where ΣΣΣ is the within subject error covariance matrix representing220
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the correlated errors. The correlated errors result from random effects due to subjects but the model does221

not explicitly model these. To implement this model, the data matrix with separate columns for each222

gene is stacked into long format by combining the m expression levels into a single response variable223

(Expression) and the variable Gene is created to identify the gene associated with a specific response224

(expression value). The univariate regression of Expression on the set of predictors results in the same225

OLS estimates as in the multivariate model described above. These estimates are unbiased but the standard226

errors for the estimates are incorrect because of the correlated errors. As in the multivariate model for the227

combined data, the model matrix includes a dummy variable indicating dataset (2013 or 2015).228

Generalized Estimating Equations229

Fredrickson et al. (2015) used maximum likelihood with the GLS model with a heterogenous compound230

symmetry error matrix to estimate the fixed effects in equation 5. To replicate these results, I estimated the231

fixed effects and their standard errors and p-values using the gls function from the nmle package (Pinheiro232

et al., 2015) (with a heterogenous compound symmetry error matrix and using maximum likelihood233

method). Additionally, because only the fixed effects are of interest, and because of the known bias in234

the standard errors of the GLS with correlated errors model, I used Generalized Estimating Equations235

(GEE) with an exchangeable error matrix to estimate the fixed effects using the function geeglm in the236

geepack package (Yan, 2002). The default sandwich estimator was used to compute the standard errors of237

the effects, which is robust to error covariance misspecification (Liang and Zeger, 1986). Nevertheless,238

GEE is less efficient if the error covariance is misspecified (Sammel and Ryan, 2002).239

Permutation and bootstrap GLS240

Exploration of the behavior of the GLS as implemented by Fredrickson et al. (2015) suggested partial241

regression coefficients that were more unstable than implied by the standard error. To explore the242

consequences of this instability on inference, I implemented both a bootstrap procedure to compute243

approximate standard errors and the Freedman and Lane permutation procedure (Anderson and Robinson,244

2001) described above to compute permutation-GLS p-values. Each iteration of either the bootstrap245

or the permutation, the data were resampled (or the residuals permuted) in wide format, rescaled, and246

reshaped to long format. Coefficients were estimated using the gls function as described above. The247

first iteration used the observed (not resampled) data. The standard partial regression coefficients and248

associated t-values for Hedonia and Eudaimonia were saved each iteration and used to generate standard249

errors for the bootstrap and a null distribution of t-values for the permutation. Because the time required250

to fit the GLS, and the exploratory goal of this analysis, I used only 299 iterations, which is sufficient251

for approximate, exploratory values. The regressor Smoke was excluded from the bootstrap analysis252

because some bootstrap samples had zero cases with level Smoke = 1, which leads to an unsolvable model.253

Because of this slightly different specification, I limited the bootstrap analysis to the FRED15 dataset.254

The GLS coefficients for FRED15 with and without Smoke in the model are 0.086 and 0.032 for Hedonia255

and -0.511 and -0.568 for Eudaimonia.256

Monte Carlo simulations of errors257

I used Monte Carlo simulation to explore type I, type II, type S, and type M errors with data similar in258

structure to the focal Fred15 dataset. Type S and type M error are the errors in the sign and magnitude of the259

estimated coefficient when p < 0.05 (Gelman and Carlin, 2014). For type S error, I used the (frequentist)260

probability that the sign of the coefficient is wrong when p < 0.05, which is N(p<0.05|βestimated<0,βtrue>0)
N(p<0.05) ,261

where N(x) is the number of iterations with condition x (Gelman and Carlin, 2014). For type M error, I262

used the exaggeration ratio ( βestimated
βtrue

) (Gelman and Carlin, 2014). In each run of the simulation, a random263

n× p matrix X of independent variables (n samples of p covariates) and a random n×m matrix Y of264

response variables (n samples of m responses) were generated using the function rmvnorm from the265

mvtnorm package (Genz et al., 2015). All simulated independent variables were modeled as continuous266

variables sampled from N (0,SX ), where SX is the covariance matrix of the 17 regressor variable from267

FRED15. The 52 response variables were modeled as continuous variables sampled from N (0,SY ),268

where SY is the covariance matrix of the 52 gene expression levels from FRED15. For the power269

simulations (including type S and M errors), the standardized effect of Eudaimonia on the mean response270

was set to 0.067, which is the estimated, standardized effect for the FRED15 dataset. The effect of all271

other covariates, including that of Hedonia was set to zero. For the type I simulations, all effects were272

set to zero. Sample size (the number of subjects n) was set to that for FRED15 (122) for all runs. To273
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Table 1. GLS estimates of the variance-standardized coefficients for the 2013, 2015, and combined data.
The GLS-permutation p-values are also given. δhed−eud is the difference in the estimates:
βhedonia−βeudaimonia

Type Data Estimate SE p pgls−perm

Hedonia FRED13 0.537 0.172 0.002 0.29
FRED15 0.086 0.122 0.484 0.74
FRED13+15 0.073 0.042 0.081 0.36

Eudaimonia FRED13 0.135 0.177 0.443 0.83
FRED15 -0.511 0.126 < 0.001 0.16
FRED13+15 -0.116 0.043 0.007 0.19

δhed−eud FRED13 0.401 0.331 0.225 0.73
FRED15 0.596 0.231 0.01 0.3
FRED.13+15 0.189 0.079 0.017 0.26

explore the consequences of increasing increasing m on error rates, the simulation was run with three274

levels of m (10, 30, 52). The m×m covariance matrix used to generate Y using the rmvnorm function was275

a random sample of SY each iteration. In each iteration of the simulation, the permutation and rotation276

null distributions were generated from 2000 permuted samples.277

Correlated estimation error278

Regressors with a high positive correlation, as with Hedonia and Eudaimonia, have negatively correlated279

partial regression coefficients. I give a brief mathematical explanation of this in the discussion but also280

show this empirically using Monte Carlo simulation. The simulation was implemented precisely as281

described for the type I simulation above, except that I only simulated all m = 52 gene expression levels282

in the FRED15 dataset. Each run of the simulation, the coefficients for Hedonia and Eudaimonia were283

estimating using GLS, OLS (multivariate), and GEE. 100 iterations were run to generate 100 pairs of284

points for the correlation.285

The COLE15 dataset did not include a measure of Hedonia and was not analyzed using the alternative286

gene set methods but was analyzed using the GLS only to compare three different datasets using this287

method. All analyses were performed using R (R Core Team, 2015). All data cleaning and analysis scripts288

are available at the public GitHub repository https://github.com/middleprofessor/happiness.289

RESULTS290

GLS replication of previous analyses291

The variance-standardized effects and p-values for hedonic and eudaimonic scores estimated from the292

GLS for each dataset are given in Table 1. My estimates for FRED15 and the combined FRED13+15293

are within 0.002 standard units of those reported in Fredrickson et al. (2015). Fredrickson et al. (2015)294

do not report the GLS results for the 2013 data alone and the reported results for COLE15 are from295

unstandardized expression levels and specifying an unstructured error matrix. My estimates of the296

coefficients for the FRED13 data show a pattern opposite to that for FRED15. That is, with the 2013 data,297

the effect of Hedonia is large and has a very small p-value (0.002) while the effect for Eudaimonia is298

small and not statistically significant (p = 0.44). My FRED13 coefficients are the same as those reported299

in the exploratory re-analysis of the FRED13 and FRED15 datasets by Brown et al. (2016), who also note300

the opposite pattern from the 2015 results. Following z-score standardization of the expression levels,301

the effect of Eudaimonia on mean expression level for the COLE15 data is trivially negative and not302

statistically significant. By contrast the standardized effects of Eudaimonia on mean expression level303

when re-analyzed without Hedonia as a covariate (to conform to the COLE15 analysis) are large and304

positive for FRED13 and large and negative for FRED15 (Table 2). A diagnostic plot of residual versus305

fitted values from the GLS model for FRED15 suggests strongly biased estimates (Fig. 1A).306

New results307

Standardized mean effects (β̄ ) estimated by multivariate regression (OLS) are very small and positive308

for Hedonia and very small and negative for Eudaimonia for both 2013 and 2015 datasets and the309
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Table 2. GLS estimates of the variance-standardized coefficients for the FRED13, FRED15, and
COLE15 data. Hedonia was excluded from the FRED13 and FRED15 analyses and hispanic and
ln(hh.income) were excluded from the COLE15 analysis so that all analyses had the same set of
covariates.

Data Estimate SE p

FRED13 0.558 0.107 < 0.001
FRED15 -0.519 0.086 < 0.001
COLE15 -0.007 0.076 0.931
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Figure 1. Residual versus fitted values from the A. fixed effects linear model with correlated error
(GLS), and B. Generalized Estimating Equations (GEE) model. The pattern in A indicates strongly biased
estimates.

combined dataset (Table 3). The bootstrap SE for each effect is too large, relative to the signal, to have310

any confidence in the direction of either of the effects for any dataset. p-values from all OLS tests (with311

one exception) for all three hypotheses, for all three datasets fail to reject the null. The exception is312

the p-value from the GlobalAncova test for Eudaimonia for the combined (FRED13+15) dataset. The313

p-values from O’Brien’s OLS t-test, Anderson’s r2
F -test, and the Roast test are very similar to each other314

across all tests. Similarly, the p-values from the two permutation F-tests (GlobalAncova and Fpun) are315

very similar to each other across all tests. The GEE estimates are the same as the OLS estimates to the316

2nd decimal place for all three datasets and the robust standard errors are large relative to the coefficients317

(Table 4). The GEE p-values are very similar to those from the OLS tests (especially the grouping of318

O’Brien’s OLS t-test, Anderson’s r2
F -test, and the Roast test) for all three datasets and fail to reject any of319

the nulls. A diagnostic plot of residual versus fitted values from the GEE model for FRED15 does not320

suggest biased estimates (Fig. 1B).321

The GLS permutation p-values fail to reject the nulls for any of the tests (Table 1). Compared to the322

GEE p-values, the GLS permutation p-values are much less similar to those from the OLS tests. The GLS323

bootstrap distributions of standardized effects for Hedonia and Eudaimonia for FRED15 are shown in324

Fig. 2. The standard errors of the effects computed from these distributions are 0.27 for Hedonia and325

0.36 for Eudaimonia, which are 2–3 times the standard errors computed by the GLS model.326

Test size, power, sign error, and magnitude error327

The GLS test has inflated type I error rates that increases with the number of outcomes (m). At the size of328

the FRED15 data (m = 52), type I error is above 25% for the GLS test (Fig. 3A). By contrast, Type I error329

for all alternative methods are relatively stable as m increases. Notably, Type I error for all OLS tests are330

near the nominal level (0.05) while that for GEE is slightly elevated (0.08). Power of all tests increases331

from m = 10 to m = 30 but has variable behavior between m = 30 and m = 52 (Fig. 3B). GlobalAncova332

and Fpun-tests have over ∼ 1.8× the power of O’Brien’s, Anderson’s R2
F and Roast tests when m = 52,333

without inflation of type I error. GLS also has relatively high power when m = 52 but this comes at a334

large cost of type I error. GEE has about 1.2× the power of O’Brien’s, Anderson’s R2
F , and Roast tests335

when m = 52, but at a small cost of type I error. Type S errors are trivially low (0.001 – 0.002) for GEE,336
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Table 3. OLS estimates of mean effects (Estimate) on CTRA gene expression. The estimates are the
mean variance-standardized partial regression coefficients from the multivariate regression over the m
responses (genes). δhed−eud is the difference in mean effect. The SEs were estimated using a bootstrap in
which entire rows of the dataset were re-sampled to preserve all covariances (2000 bootstrap samples,
including the observed sample, were used for the standard error). The p-values are from O’Brien’s OLS
t-test, Anderson’s r2

F -test, GlobalAncova test, Fpun-test, and Roast.

Type Data Estimate SE pO′Brien pr2 pGA pF pRoast

Hedonia FRED13 0.026 0.121 0.80 0.77 0.86 0.84 0.78
FRED15 0.062 0.044 0.24 0.21 0.28 0.28 0.23
FRED13+15 0.052 0.041 0.22 0.24 0.38 0.41 0.22

Eudaimonia FRED13 -0.063 0.128 0.50 0.48 0.78 0.78 0.48
FRED15 -0.067 0.048 0.20 0.19 0.12 0.12 0.20
FRED13+15 -0.064 0.038 0.14 0.23 0.04 0.06 0.13

δhed−eud FRED13 0.089 0.242 0.64 0.60
FRED15 0.129 0.085 0.22 0.19
FRED13+15 0.116 0.074 0.17 0.14
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Figure 2. Distribution of GLS bootstrap resampled standard partial regression coefficients for
Hedonia and Eudaimonia. The data are the FRED15 dataset and the coefficients were estimated by the
linear model with correlated error (GLS). Also shown is the observed value for FRED15(black).
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Table 4. Generalized Estimating Equations estimates of the effects and difference in effects (δhed−eud).
SE is a robust standard error.

Type Data Estimate SE p

Hedonia FRED13 0.026 0.098 0.79
FRED15 0.062 0.04 0.12
FRED13+15 0.052 0.039 0.19

Eudaimonia FRED13 -0.063 0.098 0.52
FRED15 -0.067 0.046 0.14
FRED13+15 -0.064 0.039 0.1

δhed−eud FRED13 0.089 0.189 0.64
FRED15 0.129 0.079 0.1
FRED13+15 0.116 0.073 0.11

O’Brien’s, Anderson’s R2
F and Roast tests (Fig. 3C). Type S errors are relatively high for GLS above337

m > 10 ( 0.06 when m = 52) and high (∼ 0.1) for the permutation F tests across all m. The Exaggeration338

Ratio (ER) generally decreased with m in all methods except GLS (Fig. 3D). As a consequence, at m = 52,339

statistically significant effect sizes estimated by GLS were close to 3× the true size. By contrast, when340

m = 52, statistically significant effect sizes estimated by GEE, O’Brien’s, Anderson’s R2
F , and Roast were341

only to 2× the true size, while the ERs for GlobalAncova and Fpun-tests are ∼ 1.3.342

Correlated coefficients343

The expected, large negative correlation between the partial regression coefficients for Hedonia and344

Eudaimonia are shown using the GLS bootstrap distribution (Fig. 2) and using the GLS Monte Carlo345

simulation results (Fig. 4). Despite modeling the empirical correlations among the regressors and among346

the response variables, the distribution of standardized coefficients from the GLS Monte Carlo simulation347

have a much smaller range than that from the GLS permutation (e.g. 95% confidence interval for348

βeudaimonia from the Monte Carlo simulation is -0.20 to 0.23 while that from the GLS permutation is -0.62349

to 0.57), which suggests there is something about the structure of the actual data that is inflating the350

coefficient estimates (Littell et al., 2006).351

DISCUSSION352

A causal association between well-being components and CTRA expression levels would be an important353

discovery. Certainly, some association between well-being scores and CTRA expression levels must354

exist because of common shared paths within the complex network of causal paths of the underlying355

physiology. Nevertheless, observational studies like that of Fredrickson et al. (2013, 2015) are poor356

designs for discovering knowledge (Walker, 2014). The re-analysis of the CTRA gene expression data357

in subjects scored for hedonic and eudaimonic well-being highlights several important results: 1) any358

effect of hedonic and eudaimonic well-being on CTRA expression is very small and the noise is too large359

relative to the signal to reliably estimate the sign and magnitude of these mean effects, 2) the apparent360

replication of opposing effects is most parsimoniously explained by correlated noise due to the high361

correlation between Hedonia and Eudaimonia, 3) the GLS with correlated error test has high error rates362

and inflated effect estimates for simulated data modeled on the focal dataset, and 4) all of the OLS tests363

have appropriate error rates and the permutation F-tests have high power.364

The association between well-being and CTRA expression365

Standardized mean effects of Hedonia and Eudaimonia are very small (Table 3) but the standardization366

effectively precludes easy comparison to published effect sizes on expression levels. The multivariate367

(OLS) regression was re-run on the unstandardized expression levels of FRED13 and FRED15 and368

the mean coefficients were back-transformed to a fold change per four standard deviation change in369

the predictor (effectively comparing someone at the high and low ends of the well-being axis), using370

FC = 24∗β̄ . For Eudaimonia, I used the reciprocal of this fold change to make the value greater than one371

and multiplied it by −1 to indicate a decreasing effect. The FC values were 1.036 and 1.072 for Hedonia372
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Figure 3. Errors for the different test methods based on Monte Carlo simulation of FRED15
dataset. A) Type I error when the true effect is zero. B) Power when the true effect is 0.067 (the absolute
value of the OLS estimated effect of Eudaimonia on mean expression for the FRED15 dataset). C) Type
S (”sign”) error when the true effect is 0.067. Type S error is the fraction of statistically significant effects
in which the estimate has the opposite sign of the true effect. D) Type M (”magnification”) error when the
true effect is 0.067, illustrated by the Exaggeration Ratio (ER). ER is the ratio of the estimated to true
effect when p≤ 0.05. The rates are based on ≥ 6000 values for all methods except GLS, which, because
of the time necessary to compute the statistics, are based on 2000 values for 10 and 30 genes and 1000
values for the full 52 genes.
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Figure 4. Bivariate distribution of standard partial regression coefficients for Hedonia and
Eudaimonia from the Monte Carlo experiments. The Monte Carlo simulated the FRED15 data but
with zero expected effect of any of the regressors on the gene expression levels. The coefficients were
estimated by the linear model with correlated error (GLS).

and -1.078 and -1.06 for Eudaimonia (note that Fredrickson et al. (2015) reported this fold change as a373

percent). The biological significance of such a small mean effect awaits experimental evidence.374

Several features of the GLS results suggest unstable and inflated coefficient estimates resulting from375

the GLS model. First, the highly variable pattern of effects among the three datasets (FRED13, FRED15,376

COLE15) when estimated using the same error structure suggests that either a large lack of generalizability377

among samples or the coefficients are more unstable than suggested by their (non-robust) standard error.378

Second, the GLS coefficients are very different from and generally much larger than the OLS coefficients379

(Tables 1 and 3). Third, at least one of the GLS coefficients in each of the datasets is very large relative to380

what we’d expect from a gene set association given observational data and the stated hypotheses. Fourth,381

in a supplementary table, Fredrickson et al. (2015) report strikingly different results (small, negative382

coefficients for both Hedonia and Eudaimonia) for the FRED15 dataset using an unstructured error383

matrix for the GLS computation (Hedonia : β = −0.014, p = 0.17;Eudaimonia : −0.0026, p = 0.81.384

Compare these to Table 1). Fredrickson et al. (2015) failed to identify or address any of these concerns,385

including why the 2013 dataset was not analyzed using the updated (GLS) analysis, or how to interpret386

the differing results using a compound symmetry error matrix, which was the focus of Fredrickson et al.387

(2015), or an unstructured error matrix, which was the focus of Cole et al. (2015). The results reported388

here support the conclusion of inflated coefficient estimates from the GLS. These results include the large389

coefficients that commonly occurred in the GLS with permuted data despite the expected effects of zero390

and the diagnostic plot of the residual vs. fitted values that indicates biased estimates (Fig. 1).391

The replication in the pattern of effects between datasets392

The apparent replication of opposing signs for hedonic and eudaimonic effects on CTRA expression393

(Fredrickson et al., 2015, 2016) can be inferred only from the OLS estimates; the GLS estimates are394

strikingly inconsistent with a replicated pattern of expression. This failure of the GLS estimates to395

replicate was not noted by Fredrickson et al. (2015) because they used the OLS estimates to illustrate the396

replication but GLS to infer effects. Regardless, any replication in the sign of the mean effect should not397

be surprising given only two replicates of two coefficients.398

The pattern of opposing signs for hedonic and eudaimonic effects on CTRA expression is consistent399

with very small effects in combination with the high empirical correlation between hedonic and eudai-400

monic scores (0.80 in FRED13 and 0.74 in FRED15). Partial regression coefficients of regressors that are401

positively correlated are themselves negatively correlated because their estimation shares common com-402
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ponents that are of opposite sign. This is easily shown using the data from FRED15 where, disregarding403

all predictors but hedonic and eudaimonic scores, the partial regression coefficient of any gene expression404

level on Hedonia (X1) and Eudaimonoia (X2) are405

β1 = 0.018x>1 y−0.013x>2 y

β2 =−0.013x>1 y+0.018x>2 y
(6)

where the 0.018 and -0.013 are the diagonal and off-diagonal elements of the inverse of the X>X matrix406

of FRED15 (again disregarding all other predictors to simplify the explanation). Because of the high407

correlation between hedonic and eudaimonic scores, both β1 and β2 include a large contribution from408

the covariance of the other X with Y but the sign of this contribution is negative. Consequently, if the409

true effects are trivially small, then the pair of β coefficients will tend to have opposite signs because410

of the negative correlation of estimates centered near zero. Random noise creates negatively correlated411

coefficients that tend to be opposite in sign. Linear mixed models do not adjust for this correlation. The412

negative correlation between coefficients is easily seen in the distribution of bootstrap GLS estimates of413

βhedonia and βeudaimonia (Fig. 2). The tendency for the coefficients to have opposite signs if the expected414

effects are zero is seen in the Monte Carlo simulation of the FRED15 data (Fig. 4). While I’ve shown415

the negative correlation using GLS estimates, this correlation would also appear in OLS estimates. The416

most parsimonious explanation of the apparent replication of opposing effects of hedonic and eudaimonic417

scores on CTRA gene expression is correlated noise arising from the geometry of multiple regression.418

Comparison of method performance419

The Monte-Carlo simulations of the GLS with correlated error for repeated measures or multiple outcome420

data are consistent with other studies demonstrating inflated Type I error due to downward biased standard421

errors (Guerin and Stroup, 2000; Littell et al., 2006; Jacqmin-Gadda et al., 2007; Gurka et al., 2011). By422

contrast, all of the OLS methods maintain error rates close to the expected value (0.05). The permutation423

F-tests (Fpun and GlobalAncova) have much higher power than the O’Brien’s OLS, Anderson’s r2
F , and424

Roast tests and, unlike the moderately high power for GLS, this power does not trade-off with type I error.425

In designs with low power because of small effect sizes, type S and M errors are more likely to emerge426

(Gelman and Carlin, 2014). That is, with low power, only unusually large estimates are large enough to427

reach statistical significance. And with a true effect size near zero, an estimate with unusually large error428

from the true value has a high probability of being the wrong sign. In the simulation here, the true effect429

is small but the tests with the highest power are associated with the highest rate of type S error. Sign error430

is a cost of a higher powered test. This type S error affects the permutation F-tests, which have 10× the431

type S error as the other OLS tests. Indeed, type S error, even with a very small effect, is trivial in the432

O’Brien’s, Anderson’s, and Roast tests. The exaggeration ratio (ER), a measure of type M error (Gelman433

and Carlin, 2014), is a good indicator of the expected inflation of an estimate when the design or test has434

low power. The expected inflation is nearly 3× the true value for the GLS estimate under the conditions of435

the FRED15 dataset. By contrast, the expected inflation is less than 1.4× for the Fpun and GlobalAncova436

tests. The high powered tests result in the (perhaps paradoxical) negative relationship between type M437

and type S error among the tests.438

Conclusions439

The OLS estimates combined with the permutation F-tests provide some evidence of a very small negative440

association between Eudaimonia and mean CTRA expression, although the Monte Carlo results of these441

F tests raise some concern about the sign of this effect. As I’ve stated above, however, there must be442

some association between well-being components and CTRA expression, so an observational design443

with a statistically significant p-value should not cause much excitement. What we want to know are444

the causal pathways that explain this association — does decreased CTRA cause eudaimonic well-being,445

or does eudaimonic well-being cause decreased CTRA, or is the correlation jointly determined by an446

unknown causal pathway? And we want to know if the effect magnitude has meaningful physiological447

consequences.448

The linear model with correlated errors (GLS) has few merits for the estimation of mean fixed449

effects across multiple responses. The estimation is time consuming and estimation with an unstructured450

error matrix is plagued with difficulties in convergence. Simulations of the model (here and elsewhere)451
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with repeated measures or multiple outcomes show a high frequency of inflated coefficient estimates452

and downward biased standard errors. As expected, the Generalized Estimating Equations with robust453

standard errors perform much better than the GLS, but even this estimator has inflated type I error. While454

all the OLS methods maintain type I error at the nominal rate, the tests using the F-ratio (Fpun and455

GlobalAncova) have a relatively high power and small exaggeration ratio. A concern of the GlobalAncova456

test for observational data is the violoation of the exchangeability assumption. How the Fpun-test and457

GlobalAncova perform with simulated data with moderate to large correlations between predictors and458

nuisance covariates remains to be investigated.459
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