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ABSTRACT
Background. Self-contained tests estimate and test the association between a phe-
notype and mean expression level in a gene set defined a priori. Many self-contained
gene set analysis methods have been developed but the performance of these methods
for phenotypes that are continuous rather than discrete and with multiple nuisance
covariates has not been well studied. Here, I use Monte Carlo simulation to evaluate
the performance of both novel and previously published (and readily available via R)
methods for inferring effects of a continuous predictor on mean expression in the
presence of nuisance covariates. The motivating data are a high-profile dataset which
was used to showopposing effects of hedonic and eudaimonicwell-being (or happiness)
on the mean expression level of a set of genes that has been correlated with social
adversity (the CTRA gene set). The original analysis of these data used a linear model
(GLS) of fixed effects with correlated error to infer effects of Hedonia and Eudaimonia
on mean CTRA expression.
Methods. The standardized effects of Hedonia and Eudaimonia on CTRA gene set
expression estimated by GLS were compared to estimates using multivariate (OLS)
linear models and generalized estimating equation (GEE) models. The OLS estimates
were tested using O’Brien’s OLS test, Anderson’s permutation r2F -test, two permutation
F-tests (including GlobalAncova), and a rotation z-test (Roast). The GEE estimates
were tested using a Wald test with robust standard errors. The performance (Type I,
II, S, and M errors) of all tests was investigated using a Monte Carlo simulation of data
explicitly modeled on the re-analyzed dataset.
Results. GLS estimates are inconsistent between data sets, and, in each dataset, at least
one coefficient is large and highly statistically significant. By contrast, effects estimated
by OLS or GEE are very small, especially relative to the standard errors. Bootstrap
and permutation GLS distributions suggest that the GLS results in downward biased
standard errors and inflated coefficients. The Monte Carlo simulation of error rates
shows highly inflated Type I error from the GLS test and slightly inflated Type I error
from the GEE test. By contrast, Type I error for all OLS tests are at the nominal level.
The permutation F-tests have ∼1.9X the power of the other OLS tests. This increased
power comes at a cost of high sign error (∼10%) if tested on small effects.
Discussion. The apparently replicated pattern of well-being effects on gene expression
is most parsimoniously explained as ‘‘correlated noise’’ due to the geometry of multiple
regression. TheGLS for fixed effects with correlated error, or any linearmixedmodel for
estimating fixed effects in designs with many repeated measures or outcomes, should
be used cautiously because of the inflated Type I and M error. By contrast, all OLS

How to cite this article Walker (2016), Monte Carlo simulation of OLS and linear mixed model inference of phenotypic effects on gene
expression. PeerJ 4:e2575; DOI 10.7717/peerj.2575

https://peerj.com
mailto:walker@maine.edu
https://peerj.com/academic-boards/editors/
https://peerj.com/academic-boards/editors/
http://dx.doi.org/10.7717/peerj.2575
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://dx.doi.org/10.7717/peerj.2575


tests perform well, and the permutation F-tests have superior performance, including
moderate power for very small effects.

Subjects Genomics, Psychiatry and Psychology, Statistics
Keywords Self-contained test, Type I error, Type S error, Type M error, Power, Permutation,
Multiple outcomes, Gene set analysis

INTRODUCTION
The motivation for this work is a recent self-contained test, a type of gene set analysis
(Goeman & Bühlmann, 2007), that used a linear model (GLS) with correlated error to
estimate the mean effect of a phenotype on a set of expression levels for a gene set identified
a priori (Fredrickson et al., 2015). The development of self-contained tests is an active area
of research in genomics (Tian et al., 2005; Goeman & Bühlmann, 2007; Hummel, Meister &
Mansmann, 2008; Wu et al., 2010; Tripathi & Emmert-Streib, 2012; Zhou, Barry & Wright,
2013).More generally, the effect of a phenotype on themean response ofmultiple outcomes,
has a long and rich history in applied statistics, especially in the context of clinical outcomes
in medicine (O’Brien, 1984; Pocock, Geller & Tsiatis, 1987; Lauter, 1996; Bull, 1998). The
development of self-contained test methods within the field of genomics has advanced
largely without reference to this earlier literature (but see Chen et al., 2007; Tsai & Chen,
2009). The use of GLS in self-contained tests of genomics data has not been widely used
(if at all) outside of Fredrickson et al. (2015) and subsequent papers by the same authors.
Results presented by Fredrickson et al. (2015) raise several concerns about the stability of
the estimates and their standard errors, especially given the well known problems with the
GLS model when used for repeated measures or multiple outcome data (Littell et al., 2006).

Here, I re-analyze the data of Fredrickson et al. (2015), and an earlier ‘‘discovery’’ dataset
(Fredrickson et al., 2013), with two goals in mind. First, and more specifically, I re-analyze
the datasets using alternatives to GLS for testing for fixed effects on multiple responses.
The alternatives include O’Brien’s OLS test for multiple outcomes (O’Brien, 1984), a per-
mutation r2F -test (Anderson & Robinson, 2001), two different permutation partial F-tests,
including GlobalAncova (Hummel, Meister & Mansmann, 2008), a rotation z-test (Roast)
(Wu et al., 2010), and a Wald test using robust standard errors (Zeger & Liang, 1986).
Second, and more generally, I use Monte Carlo simulation experiments to evaluate the
performance of the GLS and alternative methods when used on simulated data explicitly
modeled on the dataset from Fredrickson et al. (2015). By simulating a specific dataset, I
can compare test methods without extrapolating from more general, simulation studies.
Importantly, the empirical and simulated data contain numerous nuisance covariates, and
the focal predictors are continuous rather than discrete, and, consequently, these data are
more complex than the data found in most previous comparisons of gene-set association
methods.

I show that all OLS tests have a Type I error very close to the nominal rate, but that
the two permutation tests that use an F-ratio as the test-statistic have superior power.
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However, O’Brien’s OLS test, which doesn’t require permutation, is extremely fast and
may be useful for competitive gene-set association tests that require many more tests.

Background
Fredrickson et al. (2015) reported a large, negative, highly statistically significant, standard-
ized effect (partial regression coefficient) of eudaimonic well-being on the ‘‘conserved tran-
scriptional response to adversity’’ (CTRA) gene set (Fredrickson et al., 2015). Additionally,
using OLS estimates, the authors reported opposing effects of eudaimonic and hedonic well
being on CTRA expression (Fredrickson et al., 2015), a pattern that they argue replicates the
results of an earlier 2013 study (Fredrickson et al., 2013). Hedonia and eudaimonia are two
types of well-being that are variously defined in the psychological literature but, effectively,
hedonia is the striving for or feeling of pleasure and absence of distress while eudaimonia
is the striving for or feeling of betterment and meaningfulness (Huta & Waterman, 2014).
I use italics (Hedonia and Eudaimonia) to indicate the empirical measures of hedonia
and eudaimonia in the analyzed datasets. The 2015 study (Fredrickson et al., 2015) was a
replication of an earlier study that reported not only a negative effect of Eudaimonia on
CTRA expression but also a positive effect of Hedonia on CTRA expression (Fredrickson et
al., 2013). While the 2015 study did not report a statistically significant effect of hedonic
well-being on CTRA expression, it did report plots showing opposing effects of hedonic
and eudaimonic scores on mean CTRA gene expression that were in the same direction
as that in Fredrickson et al. (2013). This apparent replication of opposing effects was again
emphasized in a published correction (Fredrickson et al., 2016).

The CTRA gene set includes 19 pro-inflammatory, 31 anti-viral, and 3 antibody-
stimulating genes. TheFredrickson et al. (2013)data included all 53 genes but theFredrickson
et al. (2015) data ismissing IL-6 from the pro-inflammatory subset. Fredrickson et al. (2013)
used 53 univariate multiple regressions to estimate the effects (the regression coefficient) of
each well-being (hedonic and eudaimonic) score on log2 (normalized gene expression) for
each gene. The regression model included both well-being scores, seven covariates to adjust
for demographic and general health confounding (sex, age, ethnicity, body-mass index,
and measures of alcohol consumption, smoking, and recent illness), and eight expression
levels of T-lymphocyte markers to adjust for immune status confounding. Hedonic and
eudaimonic scores were transformed to z-scores prior to the analysis. The 53 multiple
regressions (one for each gene) yielded 53 coefficients for hedonic score and 53 coefficients
for eudaimonic score. The coefficients of the 31 anti-viral and three antibody genes were
multiplied by −1 to make the direction of the effect consistent with the CTRA response.
Fredrickson et al. (2013) used a simple one-sample t -test of the 53 coefficients to test for a
mean effect of hedonic or eudaimonic score onCTRA expression. Amean coefficient greater
than zero reflects a positive CTRA response (increased pro-inflammatory and decreased
anti-viral and antibody-stimulating genes).

Fredrickson et al. (2013) used a bootstrap to re-sample the coefficients in order to
generate a standard error (the denominator of their t -value) and then tested the statistic
using m−1 degrees of freedom, where m is the number of outcomes (gene expression
levels). There are two fundamental problems with this t -test. First, the coefficients are not
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independent of each other because of the correlated expression levels among genes and
as a consequence the standard error in the denominator will be too small, which should
result in an inflated Type I error rate. Second, their degrees of freedom does not account
for the number of subjects in the study. At the extreme, if only a single gene expression
level is measured, Fredrickson’s t cannot even be computed. This second error should
result in loss of power. The combined effect on Type I and Type II error will depend on the
magnitude of the correlations among the expression levels. Through simulation, however,
Brown et al. (2014) discovered an inflated Type-I error in their exploration of the data
using the Fredrickson et al. (2013) t -test. O’Brien (1984) developed an appropriate t -test
for the effects of an an independent variable on multiple outcomes (see below).

Fredrickson et al. (2015) replicated the 2013 study but treated the 52 gene expression
levels as ‘‘repeated’’ measures (or multiple outcomes) of a single expression response
and used a linear model with fixed-effects and correlated error to estimate the regression
coefficients of expression on hedonic and eudaimonic score. Specifically, Fredrickson et al.
(2015) used generalized least squares (GLS)with a heterogenous compound symmetry error
matrix to estimate the marginal (population-averaged) fixed effects. Compound symmetry
assumes equal correlation (conditional on the set of predictors) among all expression levels.
This is not likely to approximate the true error structure for a set of expression levels for
different genes, as these expression levels will share different sets of underlying regulatory
factors. Fredrickson et al. (2015) re-ran the analysis using an unstructured error matrix,
with results contradicting the compound symmetry results, but chose to report this in the
supplement and not the main text. Regardless, linear mixed models for repeated measures
or multiple outcomes are prone to inflated Type I error due to both upward biased effect
estimates and downward biased standard errors (Kackar & Harville, 1984; Kenward &
Roger, 1997; Guerin & Stroup, 2000; Littell et al., 2006; Jacqmin-Gadda et al., 2007; Gurka,
Edwards & Muller, 2011). The amount of bias depends on the true and specified correlation
structure, as well as effective sample size (a function of the number of subjects, the number
of outcomes, and the correlations among the outcomes), but can be large even with large
samples (Gurka, Edwards & Muller, 2011). When only the marginal effects are of interest
(as here), population-averaged effects are typically estimated using Generalized Estimating
Equations (GEE) instead of GLS and standard errors robust to model misspecification are
computed using the sandwich estimator (Liang & Zeger, 1986; Zeger & Liang, 1986).

Finally,Cole et al. (2015) replicated the 2015 study, using the sameGLSmethod, but only
reported the effect of Eudaimonia and not Hedonia on CTRA expression. By contrast to
the earlier study, an unstructured error matrix was specified and the expression levels were
not standardized to z-scores. Again, a negative effect of Eudaimonia on CTRA expression
was reported but the magnitude cannot be easily compared to other values because of the
lack of standardization.

METHODS
Data from Fredrickson et al. (2013) (hereafter FRED13) and Fredrickson et al. (2015) (here-
after FRED15) were the primary datasets re-analyzed because both contain the well-being
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measure Hedonia in addition to Eudaimonia. A more abbreviated analysis of the data from
Cole et al. (2015), which did not include a measure of Hedonia, was performed simply
to show the inconsistency of the GLS method when used consistently among datasets.
Data were downloaded as .txt Series Matrix Files from http://www.ncbi.nlm.nih.gov/geo/
using accession numbers GSE45330 (the 2013 dataset, hereafter FRED13), GSE55762
(the focal 2015 dataset, hereafter FRED15) and GSE68526 (the replicate 2015 dataset,
hereafter COLE15). The CTRA (response) expression data were log2 transformed. The T-
lymphocyte expression data that formed part of the set of covariates were log2 transformed
in the downloaded data. The downloaded hedonic and eudaimonic scores in FRED13 had
means and variances close but not equal to that expected of z-scores, which suggests that
the public data slightly differs from that analyzed by Fredrickson et al. (2013); these were
re-standardized to z-scores Three rows of FRED13 had missing covariate data (two rows
were completely missing) and were excluded; the number of rows (subjects) in the cleaned
matrix was 76. The downloaded hedonic and eudaimonic scores in FRED15 were the raw
values and were transformed to z-scores. There was no missing data in FRED15 and the
number of subjects was 122. The COLE15 data did not include a measure for Hedonia.
Excluding rows with missing values left complete data for 108 subjects.

Prior to all analyses,Hedonia or Eudaimonia scores and the expression levels of all genes
were standardized to mean zero and unit variance. Additionally, the 31 anti-viral and 3
antibody genes were multiplied by −1 to make the direction of the effect consistent with
the CTRA response (Fredrickson et al., 2013; Fredrickson et al., 2015).

Null hypothesis tests
If βj is the effect (partial regression coefficient) ofHedonia or Eudaimonia on the expression
level of the jth gene, the overall effect of Hedonia or Eudaimonia on expression of the
CTRA gene set is simply the averaged coefficient over all genes, β̄ = 1

m
∑
βj where m is the

number of genes. The three focal null hypotheses are H0 : β̄hedonia= 0, H0 : β̄eudaimonia= 0,
and H0 : δhed−eud = β̄hedonia− β̄eudaimonia = 0. All three hypotheses are directional; that
is, the mean effect differs from zero. This differs from the general multivariate test that
at least one of the coefficients differs from zero, but the mean response may be zero. While
the hypotheses are directional, the tests are two-tailed, that is, the mean response may be
up or down regulation of the CTRA gene set.

OLS inferential tests
The effects of Hedonia and Eudaimonia on the mean of the m gene expression levels are
estimated with the multivariate linear model

Y =XB+E (1)

where Y is the n × m matrix of gene expression levels for the n subjects, X is the model
matrix of dummy variables and covariates, E is the matrix of residual error, and B is
the p × m matrix of partial regression coefficients. For the combined data, the model
matrix includes a dummy variable indicating dataset (2013 or 2015). The coefficients of
the jth column of B are precisely equal to those from a univariate multiple regression
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of the jth gene on X (and why the model is sometimes called a multivariate multiple
regression). In R, estimating them effects of Hedonia and Eudaimonia is much faster using
this multivariate model than looping throughm univariate multiple regressions. The mean
of the m coefficients is the OLS estimate of the effect of Hedonia or Eudaimonia on overall
CTRA expression level. Because the well-being scores for Hedonia and Eudaimonia and
the m expression levels were mean-centered and variance-standardized, the reported OLS
estimates are mean (averaged over the m genes) standard partial regression coefficients.

O’Brien’s OLS t-test
O’Brien’s OLS test (O’Brien, 1984; Logan & Tamhane, 2004;Dallow, Leonov & Roger, 2008)
was developed explicitly for testing the directional hypothesis that the mean effect of
multiple outcomes differs from zero, which is precisely the question pursued in both
Fredrickson papers. Given m standardized regression coefficients and associated t -values,
O’Brien’s test statistic is

tObrien=
j>t√
j>Rj

(2)

where j is a m vector of 1s, t contains the t -values associated with each of the m partial
regression coefficients, and R is the conditional correlation matrix of the m expression
levels. R was computed separately for Hedonia and Eudaimonia from the residuals of
the multivariate linear model (Eq. (1)) with all covariates in the model except the focal
covariate (the reduced model). A t distribution with n−p−1 degrees of freedom (where p
is the number of predictors) was used to estimate the two-tail probability of |t | ≥ |tObrien|
given the null. A standard error of the mean effect was computed as SE = β̄

tObrien

Anderson’s permutation r2F -test
As an alternative to the parametric O’Brien’s OLS test, I use four different permutation, or
permutation-like tests. The first of these is Anderson’s permutation r2F -test of the partial
correlation between the focal predictors (Z ) and the outcomes (Y ) conditional on the
covariates (X) (any of these can be univariate or multivariate) (Anderson & Robinson,
2001; Anderson, 2001). This test uses a permutation of the residuals of the null model
(‘‘permutation under the null’’) as these residuals, but not the Y , X , or Z , are exchangeable.
Freedman & Lane (1983), initially developed the permutation under the null using a t -value
of the effect (for a gene set withm> 1, this statistic would be themean or sumof the t -values
for each gene). Anderson provided both theoretical and empirical evidence for the superior
performance of the permutation under the null, but used the squared partial correlation
coefficient r2F = ρ

2
zy.x in place of t . For a permutation under the null, the predictor variables

are divided into main effects Z (hedonic or eudaimonic scores were tested independently)
and nuisance covariates X (the demographic and immune variables plus the well-being
score not being tested) and the model becomes

Y =XA+ZB+E (3)
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and the two-sided test statistic is

r2F =
(
∑

Eπ(F)EZ |X )2∑
E2
π(F)

∑
E2
Z |X

(4)

where E are the residuals from different fit models. The computations for this are
1. Compute EZ |X , which are the residuals of Z regressed on X .
2. Set B= 0 and fit model 3. The residuals from this model are the estimated residuals

under the null (EY |X ) and the predicted values are the estimated Y under the null (Ŷ ).
3. Permute the residuals under the null and add to the predicted values under the null,

Yπ = Ŷ +EπY |X , where π indicates permutation.
4. Fit model model 3, again with B= 0 but substitute Yπ for Y , and compute the residuals

from this fit, which are the Eπ(F).
To generate the null distribution of the test statistic, 10,000 permutations were run,

including an iteration of non-permuted data. The two-sided p-value of each hypothesis
was computed as the fraction of r2F ≥ the observed r2F .

Permutation Fga-test (GlobalAncova)
Because it is implemented in the GlobalAncova package (Mansmann et al., 2010), the
permutation F-test described in Hummel, Meister & Mansmann (2008) is an attractive
alternative to the permutation r2F -test. The GlobalAncova test statistic, Fga compares the
residual sums of squares of the reduced model not including the predictor(s) of interest
(Z ) to the residual sums of squares of the full model. The full model 3 is fit but substituting
the residuals of the reduced model (EπY |X ) for Y . The GlobalAncova test with 10,000
permutations was run separately for Hedonia and Eudaimonia. GlobalAncova permutes
the main effects (Z ), and thus does not preserve the covariance relationship between the
main effects and the nuisance effects. While the Z are exchangeable under the null in
experimental designs when they are assigned randomly, they are not exchangeable under
the null in observational designs (Freedman & Lane, 1983; Anderson, 2001). The Monte
Carlo simulation results for data modeled on FRED15 (see below) suggest that the violation
of exchangeability is trivial.

Permutation Fpun-test
The GlobalAncova Fga-test had high power with these data (see ‘Results’) but a concern
was whether this high power was due to the violation of exchangeability under the null.
Consequently, I implemented a modification of the GlobalAncova test by permuting the
residuals under the null to generate a permuted response (Yπ ) (see above description for
the permutation r2F -test). Each iteration, the full models and reduced models were fit to Yπ
and the respective residual sums of squares were computed (note that in GlobalAncova, the
reduced-model residual sums of squares are only computed once, for the observed data).
I refer to this as the permutation Fpun-test (for ‘‘permutation under the null’’). A total of
10,000 permutations were run, including an iteration of non-permuted data. The p-value
of each hypothesis was computed as the fraction of Fpun≥ the observed Fpun.
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Rotation z-test (ROAST)
The rotation-test described inWu et al. (2010) is an attractive alternative to the permutation
tests as it is small-sample exact and is implemented in the function roast from the limma
package (Ritchie et al., 2015) (by contrast, permutation tests are only asymptotically exact).
The test statistic, zrot, is a mean z-score computed from the set of mmoderated t -statistics
computed for each gene. Using a hierarchical model, the moderated t -statistic uses
information on the error of all genes in the set to estimate the gene specific standard error.
A p-value for the test statistic is evaluated in a very similar manner to the permutation tests
described above, but, instead of permutation, the n-vector of reduced-model residuals is
rotated by a random vector r , which is constant for all genes within each iteration but
variable among iterations. The observed and rotated z-scores from 10,000 rotations were
used to generate the null distribution. The p-value for the ‘‘UpOrDown’’ test was used as
this is the test of the two-tailed directional hypothesis.

Inference using linear model with fixed effects and correlated error
The model used by Fredrickson et al. (2015) is

yi=Xiβ+εi (5)

where yi is the vector of m responses for subject i, Xi is the model matrix for subject i,
which includes the main effect Gene to identify the jth element of yi, and β is the vector
of fixed (or population-averaged) effects. In this model, εi ∼N (0,6), where 6 is the
within subject error covariance matrix representing the correlated errors. The correlated
errors result from random effects due to subjects but the model does not explicitly model
these. To implement this model, the data matrix with separate columns for each gene
is stacked into long format by combining the m expression levels into a single response
variable (Expression) and the variable Gene is created to identify the gene associated with a
specific response (expression value). The univariate regression of Expression on the set of
predictors results in the same OLS estimates as in the multivariate model described above.
These estimates are unbiased but the standard errors for the estimates are incorrect because
of the correlated errors. As in the multivariate model for the combined data, the model
matrix includes a dummy variable indicating dataset (2013 or 2015).

Generalized estimating equations
Fredrickson et al. (2015) usedmaximum likelihoodwith theGLSmodel with a heterogenous
compound symmetry error matrix to estimate the fixed effects in Eq. (5). To replicate these
results, I estimated the fixed effects and their standard errors and p-values using the gls
function from the nmle package (Pinheiro et al., 2015) (with a heterogenous compound
symmetry error matrix and using maximum likelihood method). Additionally, because
only the fixed effects are of interest, and because of the known bias in the standard errors
of the GLS with correlated errors model, I used Generalized Estimating Equations (GEE)
with an exchangeable error matrix to estimate the fixed effects using the function geeglm in
the geepack package (Yan, 2002). The default sandwich estimator was used to compute the
standard errors of the effects, which is robust to error covariance misspecification (Liang
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& Zeger, 1986). Nevertheless, GEE is less efficient if the error covariance is misspecified
(Sammel & Ryan, 2002).

Permutation and bootstrap GLS
Exploration of the behavior of the GLS as implemented by Fredrickson et al. (2015)
suggested partial regression coefficients that were more unstable than implied by the
standard error. To explore the consequences of this instability on inference, I implemented
both a bootstrap procedure to compute approximate standard errors and the Freedman and
Lane permutation procedure (Anderson & Robinson, 2001) described above to compute
permutation-GLS p-values. Each iteration of either the bootstrap or the permutation, the
data were resampled (or the residuals permuted) in wide format, rescaled, and reshaped
to long format. Coefficients were estimated using the gls function as described above. The
first iteration used the observed (not resampled) data. The standard partial regression
coefficients and associated t -values for Hedonia and Eudaimonia were saved each iteration
and used to generate standard errors for the bootstrap and a null distribution of t -values
for the permutation. Because the time required to fit the GLS, and the exploratory goal of
this analysis, I used 200 samples for the bootstrap and 400 samples for the permutation,
which are sufficient for approximate values. The regressor Smoke was excluded from the
bootstrap analysis because some bootstrap samples had zero cases with level Smoke = 1,
which leads to an unsolvable model. I show in the results that this exclusion of Smoke has
trivial effects on the estimates of the coefficients and standard errors.

Monte Carlo simulations of errors
I used Monte Carlo simulation to explore Type I, Type II, Type S, and Type M errors with
data similar in structure to the focal FRED15 dataset. Type S and Type M error are the
errors in the sign and magnitude of the estimated coefficient when p< 0.05 (Gelman &
Carlin, 2014). For Type S error, I used the (frequentist) probability that the sign of the
coefficient is wrong when p< 0.05, which is N (p<0.05|βestimated<0,βtrue>0)

N (p<0.05) , where N (x) is the
number of iterations with condition x (Gelman & Carlin, 2014). For Type M error, I used
the exaggeration ratio (βestimated

βtrue
) (Gelman & Carlin, 2014). In each run of the simulation,

a random n × p matrix X of independent variables (n samples of p covariates) and a
random n × m matrix Y of response variables (n samples of m responses) were generated
using the function rmvnorm from the mvtnorm package (Genz et al., 2015). All simulated
independent variables were modeled as continuous variables sampled from N (0,SX ),
where SX is the covariance matrix of the 17 regressor variable from FRED15. The 52
response variables were modeled as continuous variables sampled from N (0,SY ), where
SY is the covariance matrix of the 52 gene expression levels from FRED15. For the power
simulations (including Type S and M errors), the standardized effect of Eudaimonia on the
mean response was set to 0.067, which is the estimated, standardized effect for the FRED15
dataset. The effect of all other covariates, including that of Hedonia was set to zero. For the
Type I simulations, all effects were set to zero. Sample size (the number of subjects n) was
set to that for FRED15 (122) for all runs. To explore the consequences of increasing the
gene set size on error rates, the simulation was run with three levels of m (10, 30, 52). The
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Table 1 GLS estimates of the variance-standardized coefficients for the 2013, 2015, and combined
data. The GLS bootstrap SE and permutation p-values are also given. δhed−eud is the difference in the esti-
mates: βhedonia−βeudaimonia.

Type Data Estimate SE p SEboot pgls−perm
Hedonia FRED13 0.537 0.172 0.002 0.664 0.29

FRED15 0.086 0.122 0.484 0.296 0.74
FRED13+ 15 0.073 0.042 0.081 0.145 0.36

Eudaimonia FRED13 0.135 0.177 0.443 0.66 0.83
FRED15 −0.511 0.126 <0.001 0.349 0.16
FRED13+ 15 −0.116 0.043 0.007 0.25 0.19

δhed−eud FRED13 0.401 0.331 0.225 1.132 0.73
FRED15 0.596 0.231 0.01 0.586 0.3
FRED13+ 15 0.189 0.079 0.017 0.346 0.26

m × m covariance matrix used to generate Y using the rmvnorm function was a random
sample of SY each iteration. In each iteration of the simulation, the permutation and
rotation null distributions were generated from 2,000 permuted samples. For the GEE and
all OLS tests, 4,000 iterations were run for each value of m. For the GLS test, the number
of iterations were 4,000, 2,000, and 1,000, for m= 10, 30, and 52.

Because of concern that the poor performance of the GLS method is due to
misspecification of the error matrix, I re-ran the simulation (2,000 iterations) using an
unstructured error matrix for m= 10. The simulation was not run for m= 30 and m= 52
because of problems of convergence. Regardless, the simulation at m= 10 was sufficient
to show that the poor performance of the GLS method is not simply due to using a
compound symmetry error matrix.

Correlated estimation error
Regressors with a high positive correlation, as with Hedonia and Eudaimonia, have
negatively correlated partial regression coefficients. I give a brief mathematical explanation
of this in the discussion but also show this empirically using the Monte Carlo simulation.

All analyses were performed using R (R Core Development Team, 2015). All analysis
scripts are included in Supplemental Information 1 and are available at the public GitHub
repository https://github.com/middleprofessor/happiness.

RESULTS
GLS replication of previous analyses
The variance-standardized effects for hedonic and eudaimonic scores estimated from the
GLS for the FRED13 and FRED15 datasets are given in Table 1. My estimates for FRED15
and the combined FRED13 + 15 are within 0.002 standard units of those reported in
Fredrickson et al. (2015). Fredrickson et al. (2015) do not report the GLS results for the 2013
data. My estimates of the coefficients for the FRED13 data show a pattern opposite to that
for FRED15. That is, with the 2013 data, the effect of Hedonia is large and has a very small
p-value (0.002) while the effect for Eudaimonia is small and not statistically significant
(p= 0.44). My FRED13 coefficients are the same as those reported in the exploratory

Walker (2016), PeerJ, DOI 10.7717/peerj.2575 10/22
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Figure 1 Residual versus fitted values from the (A) fixed effects linear model with correlated error
(GLS), and (B) Generalized Estimating Equations (GEE) model. The pattern in (A) indicates strongly bi-
ased estimates.

Table 2 GLS estimates of the variance-standardized mean effect of Eudaimonia on CTRA gene expres-
sion for the FRED13, FRED15, and COLE15 data specifying a heterogenous compound symmetry error
matrix. Hedonia was excluded from the FRED13 and FRED15 analyses and hispanic and ln(hh.income)
were excluded from the COLE15 analysis so that all analyses had the same set of covariates.

Data β̄eudaimonia SE p

FRED13 0.558 0.107 < 0.001
FRED15 −0.519 0.086 < 0.001
COLE15 −0.007 0.076 0.931

re-analysis of the FRED13 and FRED15 datasets by Brown et al. (2016), who also note the
opposite pattern from the 2015 results. A diagnostic plot of residual versus fitted values
from the GLS model for FRED15 suggests strongly biased estimates (Fig. 1A). Estimates
for the effect of Eudaimonia for COLE15 are given in Table 2, with estimates from FRED13
and FRED15, with Hedonia excluded from the model, for comparison. The gene set effect
of Eudaimonia for the COLE15 data is trivially negative and not statistically significant. By
contrast, the effect of Eudaimonia is large and positive for FRED13 and large and negative
for FRED15 (Table 2).

New results
Standardized mean effects (β̄) estimated by multivariate regression (OLS) are very small
and positive for Hedonia and very small and negative for Eudaimonia for both 2013 and
2015 datasets and the combined dataset (Table 3). The bootstrap SE for each effect is too
large, relative to the signal, to have any confidence in the direction of either of the effects
for any dataset. This inference from the bootstrap SE is generally supported by the p-values
of the OLS tests, with the exception that the p-values from the GlobalAncova and Fpun
tests for Eudaimonia for the combined (FRED13 + 15) dataset provide weak evidence of
a negative effect of Eudaimonia on CTRA gene expression. The p-values from O’Brien’s
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Table 3 OLS estimates of mean effects (Estimate) on CTRA gene expression. The estimates are the
mean variance-standardized partial regression coefficients from the multivariate regression over them re-
sponses (genes). δhed−eud is the difference in mean effect. The p-values are from O’Brien’s OLS t -test, An-
derson’s r2F -test, GlobalAncova test, Fpun-test, and Roast.

Type Data Estimate SEobrien pO′Brien pr2 pGA ppun pRoast
Hedonia FRED13 0.026 0.102 0.8 0.77 0.86 0.85 0.78

FRED15 0.062 0.052 0.23 0.22 0.28 0.28 0.23
FRED13+ 15 0.052 0.042 0.22 0.21 0.38 0.37 0.21

Eudaimonia FRED13 −0.063 0.093 0.5 0.49 0.77 0.77 0.49
FRED15 −0.067 0.052 0.2 0.19 0.11 0.11 0.2
FRED13+ 15 −0.064 0.043 0.14 0.13 0.04 0.04 0.13

δhed−eud FRED13 0.089 0.19 0.64 0.6
FRED15 0.129 0.104 0.22 0.18
FRED13+ 15 0.116 0.085 0.17 0.14

Table 4 Generalized Estimating Equations estimates of the effects and difference in effects (δhed−eud).
SE is a robust standard error.

Type Data Estimate SE p

Hedonia FRED13 0.026 0.098 0.79
FRED15 0.062 0.04 0.12
FRED13+ 15 0.052 0.039 0.19

Eudaimonia FRED13 −0.063 0.098 0.52
FRED15 −0.067 0.046 0.14
FRED13+ 15 −0.064 0.039 0.1

δhed−eud FRED13 0.089 0.189 0.64
FRED15 0.129 0.079 0.1
FRED13+ 15 0.116 0.073 0.11

OLS t -test, Anderson’s r2F -test, and the Roast test are very similar to each other across all
tests. Similarly, the p-values from the two permutation F-tests (GlobalAncova and Fpun)
are very similar to each other across all tests. The GEE estimates are the same as the OLS
estimates to the 3rd decimal place for all three datasets and the robust standard errors
are large relative to the coefficients (Table 4). The GEE p-values are very similar to those
from the OLS tests (especially the grouping of O’Brien’s OLS t -test, Anderson’s r2F -test,
and the Roast test) for all three datasets and fail to reject any of the nulls. A diagnostic plot
of residual versus fitted values from the GEE model for FRED15 does not suggest biased
estimates (Fig. 1B).

The GLS bootstrap standard errors for FRED13, FRED15, and the combined data are
given in Table 1. The bootstrap distributions of standardized effects for Hedonia and
Eudaimonia for FRED15 are shown in Fig. 2. The bootstrap standard errors computed
from these distributions are 2–4 × the parametric standard error. The bootstrap standard
errors were computed with the predictor Smoke excluded from the model. This exclusion
had only trivial effects on the standard error (Table S1). The GLS permutation p-values
are high relative to the parametric p-values and fail to reject the nulls for any of the tests
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Figure 2 Distribution of GLS bootstrap resampled standard partial regression coefficients forHedo-
nia and Eudaimonia. The data are the FRED15 dataset and the coefficients were estimated by the linear
model with correlated error (GLS). Also shown is the observed value for FRED15(black).

at α= 0.05 (Table 1). Compared to the GEE p-values, the GLS permutation p-values are
much less similar to those from the OLS tests.

Test size, power, sign error, and magnitude error
Type I error, power, sign, and magnitude error as a function of m are shown in Fig. 3 and
tabled in Table S2. The GLS test has inflated Type I error rates that increase with gene set
size (m). At the gene set size of the FRED15 data (m= 52), Type I error is∼28% for the GLS
test (Fig. 3A). Type I error in the GLS using an unstructured error matrix (0.106) is almost
identical to that when using a heterogenous compound symmetry error matrix (0.103) at
m= 10 (the only value of m tested because of problems of convergence with larger m). In
contrast to the GLS results, Type I error for all alternative methods are relatively stable as
m increases. Notably, Type I error for all OLS tests are near the nominal level (0.05) while
that for GEE is slightly elevated (∼0.08).

Power of all tests increases with gene set size (m) (Fig. 3B). GlobalAncova and Fpun-tests
have ∼2× the power of O’Brien’s, Anderson’s R2

F and Roast tests when m= 52, without
inflation of Type I error. GLS also has relatively high power when m= 52 but this is
associated with the inflated Type I error. An adjusted Power was computed for GLS by
finding the α that results in a Type I error rate of 0.05. At this adjusted α, the power of the
GLS is 0.16, 0.14, and 0.12 atm= 10, 30, and 52, which is substantially less than the power
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Figure 3 Errors for the different test methods based onMonte Carlo simulation of FRED15 dataset.
(A) Type I error when the true effect is zero. (B) Power when the true effect is 0.067 (the absolute value of
the OLS estimated effect of Eudaimonia on mean expression for the FRED15 dataset). (C) Type S (‘‘sign’’)
error when the true effect is 0.067. Type S error is the fraction of statistically significant effects in which
the estimate has the opposite sign of the true effect. (D) Type M (‘‘magnification’’) error when the true ef-
fect is 0.067, illustrated by the Exaggeration Ratio (ER). ER is the ratio of the estimated to true effect when
p≤ 0.05.

of the OLS tests. GEE has about 1.2× the power of O’Brien’s, Anderson’s R2
F , and Roast

tests when m= 52, but at a small cost of Type I error.
The inflated Type I error and power of the GLS test is due not only to downward bias in

the standard errors (see bootstrap results above) but also to an upwardly biased estimate
of the mean effect. Using the Monte-Carlo Type II simulation results, the GLS estimate
whenm= 52 converges to a value that is biased upward by 30% (computed as β̄estimated−βtrue

βtrue
,

where the mean is taken over all 1,000 iterations).
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Figure 4 Bivariate distribution of standard partial regression coefficients forHedonia and Eudaimo-
nia from theMonte Carlo experiments. The Monte Carlo simulated the FRED15 data but with zero ex-
pected effect of any of the regressors on the gene expression levels. The coefficients were estimated by the
linear model with correlated error (GLS).

With the exception of GLS, Type S error decreases with gene set size. At the gene set size
of FRED15, Type S errors are trivially low (0.004) for GEE, O’Brien’s, Anderson’s R2

F and
Roast tests, moderate (0.065) for GLS and high (0.093) for the permutation F tests (Fig.
3C). The Exaggeration Ratio (ER) decreased with gene set size in all methods except GLS
(Fig. 3D). As a consequence, atm= 52, statistically significant effect sizes estimated by GLS
averaged 2.8× the true size. By contrast, when m= 52, statistically significant effect sizes
estimated by GEE, O’Brien’s, Anderson’s R2

F , and Roast were only 2× the true size, while
the ERs for GlobalAncova and Fpun-tests are ∼1.4.

Correlated coefficients
The expected, large negative correlation between the partial regression coefficients for
Hedonia and Eudaimonia are shown using the GLS bootstrap distribution (Fig. 2) and
using the GLS Monte Carlo simulation results (Fig. 4). Despite modeling the empirical
correlations among the regressors and among the response variables, the distribution of
standardized coefficients from the GLSMonte Carlo simulation have a much smaller range
than that from the GLS permutation (e.g., 95% confidence interval for βeudaimonia from the
Monte Carlo simulation is −0.20 to 0.23 while that from the GLS permutation is −0.62
to 0.57), which suggests there is something about the structure of the actual data that is
inflating the coefficient estimates (Littell et al., 2006).
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DISCUSSION
A causal association between well-being components and CTRA expression levels would be
an important discovery. Certainly, some association between well-being scores and CTRA
expression levels must exist because of common shared paths within the complex network
of causal paths of the underlying physiology. Nevertheless, observational studies like that
of Fredrickson et al. (2013) and Fredrickson et al. (2015) are poor designs for discovering
knowledge (Walker, 2014). The re-analysis of the CTRA gene expression data in subjects
scored for hedonic and eudaimonic well-being highlights several important results: (1) any
effect of hedonic and eudaimonic well-being on CTRA expression is very small and the
noise is too large relative to the signal to reliably estimate the sign and magnitude of
these mean effects; (2) the apparent replication of opposing effects is most parsimoniously
explained by correlated noise due to the high correlation betweenHedonia and Eudaimonia;
(3) the GLS with correlated error test has high error rates and inflated effect estimates for
simulated data modeled on the focal dataset; and (4) all of the OLS tests have appropriate
error rates and the permutation F-tests have high power.

The association between well-being and CTRA expression
Standardized mean effects of Hedonia and Eudaimonia are very small (Table 3) but the
standardization effectively precludes easy comparison to published effect sizes on expression
levels. The multivariate (OLS) regression was re-run on the unstandardized expression
levels of FRED13 and FRED15 and the mean coefficients were back-transformed to a fold
change per four standard deviation change in the predictor (effectively comparing someone
at the high and low ends of the well-being axis), using FC = 24∗β̄ . For Eudaimonia, I used
the reciprocal of this fold change to make the value greater than one and multiplied it
by −1 to indicate a decreasing effect. The FC values were 1.036 and 1.072 for Hedonia
and −1.078 and −1.06 for Eudaimonia (note that Fredrickson et al. (2015) reported this
fold change as a percent). The biological significance of such a small mean effect awaits
experimental evidence.

Several features of the GLS results suggest unstable and inflated coefficient estimates
resulting from the GLS model. First, the highly variable pattern of effects among the three
datasets (FRED13, FRED15, COLE15) when estimated using the same error structure
suggests that either a large lack of generalizability among samples or the coefficients are
more unstable than suggested by their (non-robust) standard error. Second, the GLS
coefficients are very different from and generally much larger than the OLS coefficients
(Tables 1 and 3). Third, at least one of the GLS coefficients in each of the datasets is very
large relative to what we would expect from a gene set association given observational
data and the stated hypotheses. Fourth, in a supplementary table, Fredrickson et al. (2015)
report strikingly different results (small, negative coefficients for both Hedonia and
Eudaimonia) for the FRED15 dataset using an unstructured error matrix for the GLS
computation (Hedonia : β =−0.014,p= 0.17;Eudaimonia : −0.0026,p= 0.81. Compare
these to Table 1). Fredrickson et al. (2015) failed to identify or address any of these concerns,
including why the 2013 dataset was not analyzed using the updated (GLS) analysis, or how
to interpret the differing results using a compound symmetry error matrix, which was
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the focus of Fredrickson et al. (2015), or an unstructured error matrix, which was the
focus of Cole et al. (2015). The results reported here support the conclusion of biased and
inflated coefficient estimates from the GLS. These results include the large coefficients that
commonly occurred in the GLS with permuted data despite the expected effects of zero and
the diagnostic plot of the residual vs. fitted values that indicates biased estimates (Fig. 1).

The replication in the pattern of effects between datasets
The apparent replication of opposing signs for hedonic and eudaimonic effects on CTRA
expression (Fredrickson et al., 2015; Fredrickson et al., 2016) can be inferred only from the
OLS estimates; the GLS estimates are strikingly inconsistent with a replicated pattern of
expression. This failure of the GLS estimates to replicate was not noted by Fredrickson et
al. (2015) because they used the OLS estimates to illustrate the replication but GLS to infer
effects. Regardless, any replication in the sign of the mean effect should not be surprising
given only two replicates of two coefficients.

The pattern of opposing signs for hedonic and eudaimonic effects on CTRA expression
is consistent with very small effects in combination with the high empirical correlation
between hedonic and eudaimonic scores (0.80 in FRED13 and 0.74 in FRED15). Partial
regression coefficients of regressors that are positively correlated are themselves negatively
correlated because their estimation shares common components that are of opposite sign.
This is easily shown using the data from FRED15 where, disregarding all predictors but
hedonic and eudaimonic scores, the partial regression coefficient of any gene expression
level on Hedonia (X1) and Eudaimonoia (X2) are

β1= 0.018x>1 y−0.013x
>

2 y
β2=−0.013x>1 y+0.018x

>

2 y
(6)

where the 0.018 and −0.013 are the diagonal and off-diagonal elements of the inverse
of the X>X matrix of FRED15 (again disregarding all other predictors to simplify the
explanation). Because of the high correlation between hedonic and eudaimonic scores,
both β1 and β2 include a large contribution from the covariance of the other X with Y
but the sign of this contribution is negative. Consequently, if the true effects are trivially
small, then the pair of β coefficients will tend to have opposite signs because of the negative
correlation of estimates centered near zero. Random noise creates negatively correlated
coefficients that tend to be opposite in sign. Linear mixed models do not adjust for this
correlation. The negative correlation between coefficients is easily seen in the distribution of
bootstrap GLS estimates of βhedonia and βeudaimonia (Fig. 2). The tendency for the coefficients
to have opposite signs if the expected effects are zero is seen in theMonteCarlo simulation of
the FRED15 data (Fig. 4). While I have shown the negative correlation using GLS estimates,
this correlation would also appear in OLS estimates. The most parsimonious explanation
of the apparent replication of opposing effects of hedonic and eudaimonic scores on
CTRA gene expression is correlated noise arising from the geometry of multiple regression.

Comparison of method performance
The Monte-Carlo simulations of the GLS with correlated error for repeated measures or
multiple outcome data are consistent with other studies demonstrating inflated Type I

Walker (2016), PeerJ, DOI 10.7717/peerj.2575 17/22

https://peerj.com
http://dx.doi.org/10.7717/peerj.2575


error due to downward biased standard errors (Guerin & Stroup, 2000; Littell et al., 2006;
Jacqmin-Gadda et al., 2007; Gurka, Edwards & Muller, 2011). Importantly, the inflated
Type I error of the GLS is not simply due to failure to specify an unstructured error matrix
as the Type I error when m= 10 is nearly the same regardless of which error matrix is
specified. In contrast to the GLS tests, all of the OLS tests maintain error rates close to the
expected value (0.05). The permutation F-tests (Fpun and GlobalAncova) havemuch higher
power than the O’Brien’s OLS, Anderson’s r2F , and Roast tests and, unlike the moderately
high power for GLS, this power does not trade-off with Type I error.

In designs with low power because of small effect sizes, Type S and M errors are more
likely to emerge (Gelman & Carlin, 2014). That is, with low power, only unusually large
estimates are large enough to reach statistical significance. And with a true effect size near
zero, an estimate with unusually large error from the true value has a high probability
of being the wrong sign. In the simulation here, the true effect is small but the tests with
the highest power are associated with the highest rate of Type S error. Sign error is a cost
of a higher powered test. This Type S error affects the permutation F-tests, which have
10× the Type S error as the other OLS tests. Indeed, Type S error, even with a very small
effect, is trivial in the O’Brien’s, Anderson’s, and Roast tests. The exaggeration ratio (ER),
a measure of Type M error (Gelman & Carlin, 2014), is a good indicator of the expected
inflation of an estimate when the design or test has low power. The expected inflation is
nearly 3× the true value for the GLS estimate under the conditions of the FRED15 dataset.
By contrast, the expected inflation is less than 1.4× for the Fpun and GlobalAncova tests.
The high powered tests result in the (perhaps paradoxical) negative relationship between
Type M and Type S error among the tests.

CONCLUSIONS
The OLS estimates combined with the permutation F-tests provide some evidence of a very
small negative association between Eudaimonia and mean CTRA expression, although the
Monte Carlo results of these F tests raise some concern about the sign of this effect. As I have
stated above, however, there must be some association between well-being components
and CTRA expression, so an observational design with a statistically significant p-value
should not cause much excitement. What we want to know are the causal pathways that
explain this association—does decreased CTRA cause eudaimonic well-being, or does
eudaimonic well-being cause decreased CTRA, or is the correlation jointly determined by
an unknown causal pathway? Also, we want to know if the effect magnitude has meaningful
physiological consequences.

The linear model with correlated errors (GLS) has few merits for the estimation of mean
fixed effects across multiple responses. The estimation is time consuming and estimation
with an unstructured error matrix is plagued with difficulties in convergence. Simulations
of the model (here and elsewhere) with repeated measures or multiple outcomes show a
high frequency of inflated coefficient estimates and downward biased standard errors. As
expected, the Generalized Estimating Equations with robust standard errors performmuch
better than the GLS, but even this estimator has inflated Type I error. While all the OLS
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methods maintain Type I error at the nominal rate, the tests using the F-ratio (Fpun and
GlobalAncova) have a relatively high power and small exaggeration ratio. A concern of the
GlobalAncova test for observational data is the violation of the exchangeability assumption.
How GlobalAncova performs relative to the Fpun-test with simulated data with moderate
to large correlations between multiple predictors and nuisance covariates remains to be
investigated.
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