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ABSTRACT
Background. Breast cancer (BC) is one of the leading cause of death among females
worldwide. The increasing incidence of BC is due to various genetic and environmental
changes which lead to the disruption of cellular signaling network(s). It is a complex
disease in which several interlinking signaling cascades play a crucial role in establishing
a complex regulatory network. The logical modeling approach of René Thomas has
been applied to analyze the behavior of estrogen receptor-alpha (ER-α) associated
Biological Regulatory Network (BRN) for a small part of complex events that leads
to BC metastasis.
Methods. A discrete model was constructed using the kinetic logic formalism and its set
of logical parameters were obtained using the model checking technique implemented
in the SMBioNet software which is consistent with biological observations. The discrete
model was further enriched with continuous dynamics by converting it into an
equivalent Petri Net (PN) to analyze the logical parameters of the involved entities.
Results. In-silico based discrete and continuous modeling of ER-α associated signal-
ing network involved in BC provides information about behaviors and gene-gene
interaction in detail. The dynamics of discrete model revealed, imperative behaviors
represented as cyclic paths and trajectories leading to pathogenic states such as
metastasis. Results suggest that the increased expressions of receptors ER-α, IGF-1R and
EGFR slow down the activity of tumor suppressor genes (TSGs) such as BRCA1, p53
and Mdm2 which can lead to metastasis. Therefore, IGF-1R and EGFR are considered
as important inhibitory targets to control the metastasis in BC.
Conclusion. The in-silico approaches allow us to increase our understanding of the
functional properties of living organisms. It opens new avenues of investigations of
multiple inhibitory targets (ER-α, IGF-1R and EGFR) for wet lab experiments as well
as provided valuable insights in the treatment of cancers such as BC.
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INTRODUCTION
Breast cancer (BC) is a heterogeneous disease which is one of the leading causes of
cancer-related mortalities among females worldwide (DeSantis et al., 2014). Estimates
indicate that out of 14.1 million new cancer cases globally (Ferlay et al., 2015), BC accounts
for 25.2% of them (Hotes et al., 2004). The increasing incidence of BC is due to various
genetic and environmental factors such as early menarche, late menopause, hormonal
therapies, low breastfeeding, low parity and others (Madigan et al., 1995;McPherson, Steel
& Dixon, 2000; Parkin & Fernandez, 2006). Increased expression of estrogen receptor-
alpha (ER-α) is observed in 73–75% of diagnosed BC cases (Nadji et al., 2005; Rhodes
et al., 2000) which leads to the disruption of various cellular processes (Seemayer et al.,
2002). The mutations which increase ER-α expression can be caused by both genetic and
environmental signals/conditions. There are two isoforms of ER, namely ER-α and ER-β
(Fuqua et al., 1999; Saji et al., 2002). Approximately, there is 70% occurrence of ER-α
positive and 30% of ER-α negative in the reported cases of BC (Hurvitz & Pietras, 2008;
Madeira et al., 2013).

Insulin like growth factor (IGF-1) regulates the expression of ER-α through the
phosphoinositide-3 kinase and Serine/Threonine-Protein Kinases (PI3K-AKT) pathway
which is involved in multiple mammalian cellular processes of growth and development
(Ewing & Goff, 2010). Several independent studies have shown deregulation of this pathway
in BC (Bailey et al., 2012; Chitnis et al., 2008; Jackson et al., 2001; Kang et al., 2012b; Kato
et al., 1994; Law et al., 2008; Liu et al., 2009; Miller et al., 2005; Pollak, 2008; Riedemann &
Macaulay, 2006; Sotiriou et al., 2003). The signal transduction pathway of IGF-1 regulates
ER-α expression as shown in Fig. 1 which is constructed using literature and biological
databases of interactions such as Kyoto Encyclopedia of Genes and Genomes (KEGG)
(Kanehisa & Goto, 2000; Kang et al., 2012b; Levin, 2001; Pollak, 2008). The signaling
cascade begins with the binding of IGF-1 to IGF-1 receptor (IGF-1R) through the
phosphorylation of insulin receptor substrate-1 signaling (IRS-1) (Fagan & Yee, 2008;
Law et al., 2008). It activates several downstream mediator proteins, including PI3K (Law
et al., 2008; Pollak, 2008; Riedemann & Macaulay, 2006; Werner & Maor, 2006), which is
involved in the activation of ER-α either through phosphorylation of AKT (Law et al., 2008;
Pollak, 2008) ormitogen-activated kinase/extracellular signal-regulated kinase (MEK/ERK)
(Watters et al., 2000).

In another pathway, MEK can also be activated by the Estrogen Growth Factor (EGF)
signaling pathway, which may further activate the Ras, Raf protein kinases (Levin, 2001).
IRS-1 also activates Ataxia telangiectasia mutated/Ataxia telangiectasia Rad3-related
(ATM/ATR) (Law et al., 2008; Pollak, 2008; Riedemann & Macaulay, 2006) which is a
serine/threonine protein kinase recruited and activated by DNA damage response (Gueven
et al., 2001; Lee & Paull, 2007). ATM/ATR phosphorylates several key tumor suppressor
genes (TSGs) including mouse double minute 2 homolog (Mdm2) and p53 (Werner &
Maor, 2006) to regulate the transcriptional activity of BRCA1 (Werner & Maor, 2006).
Activation of BRCA1 in oxidative stress and DNA damage response could lead to the
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Figure 1 IGF-1R and EGFR signaling pathway. (A) Ligand activated Insulin growth factor receptor-1
(IGF-1R) signaling starts from the membrane to induce the insulin receptor-1 signaling. IRS-1 down-
regulates the phosphoinositide-3 kinase (PI3-K) (1a1) which phosphorylates protein kinase B (AKT) (2a1).
IRS-1 signaling further activates the downstream mediator Ataxia telangiectasia mutated Rad3-related
(ATM/ATR) protein (1a2). Phosphorylated serine/threonine protein kinase (AKT) and Extracellular
Signal-Regulated Kinase (ERK) signaling enhance the transactivation of estrogen receptor-alpha (ER-α)
gene (3a1, 5c) which up-regulates the expression of insulin like growth factor-1 (IGF-1) (8a1). ER-α
activates the p53 (8a5) BRCA1 gene indirectly by stimulation of estrogen (E2) in breast cells (8a2) and also
respond to the activation of p53 gene (6a3). The role of ER-α in E2-independent manner and secreted
IGF-1 mediates the over-expression of IGF-1R (9a2). An important role of TSG (BRCA1) also activates
by the gene p53 (6a2). BRCA1 suppresses the levels of ER-α (7a2) have the ability to induce apoptosis
rather than cell proliferation. BRCA1 gene can also inhibit the phosphorylation of signaling pathways of
IGF-1 receptor (7a3). p53 also activates by BRCA1 (7a1) which regulates the activation ofMdm2 (6a1)
that also suppress the over-activation of p53 (5a2). (B) There are some mutations due to radiation or
oxidative stress that leads to the phosphorylation of ATM/ATR genes (1b, 3b1, 3b2, 3b3) and DNA damage
response occurs through the increased expression of ER-α gene (2b) which inhibits the expression of p53
(8a4). PhosphorylatedMdm2 expression leads to cell cycle proliferation (5a1) by the activation of mutated
ATM/ATR signaling cascades (4a1). (C) An alternate pathway of ER-α signaling with estradiol may also
utilize epidermal growth factor receptor (EGFR) for signal transduction, which may further activate the
Ras, Raf protein kinases (2c, 3c). E2 causes phosphorylation of PI3-Kinase which stimulates the MEK
kinase (2a2) and enhances the activation of extracellular-regulated kinase (ERK) (4c). In breast cancer
(BC) cells the expression levels of ER-α is increased by phosphorylation of two receptors, IGF-1R and
EGFR (8a3, 9a2).
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activation of the p53 gene (Komarova et al., 2004; Schayek et al., 2009). BRCA1 and p53
genes have the ability to control cell cycle regulation (Rosen et al., 2003).

p53 plays an important role in the DNA damage repair detected by the enzyme ATM (Lee
& Paull, 2007). In the case of phosphorylation of ATM, the expression of p53 is regulated
by Mdm2 (Hong et al., 2014; Powers et al., 2004). Furthermore, p53 is suppressed by up-
regulated expression of ER-αwhich is induced byDNAdamage response (Bailey et al., 2012;
Liu et al., 2006; Miller et al., 2005; Sayeed et al., 2007). However, loss of function mutation
of BRCA1 and p53 genes drastically increase the risk of BC and can disrupt the function
of PI3K/AKT and ATM/ATR signaling (Abramovitch & Werner, 2002; Abramovitch et al.,
2003;Miller et al., 2005; Vivanco & Sawyers, 2002).

Previous studies suggested ER-α as an important therapeutic target for the management
of BC pathogenesis (Ariazi et al., 2006; García-Becerra et al., 2012; Giacinti et al., 2006;
Hanstein et al., 2004; Kang et al., 2012b; Renoir, Marsaud & Lazennec, 2013; Wik et al.,
2013). Although, ER-α is used as a drug target for the treatment of BC (Fisher et al.,
1989), the underlying dynamics are far from comprehension due to the complexity of the
interaction among genes/proteins involved in the signaling pathway. Preclinical studies
and in vivo experimental strategies in cancer biology are laborious and expensive. To
overcome the limitation of wet-lab experiments various Bioinformatics tools are used to
study the complex regulatory networks. The computational modeling formalisms provide
the dynamical insights into complex mutational diseases such as BC. In this study, we
take this opportunity to study the dynamics of the IGF-1R signaling pathway by using two
well-known formal computational methods, i.e., generalized logical modeling of Rene’
Thomas (Thomas, 1998; Thomas & Kaufman, 2001b; Thomas & D’Ari, 1990; Thomas &
Kaufman, 2002; Thomas, Thieffry & Kaufman, 1995) and Petri Net (PN) (Brauer, Reisig &
Rozenberg, 2006).

The discrete dynamics of IGF-1R/EGFR signaling was analyzed by formal modeling,
which allows to study the dynamics by predicting all possible behaviors which are captured
as discrete states and trajectories between them (Heinrich & Schuster, 1998). In order to
construct the discretemodel, we need the interaction data and threshold levels, which can be
obtained through biological observations (Ahmad et al., 2006; Ahmad et al., 2012; Paracha
et al., 2014). Furthermore, the continuous modelling approach applied here for the analysis
of delay parameters of the IGF-1R/EGFR signalling pathway. The IGF-1R/EGFR signaling
in this study implicates the down-regulation of TSGs such as BRCA1, p53 and Mdm2 in
metastasis of BC. IGF-1R and EGFR should be inhibited together to control the metastatic
behaviour of BC. The discrete and continuous models provide insights into possible
drug targets which are captured from bifurcation states leading to both homeostatic and
disease trajectories.

METHODS
Traditional approaches which have been used to address the complexity of biological
systems include differential equations (ODEs, PDEs etc.), graph theory based formalisms
(Bayesian, Logical) and fuzzy systems (De Jong, 2002). Mathematical approaches are
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Figure 2 Work Flow Diagram presenting the structure and organization of the study. (A) Inference
of biological observations of signaling pathways from literature survey (B) construction of interactions of
proteins in the metastasis of Breast cancer (C) application of reduction approach to obtain Biological Reg-
ulatory Network (BRN) (D) parameter synthesis by using model checking method, computational tree
logic (CTL) (E) analysis of the system dynamics (F) conversion of the BRN into continuous Hybrid Petri
Net (HPN) (G) for simulations analysis of time-dependent dynamics.

difficult to model the complexity of non-linear dynamics of biological systems due to rare
availability of system specific kinetic measures derived from expression data of biological
entities. On the contrary, approaches based onGraph Theory allow tomodel the complexity
of biological systems. The methodology for the current study is presented in Fig. 2 and
explained below.

Kinetic Logic Formalism
The kinetic logic formalism of Biological Regulatory Network (BRN) was introduced
by Thomas (1973) to prove the effectiveness of discrete activity threshold levels in the
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analysis of the BRN as equivalent to the respective differential equations of the system
(Thieffry & Thomas, 1995; Thomas, 1973; Thomas, 1981; Thomas, 2013; Thomas, Gathoye
& Lambert, 1976). This method utilizes computational tree logic (CTL) formalism (Clarke,
Grumberg & Peled, 1999) to detect the suitable logical parameters which can be selected
through a model checker (Selection of Model of Biological Network) SMBioNet software
(Bernot et al., 2004; Khalis et al., 2009; Richard, Comet & Bernot, 2006; Richard et al., 2012).
These selected parameters of discrete model are abstracted from biological observations
and are applied through the software, GENOTECH, to generate an asynchronous state
graph (Bernot et al., 2004). A BRN consists of nodes and edges of each biological entity
and transitions among them. All of the nodes are connected with edges (directed arrows)
representing the activation and inhibition of node (Ahmad et al., 2012; Thomas, 1998). A
dynamical network is used to determine the behavior and characterization of environmental
and genetic changes in the signaling network (Thomas, 1998; Thomas & Kaufman, 2001a;
Thomas, Thieffry & Kaufman, 1995).

Semantics of the René Thomas formalism
The semantics of the René Thomas formalism have been adapted from (Ahmad et al., 2006;
Ahmad et al., 2012; Aslam et al., 2014) and are described below.

Definition 1 (Directed Graph).
A directed graph is represented as G= (N ,ED), where the set of all the entities are

represented by nodes, N , and the set of all possible transitions among entities are
represented by ED⊆N×N . G−(n) and G+(n) represent the set of predecessors and
successors nodes of a node, n∈N , respectively (directed from n1 to n2).

Definition 2 (BRN).
A BRN is a type of labeled directed graph G= (N ,ED), representing the biological

entities (genes, proteins, metabolites etc.) and the interactions amongst these entities. In a
directed BRN graph each edge is pointed from tail na to head nb of an edge.
1. A pair (jnanb,ηnanb) is used as a label for each edge na→ nb, where jnanb is a positive

integer representing a discrete threshold level and ηnanb represents an activation (+sign)
or an inhibition (−sign).

2. The maximum number of successors of node ‘n’ is limited to pn= out degree of n in
which each jnanb ∈ {1,2,......,rn}, where rn≤ pn

3. A biological entity n has its discrete levels in the set Zn={0,1,...,rn}.
The analysis of BRN provides insight into the behavioral activity of BRN by studying

the interactions between its entities to find already known or predict previously unknown
behaviors.
Types of Interactions:

The two main types of biological regulations are in the form of activation and inhibition
that represent the increase or decrease in the protein concentration respectively, shown
by a sigmoid curve in Fig. 3. The activation of gene x is achieved once it reaches a level θ
represented by positive sign ‘‘+’’ whereas gene x is down-regulated as it reaches threshold
level θ+1 represented by negative sign ‘‘−’’.
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Figure 3 Activation and inhibition of x.Discretization of the sigmoid curve to represent activation (+)
of gene x at threshold level θ and inhibition (−) at level θ+1.

Definition 3 (Discrete States).
A discrete state is an array of discrete levels of entities of the BRN. The state graph G of

BRN where the discrete state is represented as a tuple D∈ S, where;

D=
∏
na∈N

Zna

and vector of discrete states defined as (Dxna)∀na∈N , where na is representing the level
of product a. A set D of discrete states is equal to S representing a directed graph in
a particular configuration. The set of resources represents the presence of activators of
particular entities in the absence of inhibitors.

Definition 4 (Resources).
Let G be the BRN where a set of resources Rxna of a variable na ∈N at a level x is

considered as Rxna={nb ∈G−(na)|(xnb≥ jnbna∧ηnbna= ‘+ ’)∨(xnb< jnbna∨ηnbna= ‘−’)}.

Definition 5 (Logical Parameters).
Logical parameters govern the behavior and semantics of the regulatory network. These

values are represented by the equation:

K (G)={Kni(Rxni)∈Zn ∀ni∈N }
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in which the expression level x of the entity n determines the set of logical parameter
{Kn(Rxn)}. The evolution of the level of the variable follows the following three rules:
(1) If level x of the entity n is less than Kni(Rxni) then it increases by one discrete step, that

is x = x+1.
(2) If x is greater than Kni(Rxni) then it decreases by one discrete step, that is x = x−1.
(3) If x is equal to Kni(Rxni) then it will not change, that is x = x .

It is conveniently clear from the above rules which follow the evolutionary operator �
(Bernot, Comet & Khalis, 2008). It tends to be evolved from one level to another for an
asynchronous state graph of BRN.

Definition 6 (Asynchronous State Graph).
The asynchronous state graph of a BRN, where G is a directed graph which define the

set of all the states and transitions of a BRN. It is represented as: G= (s,t ), where ‘‘s’’ is a
set of all states and ‘‘t ’’ is t ⊆ s×s which defines the transitions among states in a directed
graph. Let Oxn be representing the concentration level of an entity n in a state Q∈ s. A state
Q transitions to another state Q/ iff:
1. Qxna 6=Q/xna & O/xna =Qxna � Kna(Rxna) ∃ na ∈N where � represents the evolution

operator (Bernot et al., 2004; Peres & Jean-Paul, 2003) and
2. Q/xnb=Qxnb∀nb ∈N .

Model checking
Model checking (Clarke & Emerson, 1982) is an exhaustive technique used to verify the
existence or absence of different properties in a given system (Carrillo, Góngora & Rosen-
blueth, 2012). The system is represented as a state graph and different properties test for
their prevalence either throughout the state graph (Carrillo, Góngora & Rosenblueth, 2012).

Computation of consistent network (SMBioNet)
SMBioNet (Bernot et al., 2004;Khalis et al., 2009;Richard, Comet & Bernot, 2006;Richard et
al., 2012) is software used to provide the verified logical parameters of BRNbyComputation
Tree Logic (CTL) based model checking (Peres & Jean-Paul, 2003). CTL formulas are used
to express the biological observations of the model in a model checker tool. It facilitates us
by selecting only those parameter sets that are consistent with the specified CTL formulas.
The selected parameters are eventually used to generate a state graph given below (see
Sections ‘Isolation and selection of logical parameters’ and ‘Analysis of ER-α associated
BRN’ for detail).

Syntax and semantic of CTL
The CTL algorithm is employed in the development of specification in the model that is
verified by temporal logic method (Pnueli, 1977). Temporal logics encode the observations
on the behavior of an entity which has interactions that tend to reach the next state in
BRN. NOT (¬/!), OR (∨/|), AND (∧/&), implication (→), and equivalence (↔) are the
logical operators employed by CTL, whereas the semantics of CTL formula are described
by the temporal operators:
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∃= there exist a path which starts from the current state,
∀= All possible paths which start from the current state,
X = Immediate successor,
F = at least one state included either future or successors,
G= All set of states included either future or successors

For further details, a comprehensive review of syntax and semantics logical operators of
CTL used in SMBioNet has been covered in detail by Khalis et al. (2009).

Implementation of BRN in Petri Net (PN)
PN is a graph theoretical formalism which was introduced by Carl Adam for modeling of
concurrent systems (Petri & Reisig, 2008). It allows intuitive representation of the system
besides allowing the discrete, continuous and hybrid analysis for systemwide behaviors
(Chaouiya, 2007). In this study, we have deployed PN framework to model continuous
dynamics based on selected trajectories (homeostatic and pathological). It is identified by
using the kinetic logic formalism based on ER-α associated BRN analysis. These dynamics
are best specified as continuous differential equations. Our representation and analysis of
the PN framework have been adapted from Chaouiya (2007); Blätke, Heiner & Marwan
(2011); David & Alla (2008) are explained below.

Standard PN
APN,N = (P,T ,E,t0), is a formal bipartite graphwith two kinds of set of nodes represented
as places P and transitions T which can be discrete in nature. The set of places P , drawn
as circles, represents the entities such as proteins, genes and metabolites involved to design
a passive part of BRN. The set of transitions T , represented as rectangles or squares,
defines the interaction among input and out places, typically model the active part of
BRN. The set of edges, E , defined as directed arcs are used to connect the places with
transitions. These can be classified into normal, inhibitory, or test arc. An arc controls
the firing in continuous process when reaction is processed from place to transition. The
inhibitory arc represents the reaction where the token of input places is higher than the
arc weight. A test arc is used to represent a process where the firing of transition does
not change the concentration of a place such as enzymatic reactions. These biological
interactions determine the dynamical behavior of entities which are involved in multiple
cellular processes such as cell metabolism, differentiation, cell division and apoptosis. The
marking of a place is represented by token, t , to describe the concentration of the entities.
The firing of a transition involves the movement of tokens from pre-places to post-places.
Different biological processes such as activation, inhibition, complexion, de-complexion
and enzymatic reactions as represented using PN are illustrated below (Fig. 4).

Hybrid Petri Net (HPN)
The behavior and evolution of HPN are defined by the firing of transitions with infinite and
finite number of tokens present in places. Two types of places, i.e., continuous and discrete
are used to design the HPN model. In HPN (David & Alla, 2008), the infinite number
of marking of continuous places is positive real numbers where the transitions fire in a
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Figure 4 Representation of association reactions between entities. (i) Activation: entity A tends to ac-
tivate another entity B (ii) Inhibition: entity A stops the activity of entity B. (iii) De-complexion process:
entity A involves the activation of two entities B and C, simultaneously (iv) Complexion process: entities A
and B are involved in the activation of entity C.

continuous process while discrete places have finite numbers of tokens. HPN considers the
mass action and Michaelis–Menten equations to model the firing transitions by SNOOPY
(Heiner et al., 2012).

Petri Net model generation
In this study, we used SNOOPY (version 2.0) (Heiner et al., 2012), which is a generic and
adaptive tool for modeling and simulation of graph based HPNmodels. We have deployed
the non-parametric modeling approach which uses the token distribution within places
(representing proteins) over time for monitoring the dynamics of signal flow in a signaling
PNdevised byRuths et al. (2008). The concentrations of the proteins (represented as places)
are modeled as tokens while their flow is represented using kinetic parameters utilizing
the mass action kinetics. The value of kinetic parameter is acquired by aggregating the
token count at places after each firing, which models the effect of source place on a target
place. Each simulation is executed multiple times beginning with the same initial marking
providing an average, signaling ratemodeling the randomorders of transition firings. These
firing rates are able to produce the experimentally correlated expression dynamics and
imitate the qualitative protein quantification techniques such as western blots, microarrays,
immunohistochemistry. We used 1,000 simulation runs at 10, 50 and 100 time units for
analysis. Experimental data obtained by high throughput technologies of several studies
(Bailey et al., 2012; Caldon, 2014; Kang et al., 2012b; Kang et al., 2014; Liao et al., 2014;
Malaguarnera & Belfiore, 2014; Moerkens et al., 2014; Cancer Genome Atlas Network, 2012;
Pollak, 1998; Sotiriou et al., 2003) were used to validate the individual protein levels of the
ER-α related BRN.
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RESULTS AND DISCUSSION
This section explains and elaborates the results obtained from the application of the
methodology and tools described in the method section.

Construction of the ER-α associated BRN
The formal method for modeling BRN was adapted from Richard et al. (2012). The role
of IGF-1R and EGFR in regulating ER-α was abstracted from signaling pathway shown
in Fig. 1. The significance of constructing the abstracted model shown in Fig. 5 allows us
to define the complex dynamical behaviors of entities which are more difficult to identify
through analytical procedures, while keeping the computational complexity of the model
to a minimum. We selected the key entities which interlinked at diverse points essential for
behavior analysis of ER-α associated signaling network involved in BC. Previous studies
were performed to determine the significance of TSGs in relation with over-expression of
ER-α which is described below.
i. The interaction of ER-α with p53 mediated transcription which represents the
expression levels of p53 (Bailey et al., 2012; Sotiriou et al., 2003).

ii. Thus, the inhibitory actions of BRCA1 towards IGF-1R/EGFR and ER-α could become
suppressed by the upregulated expression of ligandactivated hormonal receptor ER-α
that is able to perform the transcriptional activation of p53 (Wang & Di, 2014; Yi, Kang
& Bae, 2014)

iii. The TSG, p53 has positive feedback interaction with BRCA1 gene and is also involved
in the activation of the Mdm2 gene (Ciliberto, Novák & Tyson, 2005; MacLachlan,
Takimoto & El-Deiry, 2002; Yi, Kang & Bae, 2014).

iv. Whenever there is an increased expression of p53 due to some oxidative stress then it
will increase the level of BRCA1 andMdm2, which will result in the respective activation
or deactivation of p53 (MacLachlan, Takimoto & El-Deiry, 2002). Finally, the BRN was
abstracted on the basis of activation of ER-α through loss of function mutations
of TSGs such as BRCA1, p53 and Mdm2 which leads to the development of BC
(Caldon, 2014).

Isolation and selection of logical parameters
Our model of ER-α associated BRN has five biological entities: IGF-IR/EGFR, ER-α,
BRCA1, p53 andMdm2 (Fig. 5). These biological entities have a set of discrete parameters,
which represents the level of each property involved in BRN model (Table 1). Previous
studies have confirmed that BRCA1 physically interact with various transcription factors,
including steroid hormone ER-α (Mullan, Quinn & Harkin, 2006). Active p53 also leads to
the activation of negative regulator Mdm2, which acts as an inhibitor of normal function
of p53. The discrete parameters of the constructed BRN were selected using SMBioNet
by encoding the wet-lab observed behaviors in CTL. The SMBioNet analysis resulted in
five sets of discrete parameters which satisfied the CTL properties, from which the fifth
set was selected (given in Table 1). Its parametric values allowed closer approximation of
the system, wherein gene BRCA1 must be present to stimulate p53 gene activation while
ER-α andMdm2 have to be in a dormant state to allow its expression (given by parameters
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Figure 5 ER-α associated BRN. Activation is indicated by a positive (+) sign while negative (−) sign
indicate inhibition. The direction of activation/inhibition is represented by arrows. The levels of entities
are set according to Definition 2. The formal description of the BRN is N = {IGF − 1R/EGFR,ER −
α,BRCA1,p53,Mdm2}; ED = {(IGF − 1R/EGFR→ ER− α),(ER− α→ p53),(p53→Mdm2),(p53→
BRCA1),(BRCA1→ p53),(Mdm2→ p53),(p53→ ER−α)}.

K(p53),{ER−α,BRCA1}) = 1,K(p53),{BRCA1,Mdm2}) = 1). The output file, which also shows the
input model and CTL properties, is submitted along with this article as Supplemental
Information 1.

Analysis of ER-α associated BRN
The discrete parameters were then applied to the BRN using a tool GENOTECH (version
3.0) to generate the state graph shown in Fig. 6, containing the initial state (0,0,0,0,0) and
the metastatic deadlocked state (1,1,0,0,0). The state graph contains 32 states, 75 unique
cyclic trajectories between these states, and a distinct categorization of the 32 states into
the following 4 zones (shown in Fig. 6). These zones are shown here to represent how the
participating entities evolve with respect to each other’s expression level. These zones were
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Table 1 List of discrete parameters of each entity of the BRN. The entities in the curly braces represent
the resources available for the respective entity, whereas the number in front of the resource set represents
the level which the entity will try to achieve when having that resource set.

S.No. Biological entities Discrete parameters

1 IGF-1R/EGFR K(IGF−1R/EGFR),{})= 1
2 ER-α K(ER−α),{})= 0,

K(ER−α),{p53})= 1,
K(ER−α),{IGF−1R/EGFR})= 1,
K(ER−α),{IGF−1R/EGFR,p53})= 1

3 BRCA1 K(BRCA1),{})= 0,
K(BRCA1),{p53})= 1

4 p53 K(p53),{})= 0,
K(p53),{ER−α})= 0,
K(p53),{Mdm2})= 0,
K(p53),{BRCA1})= 1,
K(p53),{ER−α,Mdm2})= 1,
K(p53),{ER−α,BRCA1})= 1,
K(p53),{BRCA1,Mdm2})= 1,
K(p53),{ER−α,BRCA1,Mdm2})= 1

5 Mdm2 K(Mdm2),{})= 0,
K(Mdm2),{p53})= 1

extracted from the selected parameter set generated by the state graph. It also represents
how different trajectories can arise from this BRN that could lead towards BC metastasis
with up-regulated expression of IGF-1R/EGFR and ER-α ormaintains homeostasis through
the expression of p53, BRCA1, andMdm2.

• P1 = (0,0,0,0,0), (0,0,0,1,0), (0,0,0,1,1), (0,0,1,1,1), (0,0,1,0,1), (0,0,1,0,0), (0,0,1,1,0),
(0,0,0,0,1)
• P2a= (0,1,1,1,0), (0,1,0,1,0), (0,1,0,1,1), (0,1,1,1,1), (0,1,1,0,1), (0,1,0,0,1), (0,1,1,0,0),
(0,1,0,0,0)
• P2b= (1,0,0,0,1), (1,0,0,0,0), (1,0,0,1,0), (1,0,0,1,1), (1,0,1,1,1), (1,0,1,0,1), (1,0,1,0,0),
(1,0,1,1,0), (1,1,0,1,0), (1,1,0,1,1)
• P3= (1,1,1,1,0), (1,1,1,1,1), (1,1,1,0,1), (1,1,1,0,0), (1,1,0,0,1), (1,1,0,0,0)

Here in Fig. 6 P1 (pink zone) represents a low risk zone where the levels of IGF-1R/EGFR
and ER-α are not yet at cancerous levels. P2a and P2b (red zone) are high risk zones where
either the level of IGF-1R/EGFR or ER-α is increased, but not both. The last zone P3 (black
zone) is the metastatic zone where IGF-1R/EGFR and ER-α are persistently expressed. It
is based on our interpretation obtained in this study through experiments not literature
derived data, details of which are mentioned in the Fig. 6. The important properties
based on these zones are that the 75 cycles lie within the P1, P2a and P2b zones only, with
trajectories allowing passage between the zones P1 and P2a, but restricting P2b to itself. The
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Figure 6 An asynchronous state graph of the ER-α associated BRN. The asynchronous state graph is
generated by using the tool GENOTECH, utilizing the SMBioNet generated logical parameters. The ini-
tial state is taken as (0,0,0,0,0) where all entities are at their suppressed levels, whereas the deadlocked state
(1,1,0,0,0) represents the metastatic state where only IGF-1R/EGFR and ER-α remain persistently active
at cancerous levels whilst the p53, BRCA1, and Mdm2 genes are under constant suppression. The state
graph is unique in the sense that it distinctly represent four zones: the pink zone (P1) is termed the low-
risk zone since it doesn’t involve the activation of either IGF-1R/EGFR, or ER-α, both the proteins re-
quired for metastasis; the two red zones (P2a, P2b) are termed high risk since each zone distinctly has either
IGF-1R/EGFR or ER-α persistently active; the black zone (P3) is the metastatic zone as it has both IGF-
1R/EGFR and ER-α active, and thus leads the system towards metastasis.
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zone P3 on the other hand contains no cyclic trajectories. In P3 zone most critical state
trajectories move towards a deadlock state.

The usual activation of p53 gene has been detected by the enzyme ATM (Fig. 1). It is
evident from the state graph (Fig. 6) that the state (1,1,0,0,1) (in P3 zone) stands to be
the critical most point forms where the system moves into the metastatic state (1,1,0,0,0)
where all the TSGs BRCA1, p53 and Mdm2 gets suppressed. Hence, it is important to note
that the system maintains a homeostatic cycle only when both IGF-1R and ER-α are not a
co-stimulated state while other genes (BRCA1, p53 and Mdm2) remain in the oscillations.
These identifications indicate that signal transduction pathway involved in the increased
risk of BC progression is initiated following the activation of receptors IGF-1R and EGFR.
It was concluded that IGF-1R, EGFR and ER-α serve as important inhibitory targets for
BC treatment.

Analysis of ER-α associated HPN modeling
The PN model of BC metastasis was constructed to observe the time-dependent behaviors
of key proteins of the BRN (given in ‘Construction of the ER-α associated BRN’). The HPN
analysis was performed to reveal continuous dynamics of homeostatic and pathological
conditions of the ER-α associated network. Two PN models and their simulations of ER-α
were constructed (1) one to represent the normal behavior (given in Figs. 7 and 8) and other
(2) to represent pathogenesis (Figs. 9 and 10) to evaluate the role of ER-α in BC. Both HPN
models consist of 7 places, 8 transitions and 18 edges. The homeostatic ER-α associated
HPN model (Fig. 7) has a positive feedback loop between p53 and ER-α which is switched
on through the binding of ligands (IGF-1/EGF) with receptors (IGF-1R/EGFR) (Angeloni
et al., 2004). This binding of receptors with ligands leads towards phosphorylation of
kinases PI3K and AKT that ultimately cause up-regulation of ER-α (Kang et al., 2012a).
The up-regulate expression of ER-α is controlled by the negative feedback interaction of
TSG such as Mdm2.

The simulation results demonstrate in Fig. 8 of ER-α associated HPN model under
homeostatic conditions. It shows the dynamical behavior of each entity that can be seen
clearly through simulation graph plotted relative to the expression level of entities with
respect to time. It has been observed that feedback regulation of Mdm2 limits over-
expression of ER-α by the inhibitory effect of TSGs (Berger et al., 2012; Ma et al., 2010)
represented by yellow sigmoidal curve for ER-α (low level of expression) and cyan, green
and navy sigmoidal curves for TSGs (high level of expression) to maintain the stability of
the cellular environment. The continuous signaling of TSGs maintains the constant level of
receptors (IGF-1R/EGFR) represented by an orange colored line. It shows how TSGs (p53,
BRCA1 and Mdm2) perform the function of BC suppression (Bailey et al., 2012; Berger
et al., 2012; Kim, Burghardt & Barhoumi, 2011; Ma et al., 2010; Sotiriou et al., 2003). The
significantly increased expression of Mdm2 is observed by the transcriptional activation
of p53 gene (Liu et al., 2009; Ma et al., 2005; Miller et al., 2005). p53 down-regulates the
expression of hormonal receptor (ER-α) through the stimulation of BRCA1 and Mdm2.
The basal level of p53 is retained through a negative feedback control of Mdm2 upon p53
under homeostatic condition.
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Figure 7 Illustration of the normal pathway of ER-α associated Hybrid Petri Net (HPN)model. In this
PN, circles represent standard places that exhibit the behavior of ligands (IGF-1, EGF), hormonal recep-
tors (IGF-1R, EGFR and ER-α) and TSGs (BRCA1, p53 and Mdm2), while the squares represent contin-
uous transitions to demonstrate the processes of activation, inhibition and phosphorylation. Directed ar-
rows represent activation signal coming from standard places and going towards continuous transitions.
The inhibitory arc represents an inhibition signal which stops signal coming from standard places towards
continuous transitions. The rate of mass action for all continuous transitions is taken as 1. The ligands
(IGF-1, EGF) and the membrane receptors (IGF-1R/EGFR) are given with an arbitrary token number of 5.

The pathological ER-α associated HPN was constructed to demonstrate the inhibitory
effect of ER-α on p53 shown in Fig. 9. As TSGs are down-regulated during pathogenesis by
the hyperactivity of ER-α so the processes of cell cycle regulation, DNA damage and repair
are considerably suppressed (Bailey et al., 2012; Kang et al., 2012a; Liu et al., 2009; Miller
et al., 2005; Surmacz & Bartucci, 2004; Sotiriou et al., 2003). The up-regulate expression of
ER-α is achieved by the transactivation and phosphorylation of ligands (IGF-1/EGF) which
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Figure 8 Simulation of homeostatic HPNmodel. The simulated graph shows time on X-axis and rela-
tive expression levels of entities on Y -axis. The homeostatic behavior of ER-α associated BRN is observed
by the over-expression of TSG such as Mdm2 (navy) which down-regulates the activity of ER-α (yellow).

binds to receptors (IGF-1R/EGFR) given by a token number of 5. ER-α is closely associated
with cancer biology, especially with the development of tumor in BC (Alluri, Speers &
Chinnaiyan, 2014). So it is important to study the mechanism of ER-α associated signaling
pathway is controlled by the inhibition of complex (ligands binding with receptors) to
obtain new insight into the treatment of BC.

The pathological conditions of ER-α associated HPN were simulated to observe the
expression levels of entities with respect to time, given in Fig. 10. The mutated behavior of
TSGs can be clearly seen in the simulation graph where sigmoidal curves for BRCA1, p53
and Mdm2 are represented by cyan, green and navy colors, respectively. Likewise, ER-α is
produced at constant pace (represented at the expression level of 5) with mutated behaviors
of TSGs which stimulates the activity of IGF-1R and EGFR receptors (represented by orange
colored line). The high level of IGF-1R in ER-positive (ER+) BC cells is attributed to the
carcinogenic cellular proliferation (Yerushalmi et al., 2012). The gene expression profile
of basal cancer subtypes ER-PR-HER2 has low expression of ER-related genes and high
expression of basal marker than luminal cancer (Perou et al., 2000; Sorlie et al., 2001;
Sotiriou et al., 2003). The phosphorylation of receptors carried out by ligands IGF-1/EGF is
involved in the development of BC pathogenesis (Kang et al., 2012b; Levin, 2001) depicted
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Figure 9 Illustration of the pathological pathway of ER-α associated HPN. In this PN circle represent
standard places which explained the behavior of ligands (IGF-1, EGF), membrane and hormonal recep-
tors (IGF-1R, EGFR and ER-α) and TSGs (BRCA1, p53 and Mdm2) and the squares represent continu-
ous transitions to demonstrate the processes of activation, inhibition and phosphorylation. Directed ar-
rows represent activation signal coming from standard places and going towards continuous transitions.
Inhibitory arcs represent inhibition signal which stops signal coming from standard places towards con-
tinuous transitions. The rate of mass action for all continuous transitions is taken as 1. The ligands (IGF-1,
EGF) and the membrane receptors (IGF-1R/EGFR) are given with an arbitrary token number of 5.

by blue colored curve. Various epidemiological studies have revealed that the increased level
of IGF-1 is associated with higher risk of other malignancies such as prostate, colorectal and
postmenopausal BC (Giovannucci, 2001; Kang et al., 2012b; Soulitzis et al., 2006). Previous
evidences shows the over-expression of IGF-1R and EGFR in various types of breast
tumours such as luminal and basal cancer subtypes (Perou et al., 2000; Sorlie et al., 2001;
Sotiriou et al., 2003; Yerushalmi et al., 2012). Trastuzumab is a monoclonal antibody used
in targeted therapy to prevent another subtype of BC which is HER2-positive (HER2+)
(Lu et al., 2001). The activity of trastuzumab is disrupted by the over-expression of both

Khalid et al. (2016), PeerJ, DOI 10.7717/peerj.2542 18/33

https://peerj.com
http://dx.doi.org/10.7717/peerj.2542


Figure 10 Simulation of diseased HPNmodel. The simulated graph shows time on X-axis and relative
expression levels of entities on Y -axis. The pathological behavior of ER-α associated BRN is observed by
the down-regulate expressions of TSGs; p53, BRCA1 and Mdm2 (cyan, green and navy) with relatively in-
creased the activity of ER-α (yellow).

IGF-1R and EGFR in BC cells that overexpress HER2 (Gallardo et al., 2012). Our results
also suggest that inhibition of the carcinogenic effect of IGF-1R and EGFR in ER-α signaling
pathway tend to reduce BC cell proliferation and metastasis.

Comparison of homeostatic and disease HPN models
The comparison of the dynamical behavior of proteins involved in ER-α associated
signaling pathway in homeostasis and pathological conditions in BC has been performed
in accordance with the biological observations as shown in Table 2 and Fig. 11, respectively.
The differences in simulation graphs represent the relative expression level of each entity
under the state of homeostasis (represented by blue color) and pathogenesis (represented
by brown color). The change in interaction is based on our interpretation of the results
from the BRN modeling. Our results reproduced recent wet-lab findings previously
performed to deregulate BC pathogenesis by using genome/protein wide expression and
sequence analysis. In Figs.11A–11F were brown colored line/curve represents suppressed
activity level of TSGs by the up-regulation of ER-α (Zhang et al., 2014) and blue colored
line/curve represents the controlled levels of ER-α through the stimulation of TSGs
(Berger et al., 2012).

Comparison of homeostatic and pathogenic behaviors (through a simulation graph
of each entity given in Fig. 11) exhibits strong co-relation of our results with literature
given in Table 2. This shows the similar expression levels of entities obtained through
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Table 2 Comparison of expression levels of entities of both homeostasis and disease ER-α associated HPN simulation with respect to literature
search. The positive sign (+) indicates the up-regulate expression, double positive (++) sign indicates the over-expression and a negative sign (−)
indicates the down-regulate the expression levels of entities.

Genes Homeostasis Disease

Literature Simulation Literature Simulation

Ligands IGF-1/EGF −

Surmacz & Bartucci (2004)
− +

Kang et al. (2012a)
+

Receptors IGF-1R/ EGFR −

Surmacz & Bartucci (2004)
− ++

Ouban et al. (2003);
Surmacz & Bartucci (2004);
Taunk et al., (2010)

+

ER-α −

Zhang et al. (2014)
− ++

Bailey et al. (2012);
Surmacz & Bartucci (2004);
Liu et al. (2006)

++

BRCA1 +
Ma et al. (2010)

+ −

Kang et al. (2012a);
Rosen et al. (2003)

−

p53 +
Berger et al. (2012);
Miller et al. (2005)

+ −

Angeloni et al. (2004);
Bailey et al. 2012;
Liu et al. (2009)

−

Mdm2 +
Berger et al. (2012)

++ −

Kim, Burghardt & Barhoumi (2011)
−

qualitative modeling and literature except levels of Mdm2, IGF-1R and EGFR. The levels
of ligands, receptors and ER-α are down-regulated in homeostasis, represented by a
negative sign (−) as compared to pathogenesis (Surmacz & Bartucci, 2004; Zhang et al.,
2014). Under pathological conditions, the rate of production of ER-α is over-expressed
given by a double positive sign (++) as observed in both simulation and previous studies
(Surmacz & Bartucci, 2004; Zhang et al., 2014). The up-regulated expression level of TSGs
(BRCA1, p53 and Mdm2) observed under homeostatic conditions is represented by a
positive sign (+) (Berger et al., 2012; Ma et al., 2010). On the basis of simulation results,
the over-expression of Mdm2 is suppressed by the phosphorylation of AKT kinases. We
assume that variables in DNA damage whose synthesis depends on ionizing radiation (IR)
and oxidative stress (OS) which independently shortens the half-life of Mdm2 (Gueven et
al., 2001; Yi, Kang & Bae, 2014). The autophosphorylation of AKT and ERK can, in turn,
activate downstream mediator ER-α, resulting in up-regulation of IGF-1R and EGFR
expressions. The BRN constructed in this paper is based on multiple independent datasets
obtained from previous studies which showed expression of interlinked gene/protein
through genome wide arrays, DNA copy number, sequencing, immunohistochemistry,
micro RNA and reverse phase protein analysis (Bailey et al., 2012; Caldon, 2014; Kang et
al., 2012a; Kang et al., 2014; Liao et al., 2014; Malaguarnera & Belfiore, 2014; Moerkens et
al., 2014; Cancer Genome Atlas Network, 2012; Pollak, 1998; Sotiriou et al., 2003). In healthy
individuals, TSGs complement each other to maintain homeostasis in the body. Any
mutation in TSGs carries with it a high risk of developing cancer in estrogen responsive

Khalid et al. (2016), PeerJ, DOI 10.7717/peerj.2542 20/33

https://peerj.com
http://dx.doi.org/10.7717/peerj.2542


Figure 11 Comparison of simulated graphs of both homeostasis and disease ER-α associated HPN
models. The X-axis shows the time unit while Y -axis shows the expression level of each entity under
homeostasis and disease conditions of HPN models (Figs. 10 and 8). The blue line/curve represents the
homeostatic behaviors and the brown line/curve represents the expression levels of mutated behaviors of
key proteins involved in ER-α associated pathway. Figs.11A–11G represents the relative change in activ-
ity levels of ligands (IGF-1/EGF), receptors (IGF-1R/EGFR), complex, ER-α and TSGs (BRCA1, p53, and
Mdm2) before and after mutations to be occurred.

tissues (breast and ovarian) along-with over-expression of ER-α (Angeloni et al., 2004;Kim,
Burghardt & Barhoumi, 2011; Liu et al., 2009; Rosen et al., 2003; Savage & Harkin, 2015).
The treatment of ER+ metastatic BC using an antagonist in combination with drugs could
lead to the regulation of p53 mediated apoptotic response (Bailey et al., 2012).

In ER+ BC treatment, strategies aimed at eliminating estrogen sources were developed
few decades ago. Tamoxifen was the first such targeted therapy, also known as selective
estrogen receptor modulator (SERM) that inhibits estrogen in many tissues. Further,
tamoxifen is used for treatment of all stages of BC including adjuvant therapy, metastatic
disease, and even as a preventive measure (Macgregor & Jordan, 1998). SERM binds to
the ER and prevents estrogen from binding the ligand; however, dimerization and DNA
binding followed by inhibition of transcription occur. SERM holds the ER in an inactive
conformation and prevents the recruitment of co-activators (Paige et al., 1999). The
common limitation is the development of resistance against tamoxifen in the advanced
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stages of BC. One mechanism of resistance to tamoxifen is increased through growth
factor signaling pathways, such as the IGF pathway (Gallardo et al., 2012; Knowlden et
al., 2005; Zhao & Ramaswamy, 2014). In addition to SERMs, aromatase inhibitors, such
as exemestane, anastrozole, and letrozole deprive target tissues of ligand for ER which
results in the inhibition of this pathway (Pietras, 2006; Van Asten et al., 2014). Steroidal
anti-estrogens such as fulvestrant prevent ER dimerization, DNA binding and hence loss of
receptor from cells (Agrawal et al., 2016; Osborne, Wakeling & Nicholson, 2004; Wakeling,
Dukes & Bowler, 1991).

Studies show that estrogen can regulate IGF signaling and activate its downstream
pathways by increasing the expression of both IRS-1 and IGF-1R in BC cells (Fagan & Yee,
2008; Lee et al., 1999). Our result obtained by using the tools GENOTECH, SMBioNet and
SNOOPY have suggested that IGF-1R, EGFR and ER-α signaling pathways are actively
involved in the progression of BC metastasis and they should be targeted together for
its treatment. Our findings suggested an improved strategy for a combined drug therapy
which confirms the results of few previous studies in which inhibition of both IGF-1R and
EGFR have induced apoptosis by blocking phosphorylation of AKT and NFκB. Previous
studies have shown the inhibition of IGF-1R and EGFR in signaling pathways at multiple
levels in adrenocortical, prostate, head and neck cancers (Lee et al., 2016; Raju et al., 2015;
Xu et al., 2016). Commercially available inhibitors (NVP-AEW541, gifitinib and erlotinib)
used against IGF-1R and EGFR significantly enhance anti-tumour efficacy for treatment of
adrenocortical carcinoma (Baselga et al., 2005; Dickler et al., 2009; Hartog et al., 2012; Von
Minckwitz et al., 2005; Xu et al., 2016). Therefore the combination of these commercially
available inhibitors with systemic drugs (tamoxifen, trastuzumab and fulvestrant ) should be
used in the treatment of different clinical BC subtypes. In conclusion, blocking both EGFR
and IGF-1R can inhibit estrogen stimulation of BC cells and blockade of ER-α signaling
pathway can inhibit IGF-mediated mutagenesis.

CONCLUSION
In-silico approaches (such as computational drug designing or computational gene-gene
interaction modeling) are used to find the inhibitory targets which save our time and
energy by reducing laborious trial and error methods. The kinetic logic, graph theoretical
and model checking formalisms offer biologists the exciting prospect of being able to
test hypotheses regarding network dynamics. It is imperative for scientists to understand
changes in the expression levels of genes and proteins at cellular level. This is typically
achieved through costly experimental techniques. However, it is possible to derive
logical networks that can mimic the behavior of key drivers of transformation in the
cell without extensive wet-lab experimentation. We have successfully deployed techniques
encompassing the important features of ER-α associated BRN in response to various
alterations in the stimuli or genetic changes in cancer cells. Based on previous findings and
our model, we suggest that inhibiting ER-α, IGF-1R and EGFR together can be used for
BC treatment. Therefore, in-silico approaches are used here to potentiate therapeutic target
in combined strategies to improve clinical outcome in the future.

Khalid et al. (2016), PeerJ, DOI 10.7717/peerj.2542 22/33

https://peerj.com
http://dx.doi.org/10.7717/peerj.2542


ACKNOWLEDGEMENTS
The authors are highly obliged to the administrative facility provided by Prime Minister’s
Youth Laptop Programme.

ADDITIONAL INFORMATION AND DECLARATIONS

Funding
The authors received no funding for this work.

Competing Interests
The authors declare there are no competing interests.

Author Contributions
• Samra Khalid conceived and designed the experiments, performed the experiments,
analyzed the data, wrote the paper, prepared figures and/or tables.
• Rumeza Hanif reviewed drafts of the paper.
• Samar H.K. Tareen and Amnah Siddiqa analyzed the data.
• Zurah Bibi prepared figures and/or tables.
• Jamil Ahmad contributed reagents/materials/analysis tools, reviewed drafts of the paper.

Data Availability
The following information was supplied regarding data availability:

The raw data has been supplied as Supplemental Information 1.

Supplemental Information
Supplemental information for this article can be found online at http://dx.doi.org/10.7717/
peerj.2542#supplemental-information.

REFERENCES
Abramovitch S, Glaser T, Ouchi T,Werner H. 2003. BRCA1–Sp1 interactions

in transcriptional regulation of the IGF-IR gene. FEBS Letters 541:149–154
DOI 10.1016/S0014-5793(03)00315-6.

Abramovitch S, Werner H. 2002. Functional and physical interactions between BRCA1
and p53 in transcriptional regulation of the IGF-IR gene. Hormone and Metabolic
Research 35(11-12):758–762.

Agrawal A, Robertson JF, Cheung KL, Gutteridge E, Ellis IO, Nicholson RI, Gee
JM. 2016. Biological effects of fulvestrant on estrogen receptor positive human
breast cancer: short, medium and long-term effects based on sequential biopsies.
International Journal of Cancer 138:146–159 DOI 10.1002/ijc.29682.

Ahmad J, Bernot G, Comet J-P, Lime D, Roux O. 2006.Hybrid modelling and dynamical
analysis of gene regulatory networks with delays. ComPlexUs 3:231–251
DOI 10.1159/000110010.

Khalid et al. (2016), PeerJ, DOI 10.7717/peerj.2542 23/33

https://peerj.com
http://dx.doi.org/10.7717/peerj.2542/supp-1
http://dx.doi.org/10.7717/peerj.2542#supplemental-information
http://dx.doi.org/10.7717/peerj.2542#supplemental-information
http://dx.doi.org/10.1016/S0014-5793(03)00315-6
http://dx.doi.org/10.1002/ijc.29682
http://dx.doi.org/10.1159/000110010
http://dx.doi.org/10.7717/peerj.2542


Ahmad J, Niazi U, Mansoor S, Siddique U, Bibby J. 2012. Formal modeling and analysis
of the MAL-associated biological regulatory network: insight into cerebral malaria.
PLoS ONE 7:e33532 DOI 10.1371/journal.pone.0033532.

Alluri PG, Speers C, Chinnaiyan AM. 2014. Estrogen receptor mutations and their role
in breast cancer progression. Breast Cancer Research 16:1–8
DOI 10.1186/s13058-014-0494-7.

Angeloni S, Martin M, Garcia-Morales P, Castro-GalacheM, Ferragut J, SacedaM.
2004. Regulation of estrogen receptor-alpha expression by the tumor suppressor
gene p53 in MCF-7 cells. Journal of Endocrinology 180:497–504
DOI 10.1677/joe.0.1800497.

Ariazi EA, Ariazi JL, Cordera F, Jordan VC. 2006. Estrogen receptors as therapeutic
targets in breast cancer. Current Topics in Medicinal Chemistry 6:181–202
DOI 10.2174/156802606776173483.

Aslam B, Ahmad J, Ali A, Paracha RZ, Tareen SHK, Niazi U, Saeed T. 2014. On the
modelling and analysis of the regulatory network of dengue virus pathogenesis and
clearance. Computational Biology and Chemistry 53:277–291
DOI 10.1016/j.compbiolchem.2014.10.003.

Bailey ST, Shin H,Westerling T, Liu XS, BrownM. 2012. Estrogen receptor
prevents p53-dependent apoptosis in breast cancer. Proceedings of the Na-
tional Academy of Sciences of the United States of America 109:18060–18065
DOI 10.1073/pnas.1018858109.

Baselga J, Albanell J, Ruiz A, Lluch A, Gascon P, Guillem V, Gonzalez S, Sauleda
S, Marimon I, Tabernero JM, Koehler MT, Rojo F. 2005. Phase II and tumor
pharmacodynamic study of gefitinib in patients with advanced breast cancer. Journal
of Clinical Oncology 23:5323–5333 DOI 10.1200/JCO.2005.08.326.

Berger CE, Qian Y, Liu G, Chen H, Chen X. 2012. p53, a target of estrogen receptor (ER)
α, modulates DNA damage-induced growth suppression in ER-positive breast cancer
cells. Journal of Biological Chemistry 287:30117–30127
DOI 10.1074/jbc.M112.367326.

Bernot G, Comet J-P, Khalis Z. 2008. Gene regulatory networks with multiplexes. In:
European simulation and modelling conference proceedings, 423–432.

Bernot G, Comet JP, Richard A, Guespin J. 2004. Application of formal methods
to biological regulatory networks: extending Thomas’ asynchronous logical
approach with temporal logic. Journal of Theoretical Biology 229:339–347
DOI 10.1016/j.jtbi.2004.04.003.

Blätke M, Heiner M, MarwanW. 2011. Tutorial-petri nets in systems biology. Technical
report. Otto von Guericke University Magdeburg, Magdeburg Centre for Systems
Biology, Magdeburg.

BrauerW, ReisigW, Rozenberg G. 2006. Petri nets: central models and their properties:
advances in petri nets 1986, part I proceedings of an advanced course bad honnef, 8.–19.
September 1986. Berlin, Heidelberg: Springer.

Caldon CE. 2014. Estrogen signaling and the DNA damage response in hormone
dependent breast cancers. Frontiers in Oncology 4:106 DOI 10.3389/fonc.2014.00106.

Khalid et al. (2016), PeerJ, DOI 10.7717/peerj.2542 24/33

https://peerj.com
http://dx.doi.org/10.1371/journal.pone.0033532
http://dx.doi.org/10.1186/s13058-014-0494-7
http://dx.doi.org/10.1677/joe.0.1800497
http://dx.doi.org/10.2174/156802606776173483
http://dx.doi.org/10.1016/j.compbiolchem.2014.10.003
http://dx.doi.org/10.1073/pnas.1018858109
http://dx.doi.org/10.1200/JCO.2005.08.326
http://dx.doi.org/10.1074/jbc.M112.367326
http://dx.doi.org/10.1016/j.jtbi.2004.04.003
http://dx.doi.org/10.3389/fonc.2014.00106
http://dx.doi.org/10.7717/peerj.2542


Cancer Genome Atlas Network. 2012. Comprehensive molecular portraits of human
breast tumours. Nature 490:61–70 DOI 10.1038/nature11412.

Carrillo M, Góngora PA, Rosenblueth D. 2012. An overview of existing modeling tools
making use of model checking in the analysis of biochemical networks. Frontiers in
Plant Science 3 DOI 10.3389/fpls.2012.00155.

Chaouiya C. 2007. Petri net modelling of biological networks. Briefings in bioinformatics
8:210–219 DOI 10.1093/bib/bbm029.

Chitnis MM, Yuen JS, Protheroe AS, PollakM,Macaulay VM. 2008. The type 1 insulin-
like growth factor receptor pathway. Clinical Cancer Research 14:6364–6370
DOI 10.1158/1078-0432.CCR-07-4879.

Ciliberto A, Novák B, Tyson JJ. 2005. Steady states and oscillations in the p53/Mdm2
network. Cell Cycle 4:488–493 DOI 10.4161/cc.4.3.1548.

Clarke EM, Emerson EA. 1982. Design and synthesis of synchronization skeletons using
branching time temporal logic. In: Logic of programs, workshop. Berlin, Heidelberg:
Springer, 52–71.

Clarke EM, Grumberg O, Peled DA. 1999.Model checking. Cambridge: MIT Press.
David R, Alla H. 2008. Discrete, continuous, and hybrid Petri nets. IEEE Control Systems

28:81–84.
De Jong H. 2002.Modeling and simulation of genetic regulatory systems: a literature re-

view. Journal of Computational Biology 9:67–103 DOI 10.1089/10665270252833208.
DeSantis C, Ma J, Bryan L, Jemal A. 2014. Breast cancer statistics, 2013. CA: A Cancer

Journal for Clinicians 64(1):52–62 DOI 10.3322/caac.21203.
Dickler MN, CobleighMA,Miller KD, Klein PM,Winer EP. 2009. Efficacy and safety of

erlotinib in patients with locally advanced or metastatic breast cancer. Breast Cancer
Research and Treatment 115:115–121 DOI 10.1007/s10549-008-0055-9.

Ewing GP, Goff LW. 2010. The insulin-like growth factor signaling pathway as a target
for treatment of colorectal carcinoma. Clinical Colorectal Cancer 9:219–223
DOI 10.3816/CCC.2010.n.032.

Fagan DH, Yee D. 2008. Crosstalk between IGF1R and estrogen receptor signaling in
breast cancer. Journal of Mammary Gland Biology and Neoplasia 13:423–429
DOI 10.1007/s10911-008-9098-0.

Ferlay J, Soerjomataram I, Dikshit R, Eser S, Mathers C, Rebelo M, Parkin DM,
Forman D, Bray F. 2015. Cancer incidence and mortality worldwide: sources,
methods and major patterns in GLOBOCAN 2012. International Journal of Cancer
136:E359–E386 DOI 10.1002/ijc.29210.

Fisher B, Costantino J, Redmond C, Poisson R, Bowman D, Couture J, Dimitrov NV,
Wolmark N,WickerhamDL, Fisher ER. 1989. A randomized clinical trial evaluating
tamoxifen in the treatment of patients with node-negative breast cancer who have
estrogen-receptor–positive tumors. New England Journal of Medicine 320:479–484
DOI 10.1056/NEJM198902233200802.

Fuqua SA, Schiff R, Parra I, FriedrichsWE, Su JL, McKee DD, Slentz-Kesler K, Moore
LB,Willson TM,Moore JT. 1999. Expression of wild-type estrogen receptor beta
and variant isoforms in human breast cancer. Cancer Research 59:5425–5428.

Khalid et al. (2016), PeerJ, DOI 10.7717/peerj.2542 25/33

https://peerj.com
http://dx.doi.org/10.1038/nature11412
http://dx.doi.org/10.3389/fpls.2012.00155
http://dx.doi.org/10.1093/bib/bbm029
http://dx.doi.org/10.1158/1078-0432.CCR-07-4879
http://dx.doi.org/10.4161/cc.4.3.1548
http://dx.doi.org/10.1089/10665270252833208
http://dx.doi.org/10.3322/caac.21203
http://dx.doi.org/10.1007/s10549-008-0055-9
http://dx.doi.org/10.3816/CCC.2010.n.032
http://dx.doi.org/10.1007/s10911-008-9098-0
http://dx.doi.org/10.1002/ijc.29210
http://dx.doi.org/10.1056/NEJM198902233200802
http://dx.doi.org/10.7717/peerj.2542


Gallardo A, Lerma E, Escuin D, Tibau A, Munoz J, Ojeda B, Barnadas A, Adrover E,
Sánchez-Tejada L, Giner D. 2012. Increased signalling of EGFR and IGF1R, and
deregulation of PTEN/PI3K/Akt pathway are related with trastuzumab resistance
in HER2 breast carcinomas. British Journal of Cancer 106:1367–1373
DOI 10.1038/bjc.2012.85.

García-Becerra R, Santos N, Díaz L, Camacho J. 2012.Mechanisms of resistance to
endocrine therapy in breast cancer: focus on signaling pathways, miRNAs and
genetically based resistance. International Journal of Molecular Sciences 14:108–145
DOI 10.3390/ijms14010108.

Giacinti L, Claudio PP, LopezM, Giordano A. 2006. Epigenetic information and
estrogen receptor alpha expression in breast cancer. The Oncologist 11:1–8.

Giovannucci E. 2001. Insulin, insulin-like growth factors and colon cancer: a review of
the evidence. The Journal of Nutrition 131:3109S–3120S.

Gueven N, Keating KE, Chen P, Fukao T, Khanna KK,Watters D, Rodemann PH, Lavin
MF. 2001. Epidermal growth factor sensitizes cells to ionizing radiation by down-
regulating protein mutated in ataxia-telangiectasia. Journal of Biological Chemistry
276:8884–8891 DOI 10.1074/jbc.M006190200.

Hanstein B, Djahansouzi S, Dall P, BeckmannM, Bender H. 2004. Insights into the
molecular biology of the estrogen receptor define novel therapeutic targets for breast
cancer. European Journal of Endocrinology 150:243–255 DOI 10.1530/eje.0.1500243.

Hartog H, Van der GraafWT, Boezen HM,Wesseling J. 2012. Treatment of breast
cancer cells by IGF1R tyrosine kinase inhibitor combined with conventional systemic
drugs. Anticancer Research 32:1309–1318.

Heiner M, Herajy M, Liu F, Rohr C, SchwarickM. 2012. Snoopy–a unifying Petri
net tool. In: Haddad S, Pomello L, eds. Application and theory of petri nets: 33rd
international conference, PETRI NETS 2012, Hamburg, Germany, June 25–29, 2012
proceedings. Berlin, Heidelberg: Springer, 398–407.

Heinrich R, Schuster S. 1998. The modelling of metabolic systems. structure, control and
optimality. Biosystems 47:61–77 DOI 10.1016/S0303-2647(98)00013-6.

Hong B, Van den Heuvel PJ, Prabhu VV, Zhang S, El-DeiryWS. 2014. Targeting tumor
suppressor p53 for cancer therapy: strategies, challenges and opportunities. Current
Drug Targets 15:80–89 DOI 10.2174/1389450114666140106101412.

Hotes JL, Ellison LF, Howe HL, Friesen I, Kohler B. 2004. Variation in breast cancer
counts using SEER and IARC multiple primary coding rules. Cancer Causes Control
15:185–191 DOI 10.1023/B:CACO.0000019505.97836.7d.

Hurvitz SA, Pietras RJ. 2008. Rational management of endocrine resistance in breast
cancer: a comprehensive review of estrogen receptor biology, treatment options, and
future directions. Cancer 113:2385–2397 DOI 10.1002/cncr.23875.

Jackson JG, Zhang X, Yoneda T, Yee D. 2001. Regulation of breast cancer cell motility
by insulin receptor substrate-2 (IRS-2) in metastatic variants of human breast cancer
cell lines. Oncogene 20:7318–7325 DOI 10.1038/sj.onc.1204920.

Kanehisa M, Goto S. 2000. KEGG: kyoto encyclopedia of genes and genomes. Nucleic
Acids Research 28:27–30 DOI 10.1093/nar/28.1.27.

Khalid et al. (2016), PeerJ, DOI 10.7717/peerj.2542 26/33

https://peerj.com
http://dx.doi.org/10.1038/bjc.2012.85
http://dx.doi.org/10.3390/ijms14010108
http://dx.doi.org/10.1074/jbc.M006190200
http://dx.doi.org/10.1530/eje.0.1500243
http://dx.doi.org/10.1016/S0303-2647(98)00013-6
http://dx.doi.org/10.2174/1389450114666140106101412
http://dx.doi.org/10.1023/B:CACO.0000019505.97836.7d
http://dx.doi.org/10.1002/cncr.23875
http://dx.doi.org/10.1038/sj.onc.1204920
http://dx.doi.org/10.1093/nar/28.1.27
http://dx.doi.org/10.7717/peerj.2542


Kang HS, Ahn SH, Mishra SK, Hong KM, Lee ES, Shin KH, Ro J, Lee KS, KimMK. 2014.
Association of polymorphisms and haplotypes in the insulin-like growth factor 1
receptor (IGF1R) gene with the risk of breast cancer in Korean women. PLoS ONE
9:e84532 DOI 10.1371/journal.pone.0084532.

Kang H, Yi Y, KimH, Hong Y, Seong Y, Bae I. 2012a. BRCA1 negatively regulates IGF-1
expression through an estrogen-responsive element-like site. Cell Death & Disease
3:e336 DOI 10.1038/cddis.2012.78.

Kang HJ, Yi YW, KimHJ, Hong YB, Seong YS, Bae I. 2012b. BRCA1 negatively regulates
IGF-1 expression through an estrogen-responsive element-like site. Cell Death Dis
3:e336 DOI 10.1210/mend.8.1.7512194.

Kato H, Faria TN, Stannard B, Roberts Jr CT, LeRoith D. 1994. Essential role of tyrosine
residues 1131, 1135, and 1136 of the insulin-like growth factor-I (IGF-I) receptor in
IGF-I action.Molecular Endocrinology 8:40–50.

Khalis Z, Comet J-P, Richard A, Bernot G. 2009. The SMBioNet method for discovering
models of gene regulatory networks. Genes, Genomes and Genomics 3:15–22.

KimK, Burghardt R, Barhoumi R, Lee S-O, Liu X, Safe S. 2011.MDM2 regulates
estrogen receptor α and estrogen responsiveness in breast cancer cells. Journal of
Molecular Endocrinology 46:67–79.

Knowlden JM, Hutcheson IR, Barrow D, Gee JMW, Nicholson RI. 2005. Insulin-like
growth factor-I receptor signaling in tamoxifen-resistant breast cancer: a supporting
role to the epidermal growth factor receptor. Endocrinology 146:4609–4618
DOI 10.1210/en.2005-0247.

Komarova EA, Kondratov RV,Wang K, Christov K, Golovkina TV, Goldblum JR,
Gudkov AV. 2004. Dual effect of p53 on radiation sensitivity in vivo: p53 promotes
hematopoietic injury, but protects from gastro-intestinal syndrome in mice.
Oncogene 23:3265–3271 DOI 10.1038/sj.onc.1207494.

Law JH, Habibi G, Hu K, Masoudi H,WangMY, Stratford AL, Park E, Gee JM, Finlay
P, Jones HE, Nicholson RI, Carboni J, Gottardis M, PollakM, Dunn SE. 2008.
Phosphorylated insulin-like growth factor-i/insulin receptor is present in all breast
cancer subtypes and is related to poor survival. Cancer Research 68:10238–10246
DOI 10.1158/0008-5472.CAN-08-2755.

Lee AV, Jackson JG, Gooch JL, Hilsenbeck SG, Coronado-Heinsohn E, Osborne CK,
Yee D. 1999. Enhancement of insulin-like growth factor signaling in human breast
cancer: estrogen regulation of insulin receptor substrate-1 expression in vitro and in
vivo.Molecular Endocrinology 13:787–796 DOI 10.1210/mend.13.5.0274.

Lee JH, Paull TT. 2007. Activation and regulation of ATM kinase activity in response to
DNA double-strand breaks. Oncogene 26:7741–7748 DOI 10.1038/sj.onc.1210872.

Lee Y,Wang Y, JamesM, Jeong JH, YouM. 2016. Inhibition of IGF1R signaling
abrogates resistance to afatinib (BIBW2992) in EGFR T790M mutant lung cancer
cells.Molecular Carcinogenesis 55:991–1001 DOI 10.1002/mc.22342.

Levin ER. 2001. Cell localization, physiology, and nongenomic actions of estrogen
receptors. Journal of Applied Physiology 91:1860–1867.

Khalid et al. (2016), PeerJ, DOI 10.7717/peerj.2542 27/33

https://peerj.com
http://dx.doi.org/10.1371/journal.pone.0084532
http://dx.doi.org/10.1038/cddis.2012.78
http://dx.doi.org/10.1210/mend.8.1.7512194
http://dx.doi.org/10.1210/en.2005-0247
http://dx.doi.org/10.1038/sj.onc.1207494
http://dx.doi.org/10.1158/0008-5472.CAN-08-2755
http://dx.doi.org/10.1210/mend.13.5.0274
http://dx.doi.org/10.1038/sj.onc.1210872
http://dx.doi.org/10.1002/mc.22342
http://dx.doi.org/10.7717/peerj.2542


Liao XH, Lu DL,Wang N, Liu LY,Wang Y, Li YQ, Yan TB, Sun XG, Hu P, Zhang TC.
2014. Estrogen receptor α mediates proliferation of breast cancer MCF–7 cells via a
p21/PCNA/E2F1-dependent pathway. FEBS Journal 281:927–942.

Liu J, Desai KV, Li Y, Banu S, Lee YK, Qu D, Heikkinen T, Aaltonen K, Muranen TA,
Kajiji TS, Bonnard C, Aittomaki K, Von Smitten K, Blomqvist C, Hopper JL,
SoutheyMC, Brauch H, Chenevix-Trench G, Beesley J, Spurdle AB, Chen X, Czene
K, Hall P, Nevanlinna H, Liu ET. 2009. Germ-line variation at a functional p53
binding site increases susceptibility to breast cancer development. HUGO Journal
3:31–40 DOI 10.1007/s11568-010-9138-x.

LiuW, Konduri SD, Bansal S, Nayak BK, Rajasekaran SA, Karuppayil SM, Rajasekaran
AK, Das GM. 2006. Estrogen receptor-alpha binds p53 tumor suppressor protein
directly and represses its function. Journal of Biological Chemistry 281:9837–9840
DOI 10.1074/jbc.C600001200.

Lu Y, Zi X, Zhao Y, Mascarenhas D, PollakM. 2001. Insulin-like growth factor-I
receptor signaling and resistance to trastuzumab (Herceptin). Journal of the National
Cancer Institute 93:1852–1857 DOI 10.1093/jnci/93.24.1852.

Ma L,Wagner J, Rice JJ, HuW, Levine AJ, Stolovitzky GA. 2005. A plausible
model for the digital response of p53 to DNA damage. Proceedings of the Na-
tional Academy of Sciences of the United States of America 102:14266–14271
DOI 10.1073/pnas.0501352102.

Ma Y, Fan S, Hu C, Meng Q, Fuqua SA, Pestell RG, Tomita YA, Rosen EM. 2010.
BRCA1 regulates acetylation and ubiquitination of estrogen receptor-α.Molecular
endocrinology 24:76–90 DOI 10.1210/me.2009-0218.

Macgregor JI, Jordan VC. 1998. Basic guide to the mechanisms of antiestrogen action.
Pharmacological Reviews 50:151–196.

MacLachlan TK, Takimoto R, El-DeiryWS. 2002. BRCA1 directs a selective p53-
dependent transcriptional response towards growth arrest and DNA repair targets.
Molecular and Cellular Biology 22:4280–4292
DOI 10.1128/MCB.22.12.4280-4292.2002.

Madeira M, Mattar A, Logullo AF, Soares FA, Gebrim LH. 2013. Estrogen receptor
alpha/beta ratio and estrogen receptor beta as predictors of endocrine therapy
responsiveness-a randomized neoadjuvant trial comparison between anastrozole and
tamoxifen for the treatment of postmenopausal breast cancer. BMC Cancer 13:425
DOI 10.1186/1471-2407-13-425.

MadiganMP, Ziegler RG, Benichou J, Byrne C, Hoover RN. 1995. Proportion of breast
cancer cases in the United States explained by well-established risk factors. Journal of
the National Cancer Institute 87:1681–1685 DOI 10.1093/jnci/87.22.1681.

Malaguarnera R, Belfiore A. 2014. The emerging role of insulin and insulin-like
growth factor signaling in cancer stem cells. Frontiers in Endocrinology 5
DOI 10.3389/fendo.2014.00010.

McPherson K, Steel CM, Dixon JM. 2000. ABC of breast diseases. Breast cancer-
epidemiology, risk factors, and genetics. BMJ 321:624–628
DOI 10.1136/bmj.321.7261.624.

Khalid et al. (2016), PeerJ, DOI 10.7717/peerj.2542 28/33

https://peerj.com
http://dx.doi.org/10.1007/s11568-010-9138-x
http://dx.doi.org/10.1074/jbc.C600001200
http://dx.doi.org/10.1093/jnci/93.24.1852
http://dx.doi.org/10.1073/pnas.0501352102
http://dx.doi.org/10.1210/me.2009-0218
http://dx.doi.org/10.1128/MCB.22.12.4280-4292.2002
http://dx.doi.org/10.1186/1471-2407-13-425
http://dx.doi.org/10.1093/jnci/87.22.1681
http://dx.doi.org/10.3389/fendo.2014.00010
http://dx.doi.org/10.1136/bmj.321.7261.624
http://dx.doi.org/10.7717/peerj.2542


Miller LD, Smeds J, George J, Vega VB, Vergara L, Ploner A, Pawitan Y, Hall P, Klaar S,
Liu ET, Bergh J. 2005. An expression signature for p53 status in human breast cancer
predicts mutation status, transcriptional effects, and patient survival. Proceedings of
the National Academy of Sciences of the United States of America 102:13550–13555
DOI 10.1073/pnas.0506230102.

Moerkens M, Zhang Y,Wester L, Van deWater B, Meerman JH. 2014. Epidermal
growth factor receptor signalling in human breast cancer cells operates parallel to
estrogen receptor α signalling and results in tamoxifen insensitive proliferation.
BMC Cancer 14:283 DOI 10.1186/1471-2407-14-283.

Mullan PB, Quinn JE, Harkin DP. 2006. The role of BRCA1 in transcriptional regulation
and cell cycle control. Oncogene 25:5854–5863 DOI 10.1038/sj.onc.1209872.

Nadji M, Gomez-Fernandez C, Ganjei-Azar P, Morales AR. 2005. Immunohis-
tochemistry of estrogen and progesterone receptors reconsidered: experience
with 5,993 breast cancers. American Journal of Clinical Pathology 123:21–27
DOI 10.1309/4WV79N2GHJ3X1841.

Osborne C,Wakeling A, Nicholson R. 2004. Fulvestrant: an oestrogen receptor
antagonist with a novel mechanism of action. British Journal of Cancer 90:S2–S6
DOI 10.1038/sj.bjc.6601629.

Ouban A, Muraca P, Yeatman T, Coppola D. 2003. Expression and distribution of
insulin-like growth factor-1 receptor in human carcinomas. Human Pathology
34:803–808 DOI 10.1016/S0046-8177(03)00291-0.

Paige LA, Christensen DJ, Grøn H, Norris JD, Gottlin EB, Padilla KM, Chang C-Y,
Ballas LM, Hamilton PT, McDonnell DP. 1999. Estrogen receptor (ER) modulators
each induce distinct conformational changes in ERα and ERβ. Proceedings of
the National Academy of Sciences of the United States of America 96:3999–4004
DOI 10.1073/pnas.96.7.3999.

Paracha RZ, Ahmad J, Ali A, Hussain R, Niazi U, Tareen SHK, Aslam B. 2014. Formal
modelling of toll like receptor 4 and JAK/STAT signalling pathways: insight into the
roles of SOCS-1, interferon-β and proinflammatory cytokines in sepsis.

Parkin DM, Fernandez LM. 2006. Use of statistics to assess the global burden of breast
cancer. The Breast Journal 12(Suppl 1):S70–S80
DOI 10.1111/j.1075-122X.2006.00205.x.

Peres S, Jean-Paul C. 2003. Contribution of computational tree logic to biological
regulatory networks: example from pseudomonas aeruginosa. In: Priami C, ed.
Computational methods in systems biology: first international workshop, CMSB 2003
Rovereto, Italy, February 24–26, 2003 proceedings. Berlin, Heidelberg: Springer,
47–56.

Perou CM, Sorlie T, EisenMB, Van de RijnM, Jeffrey SS, Rees CA, Pollack JR, Ross DT,
Johnsen H, Akslen LA, Fluge O, Pergamenschikov A,Williams C, Zhu SX, Lonning
PE, Borresen-Dale AL, Brown PO, Botstein D. 2000.Molecular portraits of human
breast tumours. Nature 406:747–752 DOI 10.1038/35021093.

Petri CA, ReisigW. 2008. Petri net. Scholarpedia 3(4):6477
DOI 10.4249/scholarpedia.6477.

Khalid et al. (2016), PeerJ, DOI 10.7717/peerj.2542 29/33

https://peerj.com
http://dx.doi.org/10.1073/pnas.0506230102
http://dx.doi.org/10.1186/1471-2407-14-283
http://dx.doi.org/10.1038/sj.onc.1209872
http://dx.doi.org/10.1309/4WV79N2GHJ3X1841
http://dx.doi.org/10.1038/sj.bjc.6601629
http://dx.doi.org/10.1016/S0046-8177(03)00291-0
http://dx.doi.org/10.1073/pnas.96.7.3999
http://dx.doi.org/10.1111/j.1075-122X.2006.00205.x
http://dx.doi.org/10.1038/35021093
http://dx.doi.org/10.4249/scholarpedia.6477
http://dx.doi.org/10.7717/peerj.2542


Pietras RJ. 2006. Biologic basis of sequential and combination therapies for hormone-
responsive breast cancer. The Oncologist 11:704–717
DOI 10.1634/theoncologist.11-7-704.

Pnueli A. 1977. The temporal logic of programs. In: Foundations of computer science,
1977, 18th annual symposium on. Piscataway: IEEE, 46–57.

PollakM. 2008. Insulin and insulin-like growth factor signalling in neoplasia. Nature
Reviews Cancer 8:915–928 DOI 10.1038/nrc2536.

PollakMN. 1998. Endocrine effects of IGF-I on normal and transformed breast epithelial
cells: potential relevance to strategies for breast cancer treatment and prevention.
Breast Cancer Research and Treatment 47:209–217 DOI 10.1023/A:1005950916707.

Powers JT, Hong S, Mayhew CN, Rogers PM, Knudsen ES, Johnson DG. 2004. E2F1
uses the ATM signaling pathway to induce p53 and Chk2 phosphorylation and
apoptosis.Molecular Cancer Research 2:203–214.

Raju U, Molkentine DP, Valdecanas DR, Deorukhkar A, Mason KA, Buchholz TA,
Meyn RE, Ang KK, Skinner H. 2015. Inhibition of EGFR or IGF-1R signaling
enhances radiation response in head and neck cancer models but concurrent
inhibition has no added benefit. Cancer Medicine 4:65–74 DOI 10.1002/cam4.345.

Renoir J-M, Marsaud V, Lazennec G. 2013. Estrogen receptor signaling as a target
for novel breast cancer therapeutics. Biochemical Pharmacology 85:449–465
DOI 10.1016/j.bcp.2012.10.018.

Rhodes A, Jasani B, Balaton AJ, Barnes DM,Miller KD. 2000. Frequency of oestro-
gen and progesterone receptor positivity by immunohistochemical analysis in
7016 breast carcinomas: correlation with patient age, assay sensitivity, threshold
value, and mammographic screening. Journal of Clinical Pathology 53:688–696
DOI 10.1136/jcp.53.9.688.

Richard A, Comet J-P, Bernot G. 2006. Formal methods for modeling biological
regulatory networks. In:Modern Formal Methods and Applications. Springer, 83–122.

Richard A, Rossignol G, Comet J-P, Bernot G, Guespin-Michel J, Merieau A. 2012.
Boolean models of biosurfactants production in Pseudomonas fluorescens. PLoS
ONE 7:24651 DOI 10.1371/journal.pone.0024651.

Riedemann J, Macaulay VM. 2006. IGF1R signalling and its inhibition. Endocrine-
Related Cancer 13(Suppl 1):S33–S43 DOI 10.1677/erc.1.01280.

Rosen EM, Fan S, Pestell RG, Goldberg ID. 2003. BRCA1 gene in breast cancer. Journal
of Cellular Physiology 196:19–41 DOI 10.1002/jcp.10257.

Ruths D, Muller M, Tseng J-T, Nakhleh L, Ram PT. 2008. The signaling petri net-
based simulator: a non-parametric strategy for characterizing the dynamics
of cell-specific signaling networks. PLOS Computational Biology 4:e1000005
DOI 10.1371/journal.pcbi.1000005.

Saji S, Omoto Y, Shimizu C,Warner M, Hayashi Y, Horiguchi S, Watanabe T, Hayashi
S, Gustafsson JA, Toi M. 2002. Expression of estrogen receptor (ER) (beta)cx
protein in ER(alpha)-positive breast cancer: specific correlation with progesterone
receptor. Cancer Research 62:4849–4853.

Khalid et al. (2016), PeerJ, DOI 10.7717/peerj.2542 30/33

https://peerj.com
http://dx.doi.org/10.1634/theoncologist.11-7-704
http://dx.doi.org/10.1038/nrc2536
http://dx.doi.org/10.1023/A:1005950916707
http://dx.doi.org/10.1002/cam4.345
http://dx.doi.org/10.1016/j.bcp.2012.10.018
http://dx.doi.org/10.1136/jcp.53.9.688
http://dx.doi.org/10.1371/journal.pone.0024651
http://dx.doi.org/10.1677/erc.1.01280
http://dx.doi.org/10.1002/jcp.10257
http://dx.doi.org/10.1371/journal.pcbi.1000005
http://dx.doi.org/10.7717/peerj.2542


Savage KI, Harkin DP. 2015. BRCA1, a ‘complex’protein involved in the maintenance of
genomic stability. FEBS Journal 282:630–646 DOI 10.1111/febs.13150.

Sayeed A, Konduri SD, LiuW, Bansal S, Li F, Das GM. 2007. Estrogen receptor alpha
inhibits p53-mediated transcriptional repression: implications for the regulation of
apoptosis. Cancer Research 67:7746–7755 DOI 10.1158/0008-5472.CAN-06-3724.

Schayek H, Haugk K, Sun S, True LD, Plymate SR,Werner H. 2009. Tumor suppressor
BRCA1 is expressed in prostate cancer and controls insulin-like growth factor I
receptor (IGF-IR) gene transcription in an androgen receptor-dependent manner.
Clinical Cancer Research 15:1558–1565 DOI 10.1158/1078-0432.CCR-08-1440.

Seemayer CA, Breuer E, Kroll G, Markus-Sellhaus S, Reineke TH, Mittermayer C. 2002.
Incidence and tumour stages of breast cancer in the region of Aachen, Germany.
European Journal of Cancer Care 11:16–24.

Sorlie T, Perou CM, Tibshirani R, Aas T, Geisler S, Johnsen H, Hastie T, EisenMB,
Van de RijnM, Jeffrey SS, Thorsen T, Quist H, Matese JC, Brown PO, Botstein
D, Lonning PE, Borresen-Dale AL. 2001. Gene expression patterns of breast
carcinomas distinguish tumor subclasses with clinical implications. Proceedings of
the National Academy of Sciences of the United States of America 98:10869–10874
DOI 10.1073/pnas.191367098.

Sotiriou C, Neo SY, McShane LM, Korn EL, Long PM, Jazaeri A, Martiat P, Fox
SB, Harris AL, Liu ET. 2003. Breast cancer classification and prognosis based
on gene expression profiles from a population-based study. Proceedings of the
National Academy of Sciences of the United States of America 100:10393–10398
DOI 10.1073/pnas.1732912100.

Soulitzis N, Karyotis I, Delakas D, Spandidos DA. 2006. Expression analysis of peptide
growth factors VEGF, FGF2, TGFB1, EGF and IGF1 in prostate cancer and benign
prostatic hyperplasia. International Journal of Oncology 29:305–314.

Surmacz E, Bartucci M. 2004. Role of estrogen receptor alpha in modulating IGF-I
receptor signaling and function in breast cancer. Journal of Experimental and Clinical
Cancer Research 23:385–394.

Taunk NK, Goyal S, MoranMS, Yang Q, Parikh R, Haffty BG. 2010. Prognostic
significance of IGF-1R expression in patients treated with breast-conserving surgery
and radiation therapy. Radiotherapy and Oncology 96:204–208
DOI 10.1016/j.radonc.2010.03.009.

Thieffry D, Thomas R. 1995. Dynamical behaviour of biological regulatory networks—
II. Immunity control in bacteriophage lambda. Bulletin of Mathematical Biology
57:277–297.

Thomas R. 1973. Boolean formalization of genetic control circuits. Journal of Theoretical
Biology 42:563–585 DOI 10.1016/0022-5193(73)90247-6.

Thomas R. 1981. On the relation between the logical structure of systems and their
ability to generate multiple steady states or sustained oscillations. In: Della Dora J,
Demongeot J, Lacolle B, eds. Numerical methods in the study of critical phenomena:
proceedings of a colloquium, Carry-le-Rouet, France, June 2–4, 1980. Berlin, Heidel-
berg: Springer, 180–193.

Khalid et al. (2016), PeerJ, DOI 10.7717/peerj.2542 31/33

https://peerj.com
http://dx.doi.org/10.1111/febs.13150
http://dx.doi.org/10.1158/0008-5472.CAN-06-3724
http://dx.doi.org/10.1158/1078-0432.CCR-08-1440
http://dx.doi.org/10.1073/pnas.191367098
http://dx.doi.org/10.1073/pnas.1732912100
http://dx.doi.org/10.1016/j.radonc.2010.03.009
http://dx.doi.org/10.1016/0022-5193(73)90247-6
http://dx.doi.org/10.7717/peerj.2542


Thomas R. 1998. Laws for the dynamics of regulatory networks. International Journal of
Developmental Biology 42:479–485.

Thomas R. 2013. Kinetic logic: a Boolean approach to the analysis of complex regulatory
systems: proceedings of the EMBO course ‘‘formal analysis of genetic regulation", held
in Brussels, September 6–16, 1977. Berlin, Heidelberg: Springer Science & Business
Media.

Thomas R, D’Ari R. 1990. Biological feedback. Boca Raton: CRC press.
Thomas R, Gathoye AM, Lambert L. 1976. A complex control circuit. European Journal

of Biochemistry 71:211–227 DOI 10.1111/j.1432-1033.1976.tb11108.x.
Thomas R, KaufmanM. 2001a.Multistationarity, the basis of cell differentiation and

memory. I. Structural conditions of multistationarity and other nontrivial behavior.
Chaos 11:170–179 DOI 10.1063/1.1350439.

Thomas R, KaufmanM. 2001b.Multistationarity, the basis of cell differentiation and
memory. II. Logical analysis of regulatory networks in terms of feedback circuits.
Chaos 11:180–195 DOI 10.1063/1.1349893.

Thomas R, KaufmanM. 2002. Conceptual tools for the integration of data. Comptes
Rendus Biologies 325:505–514 DOI 10.1016/S1631-0691(02)01452-X.

Thomas R, Thieffry D, KaufmanM. 1995. Dynamical behaviour of biological regulatory
networks–I. Biological role of feedback loops and practical use of the concept
of the loop-characteristic state. Bulletin of Mathematical Biology 57:247–276
DOI 10.1007/BF02460618.

Van Asten K, Neven P, Lintermans A,Wildiers H, Paridaens R. 2014. Aromatase
inhibitors in the breast cancer clinic: focus on exemestane. Endocrine-Related Cancer
21:R31–R49 DOI 10.1530/ERC-13-0269.

Vivanco I, Sawyers CL. 2002. The phosphatidylinositol 3-kinase–AKT pathway in human
cancer. Nature Reviews Cancer 2:489–501 DOI 10.1038/nrc839.

VonMinckwitz G, JonatW, Fasching P, Du Bois A, Kleeberg U, Luck HJ, Kettner E,
Hilfrich J, EiermannW, Torode J, Schneeweiss A. 2005. A multicentre phase II
study on gefitinib in taxane- and anthracycline-pretreated metastatic breast cancer.
Breast Cancer Research and Treatment 89:165–172 DOI 10.1007/s10549-004-1720-2.

Wakeling AE, Dukes M, Bowler J. 1991. A potent specific pure antiestrogen with clinical
potential. Cancer Research 51:3867–3873.

Wang L, Di L-J. 2014. BRCA1 and estrogen/estrogen receptor in breast cancer: where
they interact? International Journal of Biological Sciences 10:566–575
DOI 10.7150/ijbs.8579.

Watters JJ, Chun TY, Kim YN, Bertics PJ, Gorski J. 2000. Estrogen modulation of
prolactin gene expression requires an intact mitogen-activated protein kinase
signal transduction pathway in cultured rat pituitary cells.Molecular Endocrinology
14:1872–1881 DOI 10.1210/mend.14.11.0551.

Werner H, Maor S. 2006. The insulin-like growth factor-I receptor gene: a down-
stream target for oncogene and tumor suppressor action. Trends Endocrinol Metab
17:236–242 DOI 10.1016/j.tem.2006.06.007.

Khalid et al. (2016), PeerJ, DOI 10.7717/peerj.2542 32/33

https://peerj.com
http://dx.doi.org/10.1111/j.1432-1033.1976.tb11108.x
http://dx.doi.org/10.1063/1.1350439
http://dx.doi.org/10.1063/1.1349893
http://dx.doi.org/10.1016/S1631-0691(02)01452-X
http://dx.doi.org/10.1007/BF02460618
http://dx.doi.org/10.1530/ERC-13-0269
http://dx.doi.org/10.1038/nrc839
http://dx.doi.org/10.1007/s10549-004-1720-2
http://dx.doi.org/10.7150/ijbs.8579
http://dx.doi.org/10.1210/mend.14.11.0551
http://dx.doi.org/10.1016/j.tem.2006.06.007
http://dx.doi.org/10.7717/peerj.2542


Wik E, Ræder MB, Krakstad C, Trovik J, Birkeland E, Hoivik EA, Mjos S, Werner HM,
Mannelqvist M, Stefansson IM. 2013. Lack of estrogen receptor-α is associated with
epithelial–mesenchymal transition and PI3K alterations in endometrial carcinoma.
Clinical Cancer Research 19:1094–1105 DOI 10.1158/1078-0432.CCR-12-3039.

Xu L, Qi Y, Xu Y, Lian J, Wang X, Ning G,WangW, Zhu Y. 2016. Co-inhibition
of EGFR and IGF1R synergistically impacts therapeutically on adrenocortical
carcinoma. Oncotarget DOI 10.18632/oncotarget.8827.

Yerushalmi R, Gelmon KA, Leung S, Gao D, CheangM, PollakM, Turashvili G,
Gilks BC, Kennecke H. 2012. Insulin-like growth factor receptor (IGF-1R) in
breast cancer subtypes. Breast Cancer Research and Treatment 132:131–142
DOI 10.1007/s10549-011-1529-8.

Yi YW, Kang HJ, Bae I. 2014. BRCA1 and oxidative stress. Cancer 6:771–795
DOI 10.3390/cancers6020771.

ZhangMH,ManHT, Zhao XD, Dong N, Ma SL. 2014. Estrogen receptor-positive breast
cancer molecular signatures and therapeutic potentials (Review). Biomedical Reports
2:41–52.

ZhaoM, Ramaswamy B. 2014.Mechanisms and therapeutic advances in the man-
agement of endocrine-resistant breast cancer.World Journal of Clinical Oncology
5:248–262 DOI 10.5306/wjco.v5.i3.248.

Khalid et al. (2016), PeerJ, DOI 10.7717/peerj.2542 33/33

https://peerj.com
http://dx.doi.org/10.1158/1078-0432.CCR-12-3039
http://dx.doi.org/10.18632/oncotarget.8827
http://dx.doi.org/10.1007/s10549-011-1529-8
http://dx.doi.org/10.3390/cancers6020771
http://dx.doi.org/10.5306/wjco.v5.i3.248
http://dx.doi.org/10.7717/peerj.2542

