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ABSTRACT

The first virtual cranial endocast of a lungfish from the Early Devonian, Dipnorhynchus
sussmilchi, is described. Dipnorhynchus, only the fourth Devonian lungfish for which
a near complete cranial endocast is known, is a key taxon for clarifying primitive
character states within the group. A ventrally-expanded telencephalic cavity is present
in the endocast of Dipnorhynchus demonstrating that this is the primitive state for
“true” Dipnoi. Dipnorhynchus also possesses a utricular recess differentiated from the
sacculolagenar pouch like that seen in stratigraphically younger lungfish (Dipterus,
Chirodipterus, Rhinodipterus), but absent from the dipnomorph Youngolepis. We do
not find separate pineal and para-pineal canals in contrast to a reconstruction from
previous authors. We conduct the first phylogenetic analysis of Dipnoi based purely
on endocast characters, which supports a basal placement of Dipnorhynchus within the
dipnoan stem group, in agreement with recent analyses. Our analysis demonstrates the
value of endocast characters for inferring phylogenetic relationships.

Subjects Evolutionary Studies, Neuroscience, Paleontology, Zoology

Keywords Dipnoi, Endocast, Braincase, Palaeconeurology, Devonian, Dipnorhynchus, Phylogeny,
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INTRODUCTION

Lungfish, or dipnoans as they are also known, have origins dating back over 400 million
years. Today there are just six extant species, but it was during the Devonian Period that they
reached the peak of their success and diversity (Clack, Sharp ¢ Long, 2011). ‘Total-group’
lungfishes are a well-supported monophyletic group, but early dipnoan phylogeny has long
been contentious and remains unresolved (Johanson ¢ Ahlberg, 2011). Campbell ¢ Barwick
(1990) employed a functional-adaptive method, splitting Palaeozoic lungfishes into three
lineages based mainly on dental characters (tooth-plated, dentine-plated and denticulated
forms). However, most workers in the field instead utilise cladistic methods; applying the
principles of either parsimony (Ahlberg, Smith & Johanson, 20065 Clement, 2012; Marshall,
19865 Miles, 1977; Qiao & Zhu, 2009; Schultze & Marshall, 1993) or Bayesian inference
(Friedman, 2007).
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Figure 1 Map showing localities yielding Early Devonian dipnorhynchid taxa in south-eastern Aus-
tralia.

The split between the extant lungfish families is thought to have occurred in the Permian
(Heinicke, Sander ¢ Hedges, 2009). In general terms this means that ‘crown-group’ lung-
fishes contains all the living representatives and their last common ancestor (of plausible
Permian age), and all of the (both fossil and living) descendants of that ancestor. Thus,
‘stem-group’ lungfish is equivalent to the total group minus the crown group, and contains
all of the Devonian lungfishes. The most basal unambiguous member of the lungfish stem
group (and sister group to all other lungfishes) is Diabolepis from the Lower Devonian of
China (Chang, 1995; Chang & Yu, 1984), although some authors disagree with this interpre-
tation (Campbell & Barwick, 2001). The group is thought to have radiated quickly (Lloyd,
Wang & Brusatte, 2011), and early Devonian lungfishes are known from deposits across
China, Russia, Europe, North America and Australia (Campbell ¢ Barwick, 1986). The
Australian fauna from this time is dominated by the robust, short-headed ‘dipnorhynchid’
taxa, typified by Dipnorhynchus itself (Etheridge, 1906).

Material of the Early Devonian genus Dipnorhynchus was first described over a
century ago, and although the name ‘Ganorhynchus’ was originally used (Etheridge,
1906), ‘Dipnorhynchus’ was erected two decades later for D. sussmilchi (Jaekel, 1927). Dip-
norhynchus sussmilchi (Campbell ¢ Barwick, 1982a) is known from the Taemas—Wee Jasper
limestones that occur around Burrinjuck Dam in New South Wales, Australia (see Fig. 1),
and have been dated as Emsian in age (Thomson & Campbell, 1971). Other dipnoan
taxa described from the same site include Dipnorhynchus kurikae (Campbell ¢ Barwick,
2000), Speonesydrion iani (Campbell & Barwick, 1983), and Cathlorhynchus trismodipterus
(Campbell, Barwick ¢ Senden, 2009). Furthermore, there is an additional Dipnorhynchus
species known from the Lick Hole Limestones, south of the Taemas—Wee Jasper limestones,
D. kiandrensis (Campbell & Barwick, 1982b).

The skull roof and associated cranial material of D. sussmilchi was first described in
some detail (Hills, 1941), and then later elaborated upon (Campbell, 1965; Thomson &
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Campbell, 1971). However, a thorough investigation of braincase material for the genus
did not come until later when Campbell ¢~ Barwick (1982a) described the neurocranium
and reconstructed the endocranial cavity of D. sussmilchi. This was achieved by examining
broken specimens to reveal internal anatomy, or by using soft fishing wire to trace the
course of small canals. Later, similar treatment for D. kurikae ensued (Campbell & Barwick,
2000). Further details regarding the neurocranium and space for the endolymphatic ducts
and labyrinth of D. sussmilchi shortly followed (Campbell, Barwick ¢ Lindley, 2000).

With the increasing accessibility of modern, non-invasive scanning technology such as
synchrotron and micro-computed tomography (.CT), along with more sophisticated soft-
ware packages for data processing and visualization, the field of palaconeurology seems to be
undergoing an upsurge (Walsh, Luo ¢» Barrett, 2013). Until relatively recently, researchers
had to rely upon fortuitous findings of damaged skulls, or resort to destructive techniques
(Stensid, 1963) to examine the internal anatomy of the braincase. These more traditional
techniques have been shown to be somewhat limited, especially with respect to fine
morphological details (Giles, Rogers ¢ Friedman, 2016). However, today we are quickly in-
creasing the number of taxa for which virtual cranial endocast morphology is known across
all vertebrate groups (Balanoff et al., 2015; Falk, 2004; Lu et al., 2012), including fishes such
as the sarcopterygian Powichthys (Clément & Ahlberg, 2010), the placoderm Romundina
(Dupret et al., 2014), the galeaspid Shuyu (Gai et al., 2011), actinopterygians (Giles &
Friedman, 2014; Giles, Rogers ¢ Friedman, 2016; Lu et al., 2016a), and chondrichthyans
(Maisey, 2007).

Chirodipterus wildungensis from the Upper Devonian of Germany was the first cranial
endocast of a lungfish published (Sive-Soderbergh, 1952), although this was drawn from
a single damaged specimen and provided only a relatively crude reconstruction. Other
examples include a partial endocast of the Late Devonian Holodipterus (Pridmore, Campbell
& Barwick, 1994), as well as those of Dipnorhynchus (Campbell ¢ Barwick, 1982a; Campbell
¢ Barwick, 2000). Although the first virtual lungfish endocasts only came recently, they
have greatly enriched our knowledge of the field. Not only are the tomographic methods
that produce these endocasts non-destructive, they also provide far more comprehensive
information about the cranial cavity, and far superior possibilities for visualization than
traditional techniques. Two genera have been investigated by tomography to date: the
Late Devonian Rhinodipterus from Australia (Clement ¢» Ahlberg, 2014) and Dipterus from
the Middle Devonian of Scotland (Challands, 2015). Further to this, the brain and endocast
of the extant Australian lungfish, Neoceratodus, is also known from CT data (Clement
et al., 2015), and researchers are developing techniques for reconstructing brains in
extinct members (Clement et al., 2016). Not only are cranial endocasts rich sources of
morphological data in their own right, they can also give clues as to an animal’s brain
structure, sensory abilities and inferred behavior.

We expand on this growing body of work by investigating the cranial endocast of
Dipnorhynchus sussmilchi from the Early Devonian of Australia as revealed from tomo-
graphic data. Our work represents the oldest, and only the fourth lungfish taxon endocast
investigated, and is the currently the only example from the Early Devonian. The data from
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Dipnorhynchus contributes to uncovering how the lungfish brain has evolved through time,
and also provides valuable data in resolving early dipnoan phylogeny.

MATERIAL & METHODS

The Dipnorhynchus sussmilchi Etheridge (1906) specimen (ANU 18815) is a well-preserved,
acid-prepared complete cranium from the Early Devonian (Emsian) Taemas-Wee
Jasper/Burrinjuck limestones of New South Wales, Australia (Fig. 1). The specimen is
housed at the Australian National University, Canberra, Australia, and was scanned at
the High Resolution X-ray Computed Tomography (uwCT) facility of the same location
(Sakellariou et al., 2004) with a voxel resolution of 30.4 microns. The ANU uCT facility is
based on cone beam geometry and has a detector pixel width of 2048 pixels. The original
scan was performed with a focus on snout morphology for another study (Camipbell,
Barwick ¢ Senden, 2010), and consequently the rear portion of the skull was not captured.

VGStudio Max, version 2.2 (Volume Graphics Inc., Germany) was used to achieve three-
dimensional segmentation and modeling of the cranial endocast through a combination of
manual segmentation and thresholding. The resulting endocast model was smoothed by a
factor of three prior to export.

We assembled our character matrix of 20 characters and 10 taxa in Mesquite 3.01
(see Supplemental Information 1 for full details). Characters 1-13 were taken from
previous analyses (Friedman, 2007; Giles et al., 2015); however, 14-20 are new characters
identified through the course of this study. The parsimony analysis was conducted using
the heuristic search algorithm in PAUP v4.0010 (Swofford, 2001) using stepwise addition,
10,000 random addition sequence replicates holding five trees at each step, with tree
bisection and reconnection (TBR) enabled, and automatically increasing maxtrees by 100.
The Late Devonian coelacanth Diplocercides was designated as the outgroup. Bootstrap
values were then calculated using 1,000 random replicates of the heuristic search in PAUP,
again with TBR enabled for 10 replicates.

RESULTS

Description

The skull measures 12 cm in length, and almost 7.5 cm across the quadrates at its widest
point (Thomson ¢ Campbell, 1971: Fig. 36). The scan data extends from the tip of the snout
to the mid-point of the labyrinth region. Unfortunately the occipital region of the specimen
is not included in the scan. Proportionally the nasal capsules are the longest structures of
the available endocast being approximately 25% of the total length. The metencephalic
and telencephalic regions account for 10-15% endocast length, the diencephalic <10% and
the mesencephalic cavity, at ~5% total length, is the smallest component of the endocast
(Figs. 2-5).

Nasal capsules and olfactory tracts

The nasal capsules are large, oblong structures with a convex dorsal surface (Fig. 2). The
medial edges of the nasal capsules are not parallel, instead they converge anteromedially
at an angle of 45 degrees (Figs. 3 and 4). Unlike Thomson ¢ Campbell (1971) we do not
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Figure 2 Dipnorhynchus sussmilchi cranial endocast in lateral view. (A) virtual reconstruction; (B)
schematic illustration of ANU 18815; and (C) reproduction of D. sussmilchi endocast from Campbell ¢
Barwick (1982a, Fig. 25A).

recognise an anterior nasal opening for a nostril present, but there is a canal exiting the
capsules in their posterolateral corners; this most likely housed the profundus nerve.
Challands (2015) noted that in both Dipnorhynchus sussmilchi and Dipnorhynchus kurikae,
the ramus opthalmicus profundus V enters the posterior of the nasal capsule, rather than
circumventing it as seen in all other Devonian lungfishes. We see no evidence of threefold
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Figure 3 Dipnorhynchus sussmilchi cranial endocast in dorsal view. (A) virtual reconstruction; and (B)
schematic illustration.

sub-divisions as reconstructed for this taxon by Thomson ¢ Campbell (1971, Fig. 29). The
canals for the olfactory nerves (n.I) are expanded at their anterior extent where they join
the nasal capsules, and a canal likely for either the median or lateral nasal vein, exits in a
posterior direction just behind the nasal capsules (Fig. 3). The olfactory tracts are broad
and diverge from each other at 45°, and they are proportionally shorter in Dipnorhynchys
than in Dipterus or Rhinodipterus (Challands, 2015; Clement ¢ Ahlberg, 2014). At their
posterior extent there are two small rounded expansions visible in each tract that probably
housed the olfactory bulbs (Fig. 5).

Telencephalic region

The telencephalic region is mostly flat dorsally, reminiscent of the condition seen in
Youngolepis (Chang, 1982), however there is a strong rise towards the pineal canal
posteriorly on the dorsal margin (Fig. 2). There is a small yet distinct expansion of
the telencephalic ventral edge, mostly obscured behind the large canals for the optic nerves.
However, there is no evidence of a distinctive lateral telencephalic expansion like that
originally reconstructed in Dipnorhynchus (Campbell ¢ Barwick, 1982a), nor those seen in
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Figure 4 Dipnorhynchus sussmilchi cranial endocast in ventral view. (A) virtual reconstruction; and
(B) schematic illustration.

Chirodipterus wildungensis (Sive-Siderbergh, 1952), Rhinodipterus kimberleyensis (Clement
& Ahlberg, 2014), nor extant lungfishes (Clement et al., 2015; Northcutt, 2011).

Diencephalic region

The diencephalic cavity is slightly narrower than the telencephalic region and also about
one-third shorter (Figs. 3 and 4). Two wide, cylindrical anterolaterally-directed canals for
the optic nerves (n.II) exit the endocast in a ventral position at the anterior boundary of the
diencephalic region. D. sussmilchi carries a posteroventrally long hypophyseal recess with a
number of smaller, well-defined canals entering it (Figs. 2 and 4). The hypophyseal recesses
of Rhinodipterus and Dipterus do not extend as far ventrally (Challands, 2015; Clement &
Ahlberg, 2014), however these structures in Youngolepis (Chang, 1982) and Eusthenopteron
(Stensio, 1963) are of similar proportions to Dipnorhynchus. The hypophyseal cavity
reconstructed from our scan data differs in a number of aspects from that of Campbell ¢
Barwick (1982a, Fig. 25). As our reconstruction is based directly on a scan of the cavity,
whereas Campbell and Barwick’s reconstruction was based on inferences from partly
visible structures, we believe the differences reflect the limitations of the latter technique.
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Figure 5 Dipnorhynchus sussmilchi cranial endocast in anterodorsolateral view. (A) virtual recon-
struction; and (B) schematic illustration.

Dorsal to the hypophysis lies a short, rounded saccus vasculosus oriented posteriorly
underneath the cranial cavity (Fig. 2), similar to those seen in actinopterygians (Giles et al.,
20155 Giles ¢ Friedman, 2014) or chondrichthyans (Maisey, 2007). There are a number of
paired canals exiting the hypophysis (Figs. 2, 4 and 5); the most anterior of these extend
far anterior, as far as the optic nerve canals before extending outwards laterally and likely
housed the palatine arteries. The posteriorly-directed canals diverge outwards towards
the trigeminal nerves and probably contained the internal carotid arteries. It is interesting
to note that the canal for the internal carotid (Fig. 4) does not appear to bifurcate for a
branch for the pseudobranchial artery like seen in Dipterus (Fig. 10B, Challands, 2015) and
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other stratigraphically younger lungfish. Slightly dorsal to this canal are two small canals
interpreted as housing the pituitary veins. Slightly anterior to these canals are two further
canals directed in an anterolateral direction that probably housed the ophthalmic arteries.
Along the dorsal edge of the diencephalic region lies a broad eminence from which the
pineal canal leads upwards towards the circular pineal gland in the skull roof (Fig. 2).
The pineal gland is situated further anterior than that originally drawn for Dipnorhynchus
(Campbell & Barwick, 1982a). We find no obvious evidence of a parapineal gland (contra
Campbell & Barwick, 1982a), however there are a number of miniscule canals leaving from
along the midline towards the skull roof dorsally in this area.

Mesencephalon

The mesencephalic cavity is the shortest region of the endocast and is as narrow as the
diencephalic cavity. On the lateral face of the endocast are two small paired canals exiting in
anterolateral directions (Fig. 2); the ventrally lower one would have housed the oculomotor
nerve (n.III), and the dorsally higher one the trochlear nerve (n.IV). The ventral and dorsal
edges of the mesencephalic cavity are fairly flat, about twice as high as the telencephalic
region.

Metencephalic and Myelencephalic cavities

The metencephalic region extends from the bifurcating canals for the trigeminal nerves
(n.V) to a poorly defined region posterior to the canals for the auditory nerves (n.VIII),
although a distinct boundary cannot be determined. The canal for the ophthalmic nerve
(n.V)) extends anterolaterally, while the combined canal for maxillary and mandibular
nerves (n.V,g3) is broader and extends in a posterolateral direction. Slightly posterodorsal
to this, the canal for the facial nerve (n. VII) extends laterally (Figs. 2 and 5). There is a
further canal anterior to and slightly ventral to the utricular recess that could have housed
the abducens (n. VI) nerve (Figs. 4 and 5). Unlike Campbell and Barwick, we have not
been able to identify the canals for the auditory (n. VIII) nerves from the data (Fig. 2).
The anterior portion of the metencephalic region is of similar width to the preceding
mesencephalon, thought it widens laterally slightly towards its posterior extent. The ventral
margin is straight but the dorsal surface is gently curved to form a convex margin forming
the deepest brain region (Fig. 2). There are no prominent supraotic cavities like those seen
in Rhinodipterus present (Clement ¢» Ahlberg, 2014). Very little can be said concerning the
myelencephalic region as most of this is missing from the scan, however it appears to have
a slightly lower dorsal margin than the metencephalic region but is of similar width.

Labyrinth region

Although the labyrinth region is incomplete, we can still observe a number of salient

features. The anterior semicircular canals stand much higher than the dorsal extent of
the hindbrain and Dipnorhynchus presumably possessed a relatively tall superior sinus
(Fig. 2). There is a large ampulla on the anterior semicircular canal, and although its

full extent cannot be determined, the sacculagenar pouch appears to have at least been
long. The utricular recess is only moderately expanded. This is in contrast with more
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derived lungfishes such as Rhinodipterus (Clement ¢ Ahlberg, 2014), Chirodipterus (Sive-
Soderbergh, 1952), and Dipterus (Challands, 2015), although we note it is more expanded
than the reconstruction by Campbell ¢ Barwick (1982a, Fig. 25).

Phylogenetic analysis

The phylogenetic analysis implemented herein focuses solely on characters identifiable
from cranial endocasts, and is far from comprehensive. The approach of Friedman (2007)
in using the whole neurocranial complex can include a greater wealth of data than our
analysis. However great care must be taken so as not to score the same character twice,
once described from the neurocranium and once as an endocast feature. Indeed, the results
of the phylogenetic analysis are preliminary, but it is our hope that with increasingly
accessible scanning technology and a greater number of specimens examined our character
matrix will demonstrate the efficacy of endocast characters in their own right and serve as
a framework for future analyses and new data, and allow workers to infer phylogeny from
endocasts in cases where associated neurocranial data is not adequately provided.

The comparative endocast data used in our analysis was taken from the literature
(Challands, 2015; Chang, 1982; Clement ¢ Ahlberg, 2014; Clement et al., 2015; Holland,
20145 Lu et al., 2016b; Sdve-Soderbergh, 1952; Stensio, 1963). Although only small, the results
of our analysis (Fig. 6) focusing on cranial endocast characters mostly reflect the hypotheses
of relationships seen in other recent phylogenetic analyses of lungfishes and other Devonian
sarcopterygians (Challands, 2015; Clement, 2012; Lu et al., 2016b; Qiao & Zhu, 2009).

The maximum parsimony analysis produced a strict consensus tree with a score of 34
steps, and a consistency index (CI) and retention index (RI) of 0.68, homoplasy index (HI)
0f 0.32, and a rescaled consistency index (RCI) of 0.46. Qingmenodus is the most basal taxon
above the outgroup Diplocercides. The tetrapodomorphs Gogonasus and Eusthenopteron
form a clade as sister group to the lungfish total group (Dipnomorpha). Youngolepis is the
most basal taxon in the Dipnomorpha, with Dipnorhynchus the most basal of the Dipnoi.
Dipterus, Chirodipterus and Rhinodipterus are more derived occupying successive branches,
with Neoceratodus comprising a crownward position (Fig. 6).

The results of the phylogenetic analysis do support the use of endocast characters
in analyses, either in isolation or in conjunction with other morphological characters.
Although virtual palaeoneurology is still its infancy, especially with respect to fishes, cranial
endocasts show great potential with which to support hypotheses of phylogeny.

DISCUSSION

(a) The Dipnorhynchus sussmilchi endocast

The first reconstruction of the cranial endocast of Dipnorhynchus was drawn directly
from broken specimens and inferring internal morphology without the aid of scanning
technology (Campbell &~ Barwick, 1982a), similar to the method used for Chirodipterus
wildungensis (Sive-Soderbergh, 1952). In comparison with that reconstruction, we largely
agree with most characters including the placement of the cranial canals and general
proportions of brain regions. However the most striking point of difference is that there is
no large recess for a separate para-pineal canal visible in our scan data (contra Campbell
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Figure 6 Phylogenetic relationships of selected sarcopterygians as interpreted from cranial endo-
cast morphology. (A) the Late Devonian coelacanth Diplocercides kayseri (from Stensio, 1963, Fig. 45);
(B) the Early Devonian onychodont Qingmenodus yui (from Lu et al., 2016b, Fig. 2); the Late Devonian
tetrapodomorphs (C) Gogonasus andrewsae (from Holland, 2014, Figs. 22 and 23); (D) Eusthenopteron fo-
ordi (Stensio, 1963, Fig. 50); (continued on next page...)
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Figure 6 (...continued)

(E) the Early Devonian dipnomorph Youngolepis praecursor (from Chang, 1982, Fig. 19); (F) the Early
Devonian dipnoan Dipnorhynchus sussmilchi (ANU 18815); (G) the Middle Devonian dipnoan Dipterus
valenciennesi (from Challands, 2015, Fig. 9); the Late Devonian dipnoans (H) Chirodipterus wildungensis
(from Siive-Siderbergh, 1952, Fig. 9); (I) Rhinodipterus kimberleyensis (WAM 09.6.149); and (J) the extant
Australian lungfish Neoceratodus forsteri (from Clement et al., 2015, Fig. 6).

& Barwick, 1982a, Fig. 25). There is a large, obvious space for the pineal canal (Fig. 2B),
but our specimen of Dipnorhynchus sussmilchi appears to lack any separate para-pineal
canal. Furthermore, the position of the pineal gland is placed further anteriorly in our
reconstruction compared to that of Campbell ¢ Barwick (1982a), at the level of the optic
nerve canals rather than at the level of n. IV; this is more in line with the generalized
gnathostome condition. There are, however, a number of minute canals exiting the cranial
cavity dorsally in this dorsal region of the forebrain that may have been related to the pineal
organ.

Another significant difference is the lack of any noticeable lateral expansion in the
telencephalic region in contrast to that shown by Campbell & Barwick (1982a). Instead the
narrow forebrain appears similar to that of the Early Devonian dipnomorph, Youngolepis
(Chang, 1982, Fig. 19) in this respect though the presence of a small ventral expansion
in Dipnorhynchus is more reminiscent of the condition seen in Dipterus (Challands,
2015). Similarly, Campbell & Barwick (1982b) did not reconstruct an utricular recess
outwardly differentiated from the sacculolagenar pouch. However, we find differentiated
sacculolagenar—utricular recesses. The condition is more similar to that reconstructed for
Dipnorhynchus kurikae by the same authors (Campbell ¢» Barwick, 2000, Fig. 4).

New characters that can be identified in our scan data include the size and shape of
the nasal capsules, the position of the nasal vein, as well as details concerning the canals
exiting the hypophysis. We are able to distinguish and trace the course of the canals for the
palatine, ophthalmic and internal carotid arteries, as well as the canal for the pituitary vein
(Figs. 3 and 4).

(b) Comparison with other sarcopterygians

In Fig. 6 the updated endocast of Dipnorhynchus is compared with that of other Devonian
lungfishes from which a complete cranial endocast is known, as well as the Early Devonian
dipnomorph, Youngolepis, two tetrapodomorph taxa (Gogonasus and Eusthenopteron), the
onychodont Qingmenodus, and Diplocercides the coelacanth. In the forebrain, the slight
ventral expansion of the telencephalic region in Dipnorhynchus sussmilchi contrasts with the
more pronounced expansion in the stratigraphically younger Chirodipterus wildungensis
and Rhinodipterus kimberleyensis. This trend and its implications have already been
discussed (Clement ¢» Ahlberg, 2014). It was proposed that this trend of increasing size of
the telencephalic region might correlate with an increased reliance on olfaction in lungfishes
over time. However, it may also reflect an increased capacity to navigate environmentally
complex ecosystems or social systems, as seen in chondrichthyans (Yopak er al., 2007). Two
slight bulges at the base of the olfactory nerves (see Fig. 5) suggest that the olfactory bulbs
were sessile rather than pedunculate. Relatedly, we believe that the identification of the

Clement et al. (2016), PeerdJ, DOI 10.7717/peerj.2539 12/19


https://peerj.com
http://dx.doi.org/10.7717/peerj.2539

Peer

olfactory bulbs in Rhinodipterus may have been originally overlooked; a slight bulge in
telencephalic region just posterior of the olfactory canals could represent these (Clement
& Ahlberg, 2014, Fig. 2) as is the condition interpreted in Dipterus also (Challands, 2015).

Posterior to the pineal recess in Dipnorhynchus and Dipterus (but apparently lacking
in Chirodipterus) lies a small bulge on the dorsal surface of the hindbrain region of the
endocast. Challands (2015, Fig. 9) tentatively identified this as the space for the optic lobes
in Dipterus. Campbell & Barwick (1982a); Campbell & Barwick (1982b) reconstructed a
single dorsally oriented canal in this region, but we again could not locate such a canal in
the tomographic data. Unfortunately this region of the skull was damaged in Rhinodipterus
so its morphology cannot be determined for this taxon.

As previously discussed (Challands, 20155 Clement & Ahlberg, 2014), Devonian and later
lungfishes show a trend of increasing size of the utricular recess relative to the sacculolagena,
and that of Dipnorhynchus remains small and relatively undifferentiated in comparison to
later taxa. Not surprisingly, it closely resembles that of Dipnorhynchus kurikae (Campbell
¢ Barwick, 2000, Fig. 5). Moreover, Dipterus and Rhinodipterus both possess a small notch
demarcating the lagenar and saccular portions of the labyrinth region, while this is absent
in Chirodipterus and extant lungfishes (Clement ¢» Ahlberg, 2014, Fig. 4). All of the lungfish,
as well as Youngolepis, Gogonasus and Eusthenopteron possess a high superior sinus that
extends dorsally above the endocranial roof.

Overall the updated endocast of Dipnorhynchus closely resembles that of Youngolepis
and Diplocercides in possessing a ventrally-extensive hypophyseal recess, and in lacking any
telencephalic lateral expansion. However the emergence of a differentiated utricular recess,
ventral expansion of the telencephalon (albeit only slight) and a combined anterodorsally-
oriented para-pineal gland resembles those of stratigraphically younger lungfish. These
latter features lend support to the primitive placement of Dipnorhynchus within the Dipnoi
more basally than other lungfish for which the endocranial anatomy is known.

(c) Evolutionary significance

The cranial endocast of Dipnorhynchus exhibits conditions typical for primitive sarcoptery-
gians. A small utricular recess is shared with Youngolepis, Eusthenopteron, Diplocercides and
Qingmenodus implying that the expansion of the utricular recess is a derived condition
(synapomorphy) within the dipnoans. Also, unlike more derived lungfishes (Chirodipterus,
Rhinodipterus, Neoceratodus), Dipnorhynchus retains a buccohypophyseal opening and
lacks separate foramina for the internal carotid artery and efferent pseudobranchial
arteries. On the other hand, Dipnorhynchus demonstrates the derived condition in lacking
an intracranial joint, and shows a sinus superior that obviously extends above the roof of
the rhombencephalon; a character first observed in early actinopterygians (Giles, Rogers ¢
Friedman, 2016), and the tetrapodomorphs Eusthenopteron and Gogonasus, but absent in
Qingmenodus and Diplocercides (Fig. 6).

Of further note is the proportion of the hindbrain, the rhombencephalon, relative to
other Devonian sarcopterygians. Dipnorhynchus and all subsequent dipnoans demonstrate
a shortening of the distance between the hypophyseal recess and rhombencephalon, a state
more akin to basal actinopterygians such as Mimipiscis (Giles & Friedman, 2014). As such,
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this character appears to be a synapomorphy for the Dipnoi, convergent with the condition
in Actinopterygii (Giles, Rogers ¢ Friedman, 2016), the shortening likely related to the loss
of the intracranial joint (also seen in the dipnomorph Youngolepis). Lu et al. (2016b) noted
that the rhombencephalon in Devonian sarcopterygians is generally well-developed to the
anterior, with the facial nerve (n.VII) being located well behind the trigeminal complex and
anterior to the labyrinth. They tentatively attributed this expansion to an increased demand
for functional sensitivity processed in this region of the brain (e.g., motor control in the pons
and cerebellum), which if correct, has reverted to the primitive actinopterygian condition
in the first appearance of the Dipnoi. Other morphological correlates with well-developed
facial functional sensitivity are, however, still present in the Dipnoi such as in Dipterus where
Challands (2015) noted the extensive innervation in the rostral region by the facial nerve
(n.VII) as well as the lateral line by the same nerve complex. Such patterns illustrate the com-
plexities involved in simply attributing endocast volume to increased functional processing
for a certain region of the brain. Inferring functional evolutionary trajectories from endocast
volumes, especially where demarcation between regions is to a certain extent subjective, is,
at best, speculative unless the nervous and functional systems are considered as a whole.

CONCLUDING REMARKS

Here we present the oldest lungfish cranial endocast known, that of Dipnorhynchus
sussmilchi, from the Early Devonian of Australia, as reconstructed from tomographic data.
The virtual endocast presented herein largely confirms the previous depiction by Campbell
¢ Barwick (1982a) however there exist a number of notable differences. These include the
lack of a separate para-pineal gland, and similarly the lack of any lateral expansion of the
telencephalon. However the presence of a small, but differentiated utricular recess, and
new details of the canals exiting the ventrally-extensive hypophysis are revealed.

As only the fourth Devonian lungfish endocast known, Dipnorhynchus represents a
significant contribution to the field of vertebrate palaconeurology. However, to be able to
draw more useful conclusions concerning dipnoan phylogeny or function we must continue
to expand our knowledge base. Neurocrania (and consequently their associated cranial
endocasts) are morphologically complex and phylogenetically informative structures, as has
already been well illustrated for lungfishes (Friedman, 2007). We present the first character
matrix based solely on endocast characters for lungfishes. The analysis supports a basal
placement of Dipnorhynchus within the dipnoan stem group in agreement with other
recent phylogenetic analyses demonstrating the robustness of endocasts alone in creating
instructive phylogenetic hypotheses.
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