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behavior and roost selection in an avian species, peafowl (Pavo cristatus), that inhabits
urban environments. Captive peahens were exposed to noise pollution at night and their
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unaffected by exposure to noise pollution within trials. Furthermore, the peahens exhibited
no preference for roosting farther or closer to noise pollution. Interestingly, predators often
avoided the experimental area during nights with noise pollution, which could explain why
vigilance rates were higher overall during control compared to noise trials. The results
suggest that peahens’ perception of risk is not drastically impacted by noise pollution but
longer-term studies will be necessary to assess any chronic effects.
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Natural environments are increasingly exposed to high levels of noise pollution. Noise pollution 

can alter the behavior of animals but we know little about its effects on antipredator behavior. We

therefore investigated the impact of noise pollution on vigilance behavior and roost selection in 

an avian species, peafowl (Pavo cristatus), that inhabits urban environments. Captive peahens 

were exposed to noise pollution at night and their vigilance levels and roost selections were 

monitored. The vigilance levels of peahens were unaffected by exposure to noise pollution within

trials. Furthermore, the peahens exhibited no preference for roosting farther or closer to noise 

pollution. Interestingly, predators often avoided the experimental area during nights with noise 

pollution, which could explain why vigilance rates were higher overall during control compared 

to noise trials. The results suggest that peahens’ perception of risk is not drastically impacted by 

noise pollution but longer-term studies will be necessary to assess any chronic effects.

INTRODUCTION

Noise pollution is increasingly prevalent in natural environments. Over 85% of the contiguous 

United States is exposed to noise pollution (Mennitt et al., 2013). Noise pollution is usually 

louder and more frequent than natural sounds in the environment and can therefore mask these 

natural sounds (Kight & Swaddle, 2011). In addition, noise pollution is often associated with 
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other types of disturbances, such as light or chemical pollution (Halfwerk & Slabbekoorn, 2015). 

Because many animals use acoustic information to inform their behavioral decisions (Bradbury &

Vehrencamp, 1998), noise pollution can have major impacts on their fitness (Patricelli & 

Blickley, 2006; Shannon et al., 2015). 

Noise pollution could impact fitness because of its effect within a variety of different 

contexts. It can affect the mating behavior of animals. Pair bonds in zebra finches (Taeniopygia 

guttata) weaken when the birds are exposed to noise pollution (Swaddle & Page, 2007) and male 

sage grouse (Centrocercus urophasianus) attendance on breeding grounds decreases with noise 

pollution (Blickley, Blackwood & Patricelli, 2012). Noise pollution can impact territorial 

behavior as well. Many passerines adjust their songs, which function in both territory defense and

mate attraction, to compensate for increased noise levels (Mockford & Marshall, 2009). They 

vocalize louder (Brumm 2004), repeat songs (Brumm & Slater 2006), or sing during times of low

noise (Fuller, Warren & Gaston, 2007). Noise pollution can also impact parental investment; 

female house sparrows (Passer domesticus) provide less food to their young when living in noisy 

environments (Schroeder et al., 2012).  

Less is known about the effects of noise pollution on antipredator behavior (Meillère, 

Brischoux & Angelier, 2015). However, noise pollution has the potential to alter animals’ 

perception of the environment (Quinn et al., 2006; Shannon et al., 2014a). For example, animals 

that are exposed to noise pollution may perceive the environment as more dangerous because 

their ability to detect auditory signals and cues is low (Quinn et al., 2006). Chaffinches (Fringilla

coelebs) are more vigilant and peck less in response to noise pollution, suggesting that they 

perceive their noisy environment as risky. In contrast, other animals’ perception of their 

environment may not be impacted by noise pollution (Bejder et al., 2009). These animals could 

have already habituated to the noise if they never experienced negative effects in noisy 

environments or if they are generally tolerant of noise. For example, noise pollution does not 
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impact gerbils’ (Gerbillus allenbyi and G. pyramidum) selection of a safe versus risky 

microhabitat (Abramsky et al., 1996) and therefore does not seem to alter their perception of the 

riskiness of their environment. Finally, some animals may perceive environments with noise 

pollution as relatively safe because noise-sensitive predators may avoid these areas (Francis, 

Ortega & Cruz, 2009). Elk (Cervus elephus) are less vigilant in response to noise pollution 

(Shannon, Cordes, Hardy, Angeloni, & Crooks, 2014), suggesting that they view noisy 

environments as less risky. While we are beginning to understand how species perceive noise 

pollution with respect to risk levels during their active periods (daytime for diurnal species), we 

are unaware of any studies that have investigated this topic during their inactive periods 

(nighttime for diurnal species). Given that animals often rely on their senses differently 

depending on whether it is daytime or nighttime (e.g., some birds use their visual capabilities to 

forage during the day but switch to tactile capacities at night; Robert & McNeil, 1988), animals’ 

responses to noise pollution could vary depending on this factor.   

We therefore examined the impact of noise pollution on nocturnal vigilance and roosting 

behavior in a diurnal avian species, peafowl (Pavo cristatus), that inhabits urban environments 

(Ramesh & McGowan, 2009). Peafowl are native to the Indian subcontinent and have also been 

introduced to other continents (Kannan & James, 1998). While they naturally live in deciduous 

forests and scrubby woodlands, they also live near human settlements (Ali & Ripley 1969; 

Johnsingh & Murali, 1978). They roost atop tall structures at night (such as trees; de Silva, 

Santiapillai & Dissanayake, 1996) and are subject to predation by mammalian and avian 

predators (de Silva, Santiapillai & Dissanayake, 1996; Kannan & James, 1998). There are three 

alternative explanations for how peafowl perceive noisy environments. First, if peafowl perceive 

their environments as risky when there is noise pollution, then we expect them to exhibit high 

rates of vigilance in response to noise pollution and avoid roosting in areas with high levels noise 

pollution. Second, if peafowl are tolerant of noise pollution or have previously habituated to it, 
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then we do not expect their vigilance rates to change from baseline levels and expect them to 

select their roosts irrespective of noise pollution. And third, if peafowl perceive environments 

with noise pollution as an escape from predators, then we expect their vigilance levels to decrease

in response to noise pollution and we expect them to roost near high levels of noise pollution. In 

addition, because noise pollution can be stressful to some species and cause physiological 

changes (Blickley et al., 2012), we examined whether the mass of peahens changed depending on

their exposure to noise pollution. 

METHODS

We explored the effect of artificial noise pollution on vigilance levels and roost selection in 

captive peahens at the Purdue Wildlife Area in West Lafayette, IN, USA (40.450327°N, 

−87.052574°E). The vigilance levels experiment was conducted between July 2014 and April 

2015 and the roost experiment was conducted between March and June 2016. The experiments 

were performed in an outdoor experimental cage (4.5 m x 9.0 m) that was 75 m from the outdoor 

aviary (24.4 x 18.3 x 1.8 m) where the birds were permanently housed (the distance between the 

experimental cage and main aviary ensured that birds in the main aviary did not hear the 

broadcast noise from the experimental cage). The aviary was over 550 m from the nearest major 

road and it was surrounded by trees; noise pollution from anthropogenic sources was therefore 

minimal. The peahens were adults and were given food and water ad libitum. The study was 

approved by Purdue University Animal Care and Use Committee (#1305000862 & 1504001232).

Vigilance Levels

We tested whether artificial noise pollution impacts vigilance levels in peahens (n=30). For each 

trial, a peahen was put inside of the experimental cage for seven consecutive nights (the 

experimental design was similar to Yorzinski et al., 2015). The experimental cage had one 
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wooden roost (0.85 m tall and 1.3 m long) that was 1.5 m from a rock-shaped speaker (150 W 

Outdoor Rock Speaker, model: tfs6sl, TIC Corporation, City of Industry, California, USA). The 

speaker was connected to an audio amplifier (Audioengine N22, Austin, Texas) and an iPod touch

(model A1509, Apple Corporation, Cupertino, California, USA). During noise trials, the speaker 

continuously broadcast white noise (white Gaussian noise generated with Matlab; 16 bit; 44.1 

Hz) during nights (and days) 2-5; no noise was broadcast on nights 1, 6, or 7. The white noise 

automatically turned on at noon on the second day and turned off at noon on the sixth day 

(Woods outlet timer, model 50002, Mississauga, Canada). During medium noise trials (n=10), the

white noise had a sound pressure level (SPL) of 75 dB (A weighting; slow setting) at the middle 

of the roost; during loud noise trials (n=10), the white noise measured 90 dB SPL at the middle of

the roost (model 407730, Extech Instruments, Waltham, MA, USA). During control trials (n=10),

white noise was not broadcast on any of the seven nights. The medium and loud noise trials 

broadcast noise at the same decibel levels as used in a previous study on noise pollution and birds

(Swaddle & Page, 2007); noise pollution in urban environments can exceed the decibel level that 

we broadcast in our loud noise trials (Chepesiuk, 2005). Furthermore, the peahens were not 

necessarily exposed to the same level of noise pollution for the entire trial. During the day, they 

could move to the opposite side of the experimental cage and therefore reduce the loudness of the

noise that they experienced. And, even though the peahens could have slept on the ground at the 

opposite side of the speaker at night, they always slept on the roost near the speaker. 

The head movements of the peahens were continuously monitored with a 3-axis 

accelerometer (TechnoSmart, Rome, Italy; 3mm x 1.1 mm; 0.5 g; sample resolution: 

19.6 m s−2; sample rate: 50 Hz). The accelerometer was attached to a velcro strip (3.5 mm x 1.8 

mm) that was glued (Artiglio Super 620) to the feathers atop the birds’ head (see Yorzinski et al., 

2015 for further details on accelerometer and attachment). The accelerometer was replaced every 

day because the battery would not last for the duration of an entire trial. The accelerometer does 
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not impact head movement rates (Yorzinski et al., 2015). We used a custom algorithm to extract 

the number of head movements the peahens exhibited during each night of the trial (starting 1 h 

after sunset and ending 1 h before sunrise; “nighttime period”); the accuracy of this algorithm is 

high (over 90% of head movements are correctly classified as head movements; see Yorzinski et 

al., 2015 for more details). 

The peahens were weighed at the start and end of the trial (ZIEIS Veterinary Pet Scale, 

Apple Valley, Minnesota; 5 g accuracy). The length of the peahens’ tarsus + metatarsus was 

measured at the start of the entire experiment (Neiko digital caliper; Neiko Tools, Wenzhou, 

Zhejiang, China; model number: 01409 A; ± 0.03 mm accuracy). Three video cameras (Swann 

Pro-500, Swann Communications, Santa Fe Springs, California, USA) connected to a DVR 

(Swann DVR4-2600) recorded the experimental cage and the area immediately outside the 

experimental cage (2 m from the cage perimeter). Using these video recordings, we determined 

the amount of time that predators (raccoons and domestic cats) and non-predators (mice, frogs, 

flying squirrels, deer, and rabbits) were visible during the nighttime period. We also assessed the 

time at which the peahens ascended to and descended from the roost each night. The time at 

which a bird ascended to the roost for the night was assessed by moving backwards in the videos 

from the nighttime period (1 h after sunset) and finding the time when the bird jumped on the 

roost. If the bird was not already on the roost 1 h after sunset, then we moved forward in the 

videos until the bird jumped on the roost. The time at which a bird descended from the roost for 

the night was assessed in a similar way except that we moved forward in the videos from the 

nighttime period (1 h before sunrise) until finding the time when the bird jumped off the roost. If 

the bird was already off the roost 1 h before sunrise, we moved backward in the videos until the 

bird jumped off the roost. We excluded times when the experimenters interfered with when the 

bird ascended to the roost or descended from the roost.
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Roost Selection

In the first roost selection experiment, we tested whether peahens’ (n=20) selection of nocturnal 

roosting locations was impacted by a medium-level of artificial noise pollution. For each trial, a 

peahen was put inside of the experimental cage (at least 4.5 hr before sunset) for one night. The 

cage had two wooden roosts (0.85 m tall and 1.3 m long; 5.7 m between roosts) and a rock-

shaped speaker (150 W Outdoor Rock Speaker, model: tfs6sl, TIC Corporation, City of Industry, 

California, USA) that was positioned in front of each roost (1.4 m between the speaker and 

roost). One of the speakers (randomly selected for each trial) was connected to an audio amplifier

(Audioengine N22, Austin, Texas, USA) and an iPod touch (model A1509, Apple Corporation, 

Cupertino, California, USA) that continuously broadcast white noise (white Gaussian noise 

generated with Matlab; 16 bit; 44.1 Hz). In the middle of the roost that was closer to the speaker, 

the white noise measured 75 dB SPL; in the middle of the roost that was farther from the speaker,

the white noise measured 50 dB SPL (model 407730, Extech Instruments, Waltham, MA, USA). 

Two video cameras (Swann Pro-500) connected to a DVR (Swann DVR4-2600) recorded the 

experimental cage. Based on the video recordings, we determined whether the peahen slept on 

the roost closer or farther from the noise. 

In the second roost selection experiment, we tested whether peahens’ (n=20) selection of 

nocturnal roosting locations was impacted by a high-level of artificial noise pollution. The 

experimental procedure was the same as in the first roost selection experiment except the noise 

level was increased. In the middle of the roost that was closer to the speaker, the white noise 

measured 90 dB SPL; in the middle of the roost that was farther from the speaker, the white noise

measured 65 dB SPL (Extech Instruments; model 407730). Due to a limited number of peahens, 

we tested 8 peahens that had not been used in the first roost selection experiment. In addition, we 

randomly selected 12 birds that we used in the first roost selection experiment and used them in 
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this second experiment as well (at least 33 days lapsed since a bird was used in the first roost 

selection experiment; mean ± SE: 61 ± 6.1 d). 

 

Data analysis

We tested whether artificial noise pollution impacts nocturnal vigilance rates. We ran a repeated-

measures mixed linear model (PROC Mixed with a variance components covariance structure 

and the between-within degrees of freedom approximation) to examine whether vigilance rates 

differed among trials. The dependent variable was the natural log of the head movement rate 

(number of head movements during nighttime period divided by the total time in the nighttime 

period). The independent variables were the trial night (the specific night of the trial: 1–7), trial 

type (control trial, medium noise trial, or loud noise trial), trial night by trial type interaction, 

wind speed, precipitation, temperature, moon illumination, mass at the end of the trial, tarsus + 

metatarsus, and predator and non-predator presence. We included environmental and 

morphological variables within the model because these factors have been shown to impact 

antipredator behavior (e.g., wind speed: Carr & Lima, 2010; mass: Jones, Krebs, & Whittingham,

2009). We performed a prior contrasts to compare specific trial nights.

The climate variables were obtained from a local weather station (http:

//iclimate.org; ACRE- West Lafayette). We calculated the mean of the wind speed (natural log 

transformed) and temperature across the nighttime period. Since there was no precipitation during

82% of trial nights, precipitation was categorized as being present or absent. Moon illumination 

was the fraction of the moon’s surface that was illuminated from the sun’s rays 

(http://www.timeanddate.com; Lafayette, IN). Predator and non-predator presence was whether 

predators or non-predators, respectively, were visible inside the cage or along the outside of the 

cage perimeter or not during the nighttime period (predators and non-predators were visible in 

only 50.8% and 68.5% of nights, respectively). We analyzed whether the amount of time that 
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predators and non-predators spent near the experimental area (total time that predators or non-

predators were visible during the nighttime period divided by the nighttime period) was related to

trial type, trial night, trial type by trial night interaction, and environmental variables with a 

repeated-measures mixed linear model. We performed a prior contrasts to compare specific trial 

nights. We also performed a mixed linear model to assess whether the mass of the birds changed 

during the experiment; we calculated the percentage that the mass changed (mass on night 7 

minus mass on night 1 divided by mass on night 1) and determined whether the trial type (control

trial, medium noise trial, or loud noise trial) impacted this percentage.

We ran another two repeated-measures mixed linear models to determine the factors 

influencing when the birds ascended to the roost and descended from the roost for the night. The 

independent variables were the trial type (control trial, medium noise trial, or loud noise trial), 

trial night (the specific night of the trial: 1–7), trial type by trial night interaction, environmental 

variables during the nighttime period (wind speed, precipitation, temperature, and moon 

illumination), morphological measurements of the bird (mass and tarsus + metatarsus), and 

predator and non-predator presence. We performed binomial tests (Proc Freq) to assess peahens’ 

roosting preferences (the peahens did not switch to a different roost during a given night). We 

examined whether trial type (medium or loud noise), environmental variables (wind speed, 

temperature, and moon illumination), and morphological variables impacted roost choice using a 

binomial logistic regression (PROC Logistic). The wind speed and temperature at sunset during 

the night of the trial were used in the analysis; precipitation at sunset during the night of the trial 

was excluded from this analysis because precipitation was recorded in only 7.5% of trials. 

Analyses were performed in SAS (9.3; Cary, NC, USA) or Minitab (15.1; Minitab Inc., State 

College, PA, USA). The data supporting this article are available in Harvard Dataverse: 

http://dx.doi.org/10.7910/DVN/FFEZQC.
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RESULTS

The head movement rate of peahens was similar regardless of trial night, the interaction between 

trial type and trial night, environmental variables (wind, precipitation, temperature, and moon 

illumination), morphological variables (mass and tarsus + metatarsus:), and predator presence 

and non-predator presence. However, the head movement rate of peahens was lower during noise 

trials compared to control trials (Table 1A). Comparing noise versus control trials on nights with 

and without noise, the head movement rates were similar (Table 2A: Treatment effects). There 

was a non-significant trend for head movement rate to be lower during nights with noise 

compared to nights without noise, especially during medium noise trials. Within the noise trials, 

the head movement rates were similar on nights with and without noise pollution; within the 

control trials, the head movement rates were similar across nights (Table 2A: Time effects; Fig. 

1). The results were qualitatively similar when the medium and noise trials were pooled. There 

was no change in body mass within trials with respect to whether the birds were exposed to 

artificial noise pollution or not (F2,24 = 1.29, p=0.29).

The amount of time that predators spent near the experimental area varied depending on 

trial type, the interaction between trial type and trial night, wind speed, and temperature but not 

trial night, precipitation, or moon illumination (Table 1B). Predators spent more time near the 

experimental area during control versus noise trials (Fig. 2), when the wind speed was low, and 

the temperature was high. They also spent more time near the experimental area during control 

trials compared to noise trials during nights when the noise was broadcast in noise trials (Table 

2B: Treatment effects). Within the noise trials and within the control trials, the amount of time 

that predators spent near the experimental area did not vary (Table 2B: Time effects). The amount

of time that non-predators were near the experimental area was only impacted by the 

temperature; the other variables were not significant (Table 1C). Non-predators spent more time 

near the experimental area when the temperature was high.
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Peahens ascended to the roost later in the evening when the temperature was higher; the 

other independent variables did not affect when the birds ascended to the roost (Table 1D). 

Peahens descended from the roost later in the morning during control trials compared to noise 

trials (control: 24.3 ± 7.8 min after sunrise; medium noise: 16.9 ± 7.5 min after sunrise; loud 

noise: 12.2 ± 6.5 min after sunrise) and when their tarsus + metatarsus was longer; the other 

independent variables were not significant predictors of the time when the peahens descended 

from the roost (Table 1E). Peahens did not exhibit a preference for roosting closer or further from

artificial noise (medium noise: 60% of the birds roosted away from the noise, p=0.50; loud noise:

55% of the birds roosted away from the noise, p=0.82; two-tailed binomial test). The type of 

noise (medium or loud), wind speed, temperature, moon illumination, mass, and tarsus + 

metatarsus did not impact whether the peahens roosted near or far from the noise (Table 1F).

DISCUSSION

The nocturnal vigilance levels of peahens were not significantly impacted by noise pollution 

within trials. Individual peahens exhibited similar rates of head movements (a proxy of vigilance;

Jones, Krebs & Whittingham, 2007) at night regardless of whether noise pollution was present or 

absent. Furthermore, they showed no preference for roosting away from artificial noise pollution. 

The results suggest that peahens’ perception of risk is not drastically impacted by noise 

pollution. They did not increase their vigilance behavior to compensate for a potentially reduced 

ability to detect threats nor did they decrease their vigilance levels to take advantage of a 

potentially safer environment within trials. In most of the studies examining vigilance behavior 

and noise pollution, individuals elevate their vigilance levels in response to noise pollution 

(however, these studies were conducted on diurnal species during the day while this study was 

conducted at night; reviewed in Beauchamp, 2015): California ground squirrels 

(Otospermophilus beecheyi) are more vigilant in areas with turbine noise (Rabin, Coss & 
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Owings, 2006), great tits (Parus major) are more vigilant when exposed to aircraft noise (Klett-

Mindo, Pavón & Gil, 2016), prairie dogs (Cynomys ludovicianus) and white-crowned sparrows 

(Zonotrichia leucophrys) are more vigilant in response to traffic noise (Shannon et al., 2014a; 

Ware et al., 2015), chaffinches are more vigilant in response to white noise (Quinn et al., 2006), 

and koalas (Phascolarctos cinereus) are more vigilant when hearing zoo visitors (Larsen Sherwen

& Rault, 2014). This increased level of vigilance may allow animals to detect threats faster 

(Meillère, Brischoux & Angelier, 2015). However, some species may decrease their vigilance 

levels in response to noise pollution because their risk perception is lower. Elk are less vigilant in 

response to traffic noise (though human activity may have also contributed to this effect; Shannon

et al., 2014b). 

In addition, noise pollution did not influence the peahens’ selection of nocturnal roosting 

locations. The peahens selected roosts irrespective of noise pollution levels, indicating that they 

did not perceive noise pollution as impacting their risk. Because both roosts were exposed to 

some level of noise pollution, it is possible that the peahens did not distinguish between them 

since they were both noisy. Additional experiments in which one of the roosts is completely free 

of noise would be important. Previous studies have found that some species avoid areas with 

noise pollution (Blickley, Blackwood & Patricelli, 2012; Ware et al., 2015) while other species do

not (Neo et al., 2015); an understanding of ecological differences between species could elucidate

why they respond differentially.

Even though we did not find that vigilance levels differed within trials, we did find that 

peahens were more vigilant overall during control compared to noise trials. And, peahens 

descended from the roost later in the morning overall during control trials compared to noise 

trials. These overall effects could be related to predators being more frequent during control trials

(see below) and peahens adjusting to this increase in predator presence throughout the trial (i.e., 

carry-over effects). In fact, head movement rates across all nights during control trials in this 
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study (171 ± 9.9) were higher than control trials from a previous study conducted under similar 

experimental conditions (99 ± 6.5; Yorzinski et al., 2015); this suggests that changes in the 

external environment, such as increased predators, may have resulted in the higher vigilance rates

during our control trials in this study. Because predator presence can impact vigilance behavior, 

future experiments could be conducted in which predator presence is controlled. Additional 

experiments will also be necessary to determine whether long-term effects of noise pollution 

impact vigilance behavior.

Peahens may not rely strongly on acoustic cues when detecting nocturnal predators, 

potentially explaining why they do not alter their perception of risk based on noise pollution 

within trials. Nocturnal vigilance levels in peahens dramatically increases with exposure to 

artificial light pollution (Yorzinski et al., 2015), suggesting that the birds heavily rely on vision to

detect predators. Given that peahens in the wild roost atop tall trees, they also likely rely on 

vibrations to detect the approach of large predators. Noise pollution may mask acoustic cues from

predators but be less important than visual or vibrational cues to the peahens. Given that their 

antipredator vocalizations are loud and cover a wide frequency range (Yorzinski, 2014), peahens 

may also be able to hear conspecific warning calls despite noise pollution (Francis, 2015; 

Pettinga, Kennedy & Proppe, 2016). Additional studies that examine whether peahens use 

acoustic cues during predator detection in the daytime would be useful. A comparative study 

examining variation in species’ response to noise pollution would help elucidate the factors 

impacting the perception of risk in response to noise pollution across species. 

It is possible that the peahens in this study had previously habituated to noise pollution. 

The peahens were captured from feral populations located in country areas or suburban 

neighborhoods at least two years prior to the onset of this study. They may therefore have 

habituated to noise pollution while they were feral. However, the loudness and duration of the 

noise pollution they experienced while they were feral were likely less than the loud noise 
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treatment in this study. It is also possible that the birds habituated to the noise during the trials 

because the noise was broadcast for four consecutive days. However, their nocturnal vigilance 

levels were similar on the first and last day when the noise was broadcast, suggesting that 

habituation within trials was not influencing vigilance rates. 

Because nocturnal vigilance is inversely correlated with sleep in peahens (Yorzinski et al.,

2015), noise pollution did not likely impact the amount of time the birds spent sleeping within 

trials. In addition, they ascended the roost in the evening and descended from the roost in the 

morning at similar times regardless of whether noise pollution was present or not within trials. 

However, noise pollution could have affected their sleep patterns in subtler ways. In humans, 

noise pollution can alter the amount of time spent in different stages of sleep (Pirrera, De Valck &

Cluydts, 2010). Further research investigating the impact of noise pollution on sleep in birds 

would be useful. One study found that European robins (Erithacus rubecula) sing at night when 

they are exposed to noise pollution but how this behavioral change impacted their sleep behavior 

was not explored (Fuller, Warren & Gaston, 2007).

In our study, predators often avoided the experimental area during nights with noise 

pollution. Similarly, Francis, Ortega & Cruz (2009) found that avian predators avoided 

depredating nests in areas exposed to noise pollution. In addition, three-spined sticklebacks 

(Gasterosteus aculeatus) and greater mouse-eared bats (Myotis myotis) are less efficient hunters 

when subjected to noise pollution (Purser & Radford, 2011; Siemers & Schaub, 2011). Because 

some predators may be sensitive to noise pollution, prey may be safer and have higher 

reproductive success in noisy environments (Francis, Ortega & Cruz, 2009). However, in other 

species, prey are more easily captured by predators when exposed to noise (Simpson, Purser & 

Radford, 2015; Simpson et al., 2016). The mechanisms underlying differences in hunting 

behavior across species in response to noise are not well understood.
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Other types of anthropogenic disturbances, such as light and chemical pollution, often 

accompany sources of noise pollution (Halfwerk & Slabbekoorn, 2015). Understanding how 

different types of disturbances singly and jointly influence antipredator behavior would be 

informative. While we found that noise pollution had limited effects on nocturnal vigilance rates 

in peahens in this study, we previously found that light pollution significantly increases their 

nocturnal vigilance rates (similar sample size as used in this study; Yorzinski et al., 2015). Across

nights with exposure to pollution, nocturnal vigilance rates in response to noise pollution in this 

study (medium noise: 118 ± 3.5; loud noise: 112 ± 6.0) were two times lower compared to 

vigilance rates in response to light pollution in a similar study (246 ± 38.6; Yorzinski et al., 

2015). Based on the evidence thus far, management practices aimed at minimizing artificial 

disturbances to peafowl might therefore invest more in reducing light pollution compared to noise

pollution. 
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Figure 1. Head movement rates (means ± SE) of peahens during noise (medium and loud) and 

control trials. 

Figure 2. Amount of time that predators were present (means ± SE) during noise (medium and 

loud) and control trials. 
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Table 1. The impact of trial type, trial night, environmental and morphological variables, and 

predator and non-predator presence on head movement rate, the amount of time predators and 

non-predators spent near the experimental area, the times at which the birds ascended to and 

descended from the roost, and roost selection. F values (numerator degrees of freedom, 

denominator degrees of freedom) are displayed along with p-values for A-E; chi-square values 

(degrees of freedom) are displayed along with p-values for F.

A: Head

Movement

Rate

B:

Predators

C: Non-

predators

D:

Ascend

Roost

E:

Descend

Roost

F: Roost

Selection

Trial Type 3.57 (2,25)

0.043

5.80

(2,27)

0.008

0.52

(2,27)

0.60

0.33

(2,25)

0.72

6.48

(2,25)

0.0054

1.39 (1)

0.24

Trial Night 0.55 (6,108)

0.77

0.87

(6,138)

0.52

1.85

(6,138)

0.095

0.43

(6,123)

0.86

0.57

(6,121)

0.75

-

Trial Type * 

Trial Night

0.24

(12,108)

0.99

2.58

(12,138)

0.0041

0.43

(12,138)

0.95

0.50

(12,123)

0.91

0.97

(12,121)

0.48

-

Wind 0.03 (1,108)

0.85

7.21

(1,138)

0.0081

1.11

(1,138)

0.29

0.24

(1,123)

0.62

3.11

(1,121)

0.081

0.40 (1)

0.53

Precipitation 0.77 (1,17)

0.39

0.15

(1,19)

0.70

1.08

(1,19)

0.31

0.06

(1,18)

0.81

2.14

(1,18)

0.16

-

Temperature 3.04 (1,108)

0.084

15.49

(1,138)

0.0001

5.74

(1,138)

0.018

24.06

(1,123)

<0.0001

0.79

(1,121)

0.38

1.37 (1)

0.24

Moon 0.23 (1,108) 1.31 0.04 0.53 2.09 0.12 (1)
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illumination 0.63 (1,138)

0.25

(1,138)

0.85

(1,123)

0.47

(1,121)

0.15

0.73

Mass 1.16 (1,25)

0.29

- - 0.35

(1,25)

0.56

3.09

(1,25)

0.091

1.17 (1)

0.28

Tarsus + 

Metatarsus

3.42 (1,25)

0.076

- - 2.80

(1,25)

0.11

12.15

(1,25)

0.0018 

0.089 (1)

0.77

Predator 

Presence

0.39 (1,23)

0.54

- - 0.82

(1,22)

0.37

1.89

(1,23)

0.18

-

Non-predator

Presence

0.34 (1,14)

0.57

- - 0.15

(1,15)

0.70

0.15

(1,14)

0.70

-

Table 2. Specific contrasts were performed to compare treatment effects and time effects with 

respect to head movement rate (df=108) and the amount of time that predators spent near the 

experimental area (df=138). Within the treatment effects, we examined whether the control and 

noise trials differed on night 1, nights 2-5 (averaged), and nights 6-7 (averaged). Within the time 

effects, we examined whether there were differences within the control or noise trials on night 1 

compared to night 2-5 (averaged), nights 2-5 (averaged) compared to nights 6-7 (averaged), night

1 compared to night 6-7 (averaged), and night 2 compared to night 5. Contrasts were considered 

significant if they are less than the Bonferroni corrected p-value (18 contrasts; p<0.0028).  

A: Head Movement

Rate

B: Predators

Treatment 

effects
Night 1 Control vs. Medium 0.14 (0.89) 0.86 (0.39)

486

487

488

489

490

491

492

493

PeerJ reviewing PDF | (2016:07:12140:1:0:REVIEW 19 Aug 2016)

Manuscript to be reviewed



Noise
Night 1 Control vs. Loud

Noise

0.39 (0.70) 0.58 (0.56)

Nights 2-

5

Control vs. Medium

Noise

2.82 (0.0056) 4.62

(<0.0001)
Nights 2-

5

Control vs. Loud

Noise

1.66 (0.099) 3.61

(0.0004)
Nights 6-

7

Control vs. Medium

Noise

0.93 (0.35) 0.47 (0.64)

Nights 6-

7

Control vs. Loud

Noise

0.60 (0.55) 1.45 (0.15)

Time effects
Control Night 1 vs. Night 2-

5

1.19 (0.23) 2.4 (0.018)

Medium Night 1 vs. Night 2-

5

0.53 (0.60) 1.66 (0.10)

Loud Night 1 vs. Night 2-

5

0.56 (0.58) 0.89 (0.38)

Control Night 2-5 vs. Night

6-7

0.02 (0.98) 1.92 (0.057)

Medium Night 2-5 vs. Night

6-7

1.44 (0.15) 1.15 (0.25)

Loud Night 2-5 vs. Night

6-7

0.54 (0.59) 2.98

(0.0034)
Control Night 1 vs. Night 6-

7

1.04 (0.30) 0.71 (0.48)

Medium Night 1 vs. Night 6-

7

0.53 (0.60) 0.65 (0.51)

Loud Night 1 vs. Night 6-

7

0.90 (0.37) 1.40 (0.16)

Control Night 2 vs. Night 5 0.74 (0.46) 0.12 (0.91)
Medium Night 2 vs. Night 5 0.15 (0.88) 1.33 (0.19)

Loud Night 2 vs. Night 5 0.39 (0.70) 0.07 (0.94)
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Figure 1.494
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Figure 2.495
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