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ABSTRACT
Locusts are known for their ability to jump large distances to avoid predation. The
jump also serves to launch the adult locust into the air in order to initiate flight.
Various aspects of this important behavior have been studied extensively, from muscle
physiology and biomechanics, to the energy storage systems involved in powering
the jump, and more. Less well understood are the mechanisms participating in
control of the jump trajectory. Here we utilise video monitoring and careful analysis
of experimental directional jumps by adult desert locusts, together with dynamic
computer simulation, in order to understand how the locusts control the direction
and elevation of the jump, the residual angular velocities resulting from the jump and
the timing of flapping-flight initiation. Our study confirms and expands early findings
regarding the instrumental role of the initial body position and orientation. Both
real-jump video analysis and simulations based on our expanded dynamical model
demonstrate that the initial body coordinates of position (relative to the hind-legs
ground-contact points) are dominant in predicting the jumps’ azimuth and elevation
angles. We also report a strong linear correlation between the jumps’ pitch-angular-
velocity and flight initiation timing, such that head downwards rotations lead to earlier
wing opening. In addition to offering important insights into the bio-mechanical
principles of locust jumping and flight initiation, the findings from this study will be
used in designing future prototypes of a bio-inspired miniature jumping robot that will
be employed in animal behaviour studies and environmental monitoring applications.

Subjects Animal Behavior, Bioengineering, Biophysics, Entomology
Keywords Trajectory control, Biomechanics, Flight initiation, Schistocerca gregaria,
Angular velocity, Simulation

INTRODUCTION
Locusts are extremely capable jumpers. Whether escaping predators or merely getting
from one location to another, they are able to aim their jumps at specific points in space
(Collett & Paterson, 1991; Santer et al., 2005; Sobel, 1990), reaching distances of up to 20
times their own body length (Bennet-Clark, 1975). In adult locusts the jump also serves
in flight take-off (Katz & Gosline, 1993), propelling the insect into the air to allow the
initiation of flapping flight. Understanding the details of locust jumping behaviour, and
the way by which specific aspects of the behaviour affect the properties of the resulting
jump, is critical for revealing the underlying bio-mechanical principles of locust jumping
and flight initiation. Such knowledge could also serve in designing much sought-after small
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jumping robots (e.g., Zaitsev et al., 2015a; Zaitsev et al., 2015b), as the similar size-scale
is also resulted in similar challenges and difficulties in achieving high-performance and
high-accuracy jumps.

The key to successful jumps lies in the production of sufficient power (Gabriel, 1984).
The locust enhances its power by storing energy in the hind-legs’ cuticle and soft tissues
prior to the jump and releasing it simultaneously with muscle action (Bennet-Clark, 1975).
The motor program and mechanics responsible for producing and controlling the thrust
of the jump have been widely studied (Burrows, 1995; Heitler & Burrows, 1977). Only a
relatively few studies, however, have addressed the issue of trajectory control. For any jump,
the initial trajectory is defined by the magnitude, azimuth and elevation of the take-off
velocity vector. The locust controls its azimuth by rotating its body towards the desired
direction through rapid movements of the fore- and meso-thoracic legs (Santer et al., 2005;
Sutton & Burrows, 2008), whereas elevation is separately controlled by establishing the
position of the hind legs through their rotation at the thoraco-coxal (TC) and coxo-
trochanteral joints, accelerating the body along a line connecting the distal end of
the tibia and the proximal end of the femur (Sutton & Burrows, 2008). These actions
(hereafter referred to as the aiming manoeuvres) are very rapid and manifested
shortly before and during jump initiation, thus enabling the locust a hasty escape
in an appropriate direction when surprised by a predator. Although asynchrony
between the hind legs might appear to offer an intuitive strategy for controlling the
jump trajectory, it is not exploited by the locust (Santer et al., 2005; Sutton & Burrows,
2008). While the force applied by the hind legs accelerates the locust’s body, if the
force vector of each leg does not pass through the centre of mass (COM) of the
body, it will additionally produce a torque that causes rotation. Rotational velocity
during the air-born phase can lead to difficulties in flight initiation or in safe landing.
Cofer et al. (2010) suggested that the locust uses two mechanisms to minimize pitch
rotations, also known as tumbling. In the first, setting the pitch according to the elevation
angle, the COM is brought in-line with the force vector, thus minimizing the thrust
force torque; in the second, a counter torque is produced by way of contraction of the
dorso-longitudinal muscles during the jump. Those authors also observed that tumbling
locusts were biased to rotate their body in a head-upwards direction, and hypothesized
that the reason for this bias could be to enhance lift during flight initiation.

While mechanisms of elevation control have been well explained, the mechanics
underlying azimuth control are much less understood. Cofer et al. (2010) focused on
straight jumps, where due to the symmetry between the hind legs’ position, the locust
rotates almost only about the pitch axis. In directional escape jumps, however, the
symmetry of the hind legs position is lost, leading to the production of torque about
all three principal axes (yaw, pitch and roll), and therefore to the development of rotational
velocity about these axes. The nature of these additional rotations (about the yaw and roll
axes) and the locust’s means to control them have not been studied to date.

In the current study we further argue that azimuth, elevation and stability control are
coupled problems in the sense that they cannot be explained independently. To the best
of our knowledge previous reports (e.g., cited above) have not addressed all three issues
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Figure 1 From real jumps to simulation. (A) A locust during an experiment prior to a jump. The white
dots act as markers for the video tracking. (B) The locust coordinate system used to measure locust orien-
tation and position with respect to the ground coordinate system (see text). (C) A diagram of the dynamic
model of the locust mechanics—the body is represented as a cuboid upon which two forces (green arrows)
act. The forces’ directions are set to be the same as a line connecting the contact point of the tibia with the
ground and the connection point between femur and body. Equivalent points in the model and in the lo-
cust body are marked with yellow dots in (B) and (C).

simultaneously. We aim to provide a dynamic model capturing the full spatial mechanics
of the jump, and to determine the locust’s strategies for controlling the jump trajectory
and rotational instability.

To accomplish this aim, we extended an existing two degrees of freedom (DOF), point
mass dynamic model (Sutton & Burrows, 2008) into a six DOF, rigid body model. To
complement the extended model we observed and monitored adult locust jumps through
synchronous multi high-speed video cameras, enabling extraction of the full six DOF
trajectory of the locust body during the jump. By comparing the real jump trajectories to
trajectories predicted by computer simulations we validated the dynamic model, enabling
us to explore further the locust jump through simulated experiments.

MATERIALS AND METHODS
Video monitoring of locust jumps
Individual adult female desert locusts (Schistocerca gregaria) were obtained from our
breeding colony at Tel Aviv University. Each locust was weighed and three dots (markers)
in white acrylic paint were drawn in a triangular formation on the dorsal side of the
pronotum, to provide position markers for motion analysis (Fig. 1A). Locusts were
positioned on a 9 × 5 cm platform covered with sandpaper, to minimize the chances of
slipping, and were stimulated to jump by way of introducing fast moving objects into their
visual field. For each locust a maximum of 10 jumps were recorded at minimal intervals of
10min between jumps. The jumps were recorded at 2000 frames s−1 at a resolution of 1,024
pixels× 1,024 pixels by three synchronous Photron SA3 Fastcam video cameras (Photron,
Inc., San Diego, CA, USA) with an exposure of 1/6000 s. Although only two cameras were
needed to fully reconstruct the 3D position of the markers, a third camera was used to
ensure that all markers were in sight of at least two cameras at all times, irrespective of
the orientation of the locust body. A cube of known dimensions placed on the jumping
platform was used for camera calibration via direct linear transformation, utilizing the
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open source DLTdv5 package (Hedrick, 2008) for MATLAB (Mathworks, Natick, MA,
USA). Overall fifty jumps by 12 locusts were recorded.

Processing video data
Digitization of the markers and reconstruction of their position were performed using the
DLTdv5 package (Hedrick, 2008). For each recorded jump the following procedure was
performed: the three markers on the locust’s pronotum were tracked in all the frames using
the automated tracking feature. The contact points of the distal end of the hind legs tarsi
with the ground were digitized in one frame in which they were most easily identified. The
TC joint was digitized in four frames evenly spaced through the jump duration. Following
marker digitization and computation of the locust body position and orientation, the
data were smoothed using a fourth-order, zero-lag, low-pass Butterworth filter with a
cutoff frequency of 200 Hz. We mostly focused on the initial stages of the jump, when
the extension of the hind legs was first observed, and on the time point of take-off, when
the hind legs lost contact with the ground. By smoothing the raw data from 10 ms prior
to jump initiation to 10 ms after take-off, endpoint errors associated with filtering were
avoided. For further details regarding data processing see (Fig. S1).

Jump kinematics analysis
Two coordinate systems were defined to facilitate the kinematics computation (Fig. 1B).
The first was a global coordinate system, namely the ground system, whose origin was
located midway between the contact points of the hind legs with the ground (Og ). It was
oriented so that one of its axes was in the direction of a line connecting the contact points of
the hind legs with the ground (yg ), another axis was perpendicular to the jumping platform
(zg ), and a third axis was perpendicular to the first two axes, according to the right-hand
convention (xg ). The second coordinate system was a body-attached coordinate system,
namely the locust system, with its origin located midway between the TC joints, and its axes
coincident with the main axes of the locust body. The instantaneous location of the locust
was determined by the position of the origin of the locust coordinate system (Ol), expressed
in spherical coordinates (α-Horizontal angular movement; β-Vertical angular movement;
r-Radial distance from the origin) with respect to the ground system, as illustrated in
Fig. 1B. The instantaneous linear velocity was calculated by numerically differentiating the
locust’s location. The instantaneous orientation of the locust system was described using
the roll-pitch-yaw (Denoted by the angles ψ , θ , and φ, respectively) rotation convention,
and the angular velocities were described about themain axes of the locust system (Denoted
by the angles ψ̇ , θ̇ , and φ̇, respectively. See Fig. 1B). Jump azimuth was the angle between
xg and the projection of the linear velocity on the horizontal plane, and jump elevation was
the angle between the linear velocity vector and the horizontal plane. Calculations relating
the marker positions obtained from video analysis to the kinematic analysis are detailed in
the supplementary data (Fig. S1).

Dynamical model
Sutton & Burrows (2008) approximated each locust hind leg as two connected homogenous
rods, representing the femur and the tibia. Under the assumption that the hind legs are
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massless, they showed that each leg can only produce a force in the direction of a line
connecting the distal end of the tibia and the proximal end of the femur. We have
demonstrated that this holds true not only in 2D but also in 3D (see Appendix). To
simplify further the model, the two-segment hind legs were replaced with equivalent forces
(Fig. 1C). The locust body was approximated as a homogenous, rectangular cuboid upon
which the forces representing the hind legs act (Fig. 1C). The effect of gravity and air
resistance forces until take-off were assumed to be minor compared to the hind-legs’
thrust force, and are thus ignored. It is important to note that according to this model, the
directions of the hind legs’ thrust forces are solely defined by the body’s relative position
with respect to the hind legs’ ground contact points. Therefore, all the remaining locust’s
DOF, such as head rotation, rotations at the different segments of the legs and abdomen
flexibility have no effect on the jump’s trajectory. This highly simplified both, the video
monitoring and computer simulations.

Simulations
Themotion equations governing the dynamic model were derived usingMaple (Maplesoft,
Waterloo, ON, Canada), and solved with the MATLAB ODE45 solver. The main
simplification for running the simulation was that aiming the jump is achieved solely
by changing body posture prior to the jump, while there is no control factor during the
jump itself. Each simulated jump was initialized using data obtained from the jump videos:
contact points of the dorsal end of both hind-leg tarsi to the platform, distance between
TC joints, initial body position and orientation angles, and jump duration. The mass was
set according to the weight measurement. Two parameters could not be obtained from the
video sequences: the position of the COM and the reaction forces exerted by the hind legs.
The COM position with respect to Ol was set according to previous measurements
(Taylor & Thomas, 2003). In locust jumps, the ground reaction force has a typical
profile, starting at 0 at the beginning of the jump, peaking at approximately 75% of
the jump duration and decreasing to 0 at take-off (Han et al., 2013). The force profile was
approximated as a triangular, peaking at 75% of the jump force impulse length. As reported,
there is no difference in the motor program of the left and right hind legs during side jumps
(Santer et al., 2005), and measurements show that the reaction force of both hind legs
is practically the same (Han et al., 2013). Hence we set the magnitude of the forces
representing the hind legs to be equal. The maximum reaction force at the peak of
the force profile was set manually so that at take-off the simulated and real locusts would
propagate the same linear distance.

RESULTS
Invetigation of jump trajectory control through real jumps
The locust can potentially use all sixDOFof its body (translation and rotation) to control the
jump trajectory. To understand the effect of the initial body state (position and orientation)
on the jump trajectory we examined the correlation between each coordinate of the locust’s
position and orientation prior to jump initiation with the azimuth and elevation angles
of the jumps (Figs. 2A–2L). The azimuth angle had a strong linear correlation with the
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Figure 2 The correlations of azimuth (A–F) and elevation (G–L) of the jump with each component of
the locust body position and orientation prior to jumping (a result of the aiming manoeuvres). Lines
are the best linear fit. Framed panels (C, D, H, K) denote a significant regression (Analysis of variance of
linear model, F-test, p< 0.01).

roll and α angles (Figs. 2C and 2D). For example, a locust jumping to the left would
usually roll its body and translate its COM (by changing the α angle) to the left. The
elevation angle was found to have a strong linear correlation with the pitch and β angles
(Figs. 2H and 2K). For example, a locust jumping strongly upwards would usually change
its pitch in a head upwards manner and translate its COM upwards through changes in the
β angle. The jump trajectory parameters displayed no significant correlation with the rest
of the body coordinates. For further details regarding the aiming maneuvers, see examples
of time-course plots of monitored jumps in the supplementary data (Fig. S2).

Gvirsman et al. (2016), PeerJ, DOI 10.7717/peerj.2481 6/15

https://peerj.com
http://dx.doi.org/10.7717/peerj.2481/supp-2
http://dx.doi.org/10.7717/peerj.2481


Figure 3 Comparing real and simulated jumps. (A) Comparison between the azimuth of real jumps and
the azimuth predicted by our simulations. (B) Comparison between the elevation of real jumps and the el-
evation predicted by our simulations. Solid lines indicate linear regression (Analysis of variance of linear
model, F-test).

Dynamic model validation
To validate the dynamic model and its underlying assumptions we examined how well the
simulationwas able to predict the outcome (trajectory) of recorded real jumps. The azimuth
and elevation angles, compared between the real and the simulated jumps, demonstrated
a strong linear correlation for both criteria (Figs. 3A and 3B), thus validating that the
dynamic model indeed captures the governing principles of trajectory control. Real and
simulated rotational velocities were also compared, but no correlations were found (see
Fig. S3 and discussion for further details). Simulations were therefore not used as a tool to
further investigate jump stability.

Investigation of jump trajectory control through simulated jumps
To further establish a possible role for the different coordinates defining the initial body
positon and orientation in the control of the jump (beyond the above reported correlations),
a set of simulated jumps was performed based on each real jump. In each simulation set
one coordinate was changed from its original value through its operational range (Table 1)
while the remaining coordinates were kept constant at their original value. The operational
range was defined by the limits of the observed distribution of each coordinate after
omitting the most extreme values (10%). Hence, it presents the typical range in which
the locust may vary each coordinate in order to control the jump, and is a consequence
of both behavioural and physical-mechanical constraints. To test the control of azimuth,
the roll and alpha angles were independently changed, and to test elevation control, the
pitch and beta angles were independently changed (Figs. 4A–4D). All parameters showed
an approximately linear relation with azimuth/elevation and within each simulation set
graphs were consistent in slope direction and magnitude. The mean slopes for α and β
were 0.98 (Std = 0.029) and 0.99 (Std = 0.029), respectively, indicating that these angles
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Table 1 Typical operational values for each coordinate during jump aiming.

Coordinate α (deg) β (deg) r (mm) φ (deg) θ (deg)a ψ (deg)

Maximum value 28 65 8.5 17 4 20
Minimum value −28 20 5 −17 −17 −20

Notes.
aThe pitch angle (θ) is negative for head-upwards rotations.

are instrumental in controlling the jumps’ azimuth and elevation angles respectively. In
contrast, roll and pitch had a much more moderate effect. The roll, with a mean slope of
−0.048 (Std = 0.072), could potentially change the azimuth by up to ±5◦, while the pitch,
with a slope of −0.0055 (Std = 0.014), had practically no effect on the elevation angle.

Development of rotational velocity during real jumps
As noted earlier, Cofer et al. (2010) reported that the locusts set their pitch prior to jumping
according to jump elevation, moving their COM in line with the hind legs’ thrust force
to minimize tumbling. This strategy will diminish tumbling caused by torques resulting
from the thrust force. Tumbling, however, could also be a result of the aiming manoeuvres
(see detailed explanation in the ‘Introduction’) prior to the thrust force initiation: once
the locust detects a threat and decides to jump away, it begins the aiming manoeuvres,
during which the jump is triggered. Only then do the hind legs start to extend and exert
force on the body until take-off. To investigate whether rotational instability at take-off is a
result of thrust exerted by the hind legs or of the earlier aiming manoeuvres, the rotational
velocities at jump initiation and at take-off were compared (Figs. 5A–5C). We found that
rotational velocities at the initial jump triggering moment were already of the same scale as
the rotational velocities at take-off, reaching up to 500 deg/s in yaw and roll (Figs. 5A and
5C) and 400 deg/s pitching head upwards (Fig. 5B). The yaw velocities during triggering
and during take-off were uncorrelated (Fig. 5A). A strong correlation between initial and
take-off roll with a slope of near 1 indicates that velocities about this axis tend to remain
practically constant throughout the jump (Fig. 5C). We found that while pitch velocities
at jump triggering were almost always head-upwards, pitch velocity at take-off was either
head-upwards or downwards with hardly any jumps free of tumbling (Fig. 5B). The most
dramatic effect of the thrust force on tumbling could be seen in jumps in which the locust
tumbled head upwards prior to jumping (at triggering), but had changed its tumbling
direction to head-downward by take-off. These findings indicate that although there is a
significant change in rotational velocity during the jump (mainly about the pitch axis),
the aiming maneuvers prior to thrust force initiation also have an important role in the
development of rotational velocity.

The effect of rotational velocity on the timing of flight initiation in real
jumps
As noted, locusts are biased to tumble head-upwards when jumping (Cofer et al., 2010). To
test the hypothesis that the purpose of the tumbling bias is to reduce risk of crashing during
flight initiation, we tested correlations between the angular velocity at take-off and flight
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Figure 4 The effect of initial conditions on the jump trajectory. Each graph presents data based on 33
sets of simulated jumps. Each simulation set was based on data obtained from a specific real jump. In ev-
ery graph one coordinate was manipulated through its typical operational range to quantify its effect on
jump azimuth or elevation: (A) Alpha; (B) Roll; (C) Beta; and (D) Pitch. One simulation set in (B) in
which changes in roll led to a change of±4◦ in azimuth is marked in red.

initiation timing. The angular velocity was measured just prior to take-off (2.5 ms), with
take-off defined as the moment the hind-leg tarsi lost ground contact, and expressed in the
locust-attached coordinate system. (In all the jumps analyzed in the current study loss of
ground contact by the two legs was synchronous or within less than 2 ms.) Flight initiation
timing was the difference between the time when initial hind leg extension was observed
and the time that the wings started to spread. There was a linear correlation between pitch
velocity and flight initiation timing such that head-downwards rotations led to earlier wing
opening (Fig. 6B). No such correlation was found between flight initiation and either roll
or yaw rotational velocities (Figs. 6A and 6C). Interestingly, the correlation between pitch
velocity and flight initiation timing was even improved when testing pitch velocity at 5, 10
or even 15 ms prior to take-off (R2 larger than 0.5 p< 0.01; see Fig. S4).
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Figure 5 A comparison of the rotational velocity about the locust’s principal axes at the beginning of
hind-leg extension and at take-off. (A) Yaw velocity. (B) Pitch velocity. (C) Roll velocity. Lines denote
linear regression (Analysis of variance of linear model, F-test).

Figure 6 The timing of flight initiation as a function of rotational velocity components expressed in a
locust-attached coordinate system. (A) Yaw velocity. (B) Pitch velocity. (C) Roll velocity. Linear regres-
sion lines are shown on all three graphs. Only the pitch velocity was significantly correlated with flight ini-
tiation timing (Analysis of variance of linear model, F-test).

DISCUSSION
In this study we proposed a single dynamic model for the locust jump trajectory control,
explaining the control of azimuth, elevation and stability. The mechanisms and strategies
that have been revealed are consistent with earlier reports regarding the mechanics of
elevation control (Sutton & Burrows, 2008), and the locust’s behavior during escape jumps
(Santer et al., 2005). The locust can potentially use all six DOF of its body to control the
jump trajectory. Hence, the full six DOF trajectory of the locust body was both monitored
during real jumps and simulated using our dynamicmodel. This allowed us for the first time
to specifically and directly determine the relative importance of each of the initial (prior
to the jump) locust body coordinates in the jump trajectory control. Our investigation of
the full parameter-range and parameter-combination space suggests that it is the α and
β angles that are instrumental in controlling the jumps’ azimuth and elevation angles,
respectively, while the rest of the body coordinates (including the body’s orientation) have
little effect on the jump trajectory parameters.

As noted, real and simulated rotational velocities were compared but no correlations
were found. We believe that this is due to two main reasons: (1) rotational velocities are
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much more sensitive to subtle changes in the initial state of the locust body than azimuth
and elevation, and inaccuracies in the data initializing the simulations were too large to
enable accurate prediction of rotational velocities; and (2) the locust body in our model is
rigid and does not allow the abdominal flexion that may contribute to jump stabilization
(Cofer et al., 2010). Simulations were therefore not used as a tool to further investigate
jump stability.

Rotational instability and angular velocities are byproducts of practically all locust
jumps, with important and potentially undesirable effects on flight initiation. At the
beginning of the jump, at the moment the hind legs start to extend, the locust body
had already accumulated rotational velocity generated during the aiming manoeuvres
(Fig. 2). As we observed, aiming manoeuvres resulted in pitch rotations that were usually
head-upwards. This is in accordance with the report by Cofer et al. (2010) for tumbling at
take-off, but it also shows that the head-upwards rotation bias exists even before the hind
legs’ thrust is initiated. This is important because different sources of jump instability might
require different means for controlling it. In addition, we noted that the timing of wing
opening and flight initiation was strongly dependent on pitch angular velocity. Our study
consequently supports the hypothesis correlating jump stability to successful flight initiation
(Cofer et al., 2010). It also indicates that the locust is sensitive to pitch angular velocity
throughout the jump (and can differentiate it from the yaw and roll rotations) and that
this sensory input is coupled to activation of the flight motor pattern in a yet to be explored
manner (see Camhi, 1969; Pond, 1972; Reichert, 1993; Taylor, 1981 and references within,
for the role of sensory inputs, including those related to pitch, during flight).

As noted earlier, Santer et al. (2005) reported that no bilateral differences in the
motor programs of the left and right hind legs correlated with jump trajectory.
Hind-leg asynchronous action was also reported to have no effect on jump elevation
(Sutton & Burrows, 2008). The two hind legs could also have a differential effect on jump
trajectory as a simple result of asynchronous loss of ground contact: prior to and during
sideways jumps the locust body translates and rotates to the side, resulting in a different
distance between ground contact and the TC joint of the two legs. The leg furthest from
the jump direction therefore loses ground contact earlier, resulting in a short time-period
during which only one leg (that still in contact with the ground) exerts forces and torques
on the body. In all the jumps analysed in the current study this time difference between
the loss of ground contact of the two legs was shorter than 2 ms. Based on the force profile
produced by each leg throughout the jump (Han et al., 2013), the magnitude of the thrust
force during the final 2 ms period is very small and diminishing. This becomes more
negligible still when comparing the time-period in which only one leg produces thrust
to the much longer period in which both legs exert much larger thrust. We therefore
conclude that hind-leg asynchronization has a negligible effect on trajectory control and
jump stability.

The locust continues to serve as an important inspiration for the development of small
jumping robots (Chen et al., 2011;Kai et al., 2012;Kovač et al., 2011;Nguyen & Park, 2012).
In many robotics applications and tasks there is an advantage to designing multimodal
robots, capable of multiple locomotion modes. However, these introduce new challenges
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Figure A1 The locust hind leg model. (A) Model representation of the locust hind legs. (B) Free body di-
agram of the hind leg.

related to the control mechanisms and integration between modes. A locust-inspired
jumping-flying robot will encounter the need to perform an efficient transition from
a ballistic trajectory (jumping) to flapping-flight. Our current study suggests that the
locust utilizes control and stabilization mechanisms that are based on the timing of
wing-spreading (in addition to the aerodynamics of the flapping wings). Development
of a bio-inspired robot based on our findings is currently underway (Zaitsev et al., 2015a;
Zaitsev et al., 2015b; G Kosa & A Ayali, 2016, unpublished data) and will provide further
opportunities to evaluate the contribution and importance of the presented mechanisms
to flight initiation.
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APPENDIX
Thrust direction exerted by the locust leg according to model
analysis
The locust hind leg was modeled as two rigid rods representing the femur and tibia,
connected by a revolute joint (Fig. A1A). The contact of the tibia with the ground and the
connection between the femur and the locust body are both modeled as spherical joints
with no torque applied at them. Friction and gravity are ignored and the leg segments are
assumed to bemassless. The force exerted by the leg is analyzed through a free body diagram
(Fig. A1B) of the leg; because the segments are assumed massless, all the sum of forces and
torques in each segment must be zero. Because free body diagrams are usually planar, we
wish to emphasize that all the vectors in Figs. A1A and A1B are three-dimensional.

Sum of forces on the tibia:

F j+F r = 0. (A1)
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Sum of forces on the femur:

−F j+
(
−Fb

)
= 0. (A2)

Combining Eqs. (A1) and (A2):

F r = Fb. (A3)

Sum of torques on the tibia around the femuro-tibial joint:

−r ti×F r−M = 0. (A4)

Sum of torques on the femur around the femuro-tibial joint:

r fe×
(
−Fb

)
+M = 0. (A5)

Summing Eqs. (A4) and (A5) and plugging into Eq. (A3):

Fb×
(
r ti+ r fe

)
= Fb×(r th)= 0⇒ Fb ‖ (r th). (A6)

Equation (A6) concludes that Fb and r th are parallel, or in other words, that the thrust
force produced by a hind leg is always parallel to the line connecting the tibia’s ground
contact point with the connection of the femur with the body.

F j Force at the femuro-tibial joint
F r Ground reaction force
Fb Force exerted on body by the hind leg
M Muscle produced torque in the femuro-tibial joint
r ti Vector from distal to proximal ends of the tibia;
r fe Vector from distal to proximal ends of the femur
r th Vector from the distal end of the tibia to the proximal end of the femur
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