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ABSTRACT
Using a mathematical model with realistic demography, we analyze a large outbreak
of measles in Muyinga sector in rural Burundi in 1988–1989. We generate simulated
epidemic curves and age× time epidemic surfaces, which we qualitatively and quanti-
tatively compare with the data. Our findings suggest that supplementary immunization
activities (SIAs) should be used in places where routine vaccination cannot keep upwith
the increasing numbers of susceptible individuals resulting from population growth
or from logistical problems such as cold chain maintenance. We use the model to
characterize the relationship between SIA frequency and SIA age range necessary to
suppress measles outbreaks. If SIAs are less frequent, they must expand their target age
range.

Subjects Mathematical Biology, Epidemiology, Health Policy, Infectious Diseases, Public Health
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INTRODUCTION
Measles is a viral disease ofworldwide public health importance despite enormous reduction
in incidence and mortality since the 1980s (Otten et al., 2003; Otten et al., 2005; Brenzel
et al., 2006; Perry et al., 2014). Foremost among the problems of measles control is the
post-honeymoon epidemic, occurring when susceptibles accumulate in a population despite
relatively good vaccine coverage (Cutts & Markowitz, 1994). These outbreaks are not
limited to developing countries; Pyle (1973) documents a post-honeymoon outbreak in
the USA, seven years after the introduction of vaccination. Such epidemics were especially
a problem in the late 1980s and early 1990s (Gindler et al., 1992; Mulholland, 1995), but
continue to this day, particularly in the presence of ‘‘antivax’’ sentiment (Majumder et al.,
2015), and health system interruptions (Takahashi et al., 2015). Mathematical models can
play a role in understanding epidemics, particularly when natural equilibria are perturbed
by vaccination. The outbreak we model is the 1988–89 post-honeymoon epidemic in
Muyinga sector, Burundi (Chen et al., 1994). One goal is to make outbreak-avoiding
recommendations for measles vaccine policy in high growth rate populations.

Before the introduction of vaccination in 1963 and thereafter (Katz & Gellin, 1994),
measles was ubiquitous; virtually everyone acquired measles, usually in childhood.

How to cite this article Corey and Noymer (2016), A ‘post-honeymoon’ measles epidemic in Burundi: mathematical model-based analy-
sis and implications for vaccination timing. PeerJ 4:e2476; DOI 10.7717/peerj.2476

https://peerj.com
mailto:noymer@uci.edu
https://peerj.com/academic-boards/editors/
https://peerj.com/academic-boards/editors/
http://dx.doi.org/10.7717/peerj.2476
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://dx.doi.org/10.7717/peerj.2476


Therefore, the annual number of infections in pre-vaccination populations was
approximately equal to the size of the birth cohort, discounted by population growth, since
measles occurs on average a few years after birth, and also by the mortality of those who do
not live long enough to become infected. Immunity following natural measles infection is
both high and life-long, so serum antibody is a reliable marker of current or past measles
infection. Measles is highly contagious:Hope Simpson (1952), studying household contacts
in Cirencester, England, derived a susceptible-exposure attack rate of 75.6%.

Measles has been a favorite topic for mathematical modelers (Fine & Clarkson, 1982a;
Fine & Clarkson, 1982b; Fine & Clarkson, 1983; Bjørnstad, Finkenstädt & Grenfell, 2002). Its
airborne transmission route does not require detailed specification of different types of
contact between individuals. Moreover, peak infectiousness occurs during the prodrome
period, before the outbreak of the rash (Hamborsky, Kroger & Wolfe, 2015), which means
that the assumption of mixing between susceptibles and infecteds is reasonable. There are
thought to be no subclinical cases. Given that measles is a potential eradication target (Cutts
& Steinglass, 1998; Strebel et al., 2011; Christie & Gay, 2011; Goodson et al., 2012; Sniadack
& Orenstein, 2013), understanding its epidemiology in a variety of demographic settings is
desirable.

The results of models like ours have influenced vaccination policy, both in terms of
vaccination age and in scheduling supplementary immunization activities (SIAs) (Bart
et al., 1983; Ramsay et al., 1994; Gay & Miller, 1995; Gay et al., 1997). We analyze data
on a post-honeymoon measles outbreak, using a partial differential equation (PDE)
epidemiologic model with explicit demography. Our results underscore the need for
high vaccine coverage and the use of SIAs to rectify shortfalls in routine vaccination.
Based on the model, we quantify trade-offs between frequency and age range of SIAs
necessary to suppress measles outbreaks. We also demonstrate a counterintuitive result
that higher-growth populations have slightly lower vaccination requirements, although we
note that this is not of policy importance.

MATERIALS AND METHODS
Schenzle (1984) was the first application of Hoppensteadt’s (1974) age-dependent epidemic
model to measles. McLean (1986), McLean & Anderson (1988a) and McLean & Anderson
(1988b) furthered the development, as did John (1990a), John (1990b) and Tuljapurkar &
John (1991). We apply a model like those, to surveillance data from the 1988–89 Muyinga
sector (Burundi) measles outbreak. This epidemic was described by Chen et al. (1994), and
was featured in a public health training manual (Chen & Morinière, 1993).

We implement an age-structured MSEIR model, which is like the standard SEIR model
with the addition of a maternal class (newborns protected bymaternal antibodies) (McLean
& Anderson, 1988a; McLean & Anderson, 1988b). The classes are: maternal, susceptible,
latent, contagious, and immune; abbreviated herein as M , S, L, C , and Z . We use realistic
demography tailored to rural Burundi, and the model assumes a demographically stable
population (i.e., constant population growth rate with unchanging age structure, Coale,
1972). Figure 1 is a model schematic, and the model is specified in Eqs. (1)–(5) (p. 4),
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Figure 1 Model schematic. Classes are as described in the text and in Eqs. (1)–(5) (p. 4); N denotes total
population.

which are solved numerically (Eriksson et al., 1996) with the IDL language, v.8.4 (Exelis
Inc., Boulder CO), using Euler’s method with an age/time step of 2.5 days. The type of
nonlinear PDE in age and time specified on p. 4 is similar to many mathematical models
in epidemiology (cf. Anderson & May, 1991; Brauer & Castillo-Chavez, 2012).

Weuse amean duration of the latent period of 10 days, andmean length of the contagious
period of 7 days. The variances of the duration of the latent and infectious periods are low
(Conlan et al., 2010). No measles-specific mortality is included in the model. However,
measles fatality does not greatly affect transmission dynamics because most deaths occur
coincidentally with, or following, the desquamation of the rash, which marks the end of
the contagious period (Clements et al., 1993).

Maternal represents the class who are immune due to the persistence of trans-placentally
acquired antibodies (Cáceres, Strebel & Sutter, 2000). A six-month protected period is
assumed, a slight oversimplification (Williams, Cutts & Dye, 1995). Attenuation ofmaternal
antibody is closely related to the so-called window problem (Dabis et al., 1989; Cutts &
Markowitz, 1994; Sakatoku et al., 1994; Hartter et al., 2000). Breastfeeding does not confer
direct (immunological) protection against measles (Adu & Adeniji, 1995; Oyedele et al.,
2005). Susceptibles are the population, age ≥6 months, transferring to the latent class at
rate λ, or until vaccination-induced immunity provides a move to the immune class. Vac-
cination is shown in the schematic but it is not part of Eqs. (1)–(5) because it is exogenous
to the epidemiology. Successful vaccination in this model is assumed to provide life-long
immunity (no boosting).

The transition rate from susceptible to latent is the force of infection, λ=β(C/N ), where
β is a constant (Eqs. (6)–(8)). Beta combines a social process with a biological one: the
mixing of the population with itself; and the probability that susceptible-infected contact
will result in a new infection. If we assume, asWilson & Worcester (1941) did in their early
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modeling of the force of infection for measles, that contact between an infected and a
susceptible always results in infection, then β is simply a constant regulating population
mixing.

Model equations:

∂M
∂a
+
∂M
∂t
=−(δ(a−ζ )+µ(a))M (a,t ) (1)

∂S
∂a
+
∂S
∂t
= δ(a−ζ )M (a,t )− (λ(t )+µ(a))S(a,t ) (2)

∂L
∂a
+
∂L
∂t
= λ(t )S(a,t )− (c+µ(a))L(a,t ) (3)

∂C
∂a
+
∂C
∂t
= cL(a,t )− (ν+µ(a))C(a,t ) (4)

∂Z
∂a
+
∂Z
∂t
= νC(a,t )−µ(a)Z (a,t ) (5)

Boundary conditions:

M (0,t )= b(t )

µ(ω)=∞

Notation in Eqs. (1)–(5):
Symbol Quantity
M Class protected by maternal antibody
S Susceptible class
L Latent class
C Contagious class
Z Permanently immune class
a,t age, time
b(t ) births. ∂b/∂t = r ·b(t ). r is the population growth rate.
δ(·) Dirac function
ζ age at which the protection of maternal antibodies ends
µ(a) force of mortality
β mass-action constant (see Eqs. (6)–(8))
λ(t ) force of infection λ(t )=β ·C(t )/N (t )
c rate at which latents become contagious, 0.1 days−1

ν recovery rate, 0.143 days−1

Lambda, the force of infection:

λ(t )=β
C(t )
N (t )

=β

∫ ω

0
C(a,t )da

/∫ ω

0
N (a,t )da (6)

N is the sum of all epidemiological classes (M ,S,L,C,Z ); ω is the oldest age. In the model,
β is fixed, while λ(t ) varies; β is derived from equilibrium conditions (∂λ/∂t ≡ 0), as
follows. A version of the model is run in which:

λ(t )≡ λ∗= (ā−ζ )−1 (7)
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where ā is the mean age of infection (pre-vaccination; exogenous of the model), and ζ is
the age at which protection from maternal antibodies ends. Then:

β = λ∗
N (t )
C(t )

= λ∗
∫ ω

0
N (a,t )da

/∫ ω

0
C(a,t )da (8)

where Eq. (8) is calculated once N (t )/C(t ) reaches a stable equilibrium (see also main
text).

Because β is constant, the force of infection, λ, changes when the ratio C(t )/N (t )
changes. This implies that during an epidemic there are no behavior changes that
affect how infecteds and susceptibles mix. The logic of Eqs. (6)–(8) is as follows. Before
vaccination, measles was endemic; vaccination introduces epidemic cycles by perturbing
the equilibrium. Thus, vaccination can create epidemics, although in the long run the total
disease burden of measles declines. In the pre-vaccine era, endemic equilibrium holds, so
the force of transmission, λ, is constant. Call this endemic force of transmission λ∗. This
implies an exponential distribution, with the average age of measles infection given by
1/λ∗, or equivalently λ∗ = 1/ā, where ā is the mean age of infection. We adjust for the
period of maternal antibody protection from birth to age ζ = 6 months.

Much in the model depends upon β, which is estimated as follows. Serological data
collected during the pre-vaccination (endemic) era permit estimation of ā, and therefore λ∗,
the endemic force of infection. We then run the model, with λ≡ λ∗. This leads to endemic
dynamics, with an equilibriumproportion infected, (C/N )∗. Recall that λ=β(C/N ). Since
we can get (C/N )∗ from the equilibrium simulation, and we know λ= λ∗ = 1/(ā− ζ ),
we can solve for β. Without the complication of realistic demography, β ≈ R0(ν+µ),
where R0 is the net reproductive rate of measles (May & Anderson, 1985) and µ is the
force of mortality (non-age-dependent, hence without realistic demography). However,
the simulated equilibrium process, as described, takes the demography into account, and
does not require external estimates of R0 (which can vary from population to population).

The above depends on getting an estimate of ā. We have not found any estimates of the
mean age of infection for Burundi in the literature, but Table 1 reviews similar figures for
other countries in Africa. Pre-vaccination estimates must be used here because vaccination
interferes with the natural epidemiology of measles. Using pre-vaccination data is a good
way to get a reliable measure of population mixing under the assumption of constant λ (De
Jong, Diekmann & Heesterbeek, 1995). An estimate of ā= 30 months was chosen based on
the available data. Since 30 months less six months of antibody protection is 24 months,
we have λ∗= 0.5 yr−1. Serology naturally reports percentiles of the cumulative distribution
function of measles exposure by age, and, thus, medians not means (cf. Table 1); assuming
exponential distributions (which is reasonable in the pre-vaccination era), the conversion
is mean = median/log(2). The model does not use age-dependent transmission rates
(Anderson & May, 1991; Eichner, Zehnder & Dietz, 1996). To the best of our knowledge, no
data exist to estimate such rates for Burundi. In any case, the age-independent β performs
well relative to the data (cf. below), indicating that equal mixing of all age groups is a
reasonable assumption for rural Burundi.
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Table 1 Published estimates of median age of measles infection in Africa.

Population, date Age (months) Methoda Population-level Vaccination

Casablanca, non-European, 1953 24 SS none
Dakar, 1957 ≈12 SS none
Rural Sénégal, 1957 12–24 SS none
Ilesha, Nigeria, 1962 <17 HO none
Morocco (‘‘average age’’), 1962 24–36 n/i none
Ilesha, Nigeria, 1963–64 ≈20 HO none
Sénégal (‘‘average age’’), 1964 12–24 n/i none
Ghana (‘‘average age’’), 1960–68 24–36 n/i none
Lagos, 1970 15 CR none
W. & Cent. Africa, dense urban, 1971 14 CR none
W. & Cent. Africa, urban, 1971 17 CR none
W. & Cent. Africa, dense rural, 1971 22 CR none
W. & Cent. Africa, rural, 1971 29 CR none
W. & Cent. Africa, isolated rural, 1971 48 CR none
Yaoundé, 1971 ≈15 CR none
Yaoundé, 1975 ≈20 CRE limited
Yaoundé, 1975 12–23 CR limited
Yaoundé, 1976 12–17 SS limited
Machakos, Kenya, 1974–76 30 CRSS low (≈25%)
Machakos, Kenya, 1974–77 ≈31 CRSS low (≈25%)
Machakos, Kenya, 1974–81 42 CR increasing level
Moshi, Tanzania, no exact date 24–36 SS none
Kinshasa, 1983 12–24 CS ≈60% coverage
Pointe-Noire, Congo, 1983 18 HC partially vaccinated
Pointe-Noire, Congo, 1985 20 HC 54% coverage
West Africa, n/s 18 n/i no information
Rural Guinea-Bissau, n/s 42 CS none
Rural Gambia, n/s 60 CS none
Rural Sénégal, n/s 42–60 CS none
Rural Somalia, n/s 42 CS no information
Urban Guinea-Bissau, n/s 24–30 CS none
Urban Zambia, n/s 24–30 CS yes
Urban Sénégal, n/s ≤24 SS before vax. programs

Notes.
aKey: SS, serological survey/study; HO, hospital outpatients; n/i, no information; CR, case reports; CRE, case reports (epi-
demic); CRSS, case reports (some serology); CS, Community study/survey; HC, hospitalized cases.
Sources: Anderson & May, 1985; Black, 1962; Boué, 1964; Cutts, 1990; Dabis et al., 1988; Foster, McFarland & John, 1993; Guyer,
1976; Guyer & McBean, 1981; Remme, Mandara & Leeuwenburg, 1984; Leeuwenburg et al., 1984;McBean et al., 1976;Morley,
1962;Morley, 1985;Muller et al., 1977; Taylor et al., 1988; Voorhoeve et al., 1977;Walsh, 1986.

In the model with vaccination, the perturbed state is run for two years, and then
vaccination begins, with a mass vaccination campaign as its opening salvo, as was the
case in Muyinga in 1981 (Chen et al., 1994). The model is not designed to estimate the
net reproductive rate (R0). Nonetheless, our results show that the force of infection in
the model (and, by implication, our estimate of λ∗) are in-line with conventional R0
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Figure 2 Mortality model: life table survivorship curve.

estimates for measles virus. Using the first-order approximation p∗= 1−R−10 , where p∗ is
the herd immunity threshold (Edmunds et al., 2000), and extrapolating from our results,
gives the interval estimate 6.7< R0 ≤ 20. This is wide, but our goal is to inform vaccine
policy; estimating R0 is outside our primary scope (see also Heesterbeek, 2002 on R0 and its
strengths and limitations).

We used population data from the 1987 BurundiDemographic andHealth Survey (DHS)
(Segamba et al., 1988). Population growth in the model was 2.6% per year (ibid.). Using
a Brass logit relational model life table (Brass & Coale, 1968), we estimated age-specific
mortality rates from DHS mortality data. Mortality in Burundi, according to our fitting
approach, resembles that of North level 14 for females (life expectancy at birth, e(0)= 52.5)
and North level 15 for males (e(0)= 51.4) (Coale & Demeney, 1983). The male and female
life tables were combined using the sex ratio at birth in Burundi (Garenne, 2002). The life
table survivorship function is shown in Fig. 2. The starting total population was scaled
according to the size of Muyinga district, which Chen et al. (1994) give as approximately
330,000 for 1988.

The proportion of susceptibles transferred to immune is the product of the vaccine
coverage and the vaccine efficacy. There are two types of vaccination in the model: routine
vaccination, and SIAs. In the case of routine vaccination, in the model it occurs upon
reaching a certain exact age (9 months has been used throughout). This is a simplification;
in the real world, infants 9–11 months are targeted. Routine vaccination is implemented
at each time step. Supplementary immunization activities, on the other hand, vaccinate all
children in a certain age band (subject to coverage limitations), but only once, at a single
time step. In this model, the supplementary immunization activity (SIA) coverage was 70%
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Figure 3 Measles incidence, Muyinga sector, Burundi, 1981–1992. Red dashed line is epidemic thresh-
old (mean + 1.96SD, after Cullen et al., 1984).

of the population between 9 and 23 months, with an assumed vaccine efficacy of 80%; this
is based on the description of Chen et al. (1994) p. 187.

RESULTS
Monthly routine measles surveillance data from the Expanded Programme on
Immunization (EPI) in Burundi, 1981–92, are plotted in Fig. 3. Figure 4 is a scatterplot of
measles and chickenpox in Muyinga sector. In tropical settings such as Burundi, without
winter-summer cyclicality, diseases like measles and chickenpox are not typically in
synchrony. Thus, unless induced by reporting effects, we do not expect co-movement
between these unrelated diseases. In addition to the lack of relationship in Fig. 4, there
is no significance (p= .19, two sided) in a Goodman–Grunfeld (1961) time series test
for co-movement. The chickenpox data show that changes in measles incidence are not
reporting artifacts.

In Fig. 3, there are some small outbreaks after the introduction of vaccination, but
before the large post-honeymoon epidemic. Muyinga sector is small enough that long-term
transmission of measles requires re-introduction from neighboring sectors (Black, 1966).
However, if viral introductions occur when conditions are not ripe for a large epidemic,
they only cause smaller outbreaks and perpetuate low-level transmission.

Figure 5 depicts the results of the model with vaccination, as an age× time× prevalence
surface. The age distribution of measles is pushed upward by vaccination. The surface also
has local maxima at relatively older ages, indicating that everyone who is not successfully
immunized will contract measles sooner or later. Older children whomissed immunization
should not be forgotten by vaccination efforts; SIAs can fill the gap. Figure 6 gives the mean
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Figure 4 Log–log scatterplot of measles and chickenpoxmonthly incidence. The 7 months centered
on the post-honeymoon measles outbreak are plotted as black squares. Dashed lines indicate epidemic
thresholds (see Fig. 3 caption). The month with 1 reported chickenpox case is likely a reporting error.

and standard deviation of the age of measles cases. Like the surface, this shows how both
of these quantities move upward, also reinforcing the idea that as vaccination programs
mature, attention should be paid to expanding their coverage, age-wise. The increase in age
is relevant for mortality, because older children have lower case fatality rates (Walsh, 1986;
Cutts, 1990; Wolfson et al., 2009). This assumes that post-honeymoon measles epidemics
do not have higher case fatality rates, which has been suggested (Garenne, Glasser &
Levins, 1994).

Table 2 presents the age distribution for the first post-honeymoon epidemic. Age-
stratified data from Muyinga are only available during the outbreak, not as a longer
time series. The simulated data are broadly consistent with the empirical data. The model
reports no cases below 6months because it cannot: this is the duration ofmaternal antibody
protection. The modest number of cases below 6 months in the observed data suggests that
the model assumptions regarding maternal antibody are reasonable. In general, the model
age structure is a good qualitative match to that reported by Chen et al. (1994).

Regarding vaccine policy, the role of models such as these is not only to simulate a
specific outbreak but to allow counterfactual investigation. Figure 7 shows simulated time
series for Muyinga, where net immunization (i.e., vaccine coverage times vaccine efficacy)
is allowed to vary. This shows clearly that as coverage improves, the time until the first
post-honeymoon outbreak gets longer and longer. Even when net immunization is as
low as 75%, in a population the size of Muyinga, the incidence becomes fractions of a
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Figure 5 Age× time× prevalence surface (class C of the model). Model conditions are for a simu-
lation of Muyinga sector, Burundi. Time zero represents two years prior to the introduction of vaccina-
tion. Thus, the peak on the far left is the end of pre-vaccine epidemics, and the first main trough is the
honeymoon period. The central, largest, peak is the post-honeymoon epidemic. The vertical axis is to be
interpreted as the height of the wireframe above an individual 1× 1 square of age× time (in months).
Summing over all ages, the total monthly prevalence represented by this surface ranges from 15.4 to 523.5
cases.

Table 2 Age distribution of measles cases in post-honeymoon epidemic, model versus observed.

(months) (from Chen et al., 1994, p. 189)
Age Model Observed

0–5 0% 5%
6–11 23% 27%
12–23 32% 24%
24–35 27% 19%
36–59 18% 25%

person. Arguably, this could be seen as temporary elimination. However, it is clear, with
net immunization as high as 85%, the population is still susceptible to a large outbreak
upon reintroduction of the virus (e.g., from a neighboring province). In the absence of
reintroduction, even the fractional cases eventually are enough to spark a post-honeymoon
outbreak. The model does not incorporate demographic stochasticity, which imposes
integer constraints (Mollison, 1981; Snyder, 2003). When net immunization is 95%, Fig. 7
shows that measles does not endogenously reappear on a 25-year horizon.
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Figure 6 Model results: mean age and standard deviation (SD) of age of measles cases. The horizontal
axis (time) matches that of Fig. 5: vaccination is introduced at 2 years, accompanied by abrupt increases in
the mean and SD of the age of measles cases.

Figure 8 is a heatmap showing thewaiting time to occurrence of the first post-honeymoon
epidemic, varying the net immunization rate and the population growth rate. The diagonal
white band represents a 15-year waiting period, and the red region shows that whenever
the net immunization rate is below 80%, post-honeymoon epidemics will occur in 15 years
or less, regardless of the population growth rate. As noted, these arise from persistence of
fractional numbers of cases in the inter-epidemic period, but also show that the population
would be vulnerable in the event of measles virus introduction. The heatmap transitions
abruptly to dark blue, indicating no endogenous reoccurrence of measles within 25 years.

Above 90% net immunization is required to achieve permanent suppression of post-
honeymoon outbreaks. Without SIAs, this requires about 95% coverage with a 95%
efficacious vaccine, which is a major challenge in rural areas of low-income countries where
cold chain maintenance is difficult. When the population growth rate is higher, the vaccine
coverage requirements appear slightly more lenient. This may seem counterintuitive, given
that population growth drives the creation of new susceptible children. The bottom-heavy
nature of population pyramids in high-growth societies drives the effect; everyone in the
model age 6 months or less is immune. The higher the growth rate, the greater proportion
of the population is immune through maternal antibodies. However, this has little practical
importance, since the lenient tilt of the white band in Fig. 8 is more than offset by the
challenges of vaccinating more and more children (in absolute numbers) after 6 months
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Figure 7 Model Results (all ages) for four levels of immunization, 0.65, 0.75, 0.85, 0.95. Immunization
equals vaccine coverage multiplied by vaccine efficacy. Vaccination is introduced after two years of simu-
lation, at which point the four curves diverge.

of age, in growing populations. Indeed, in the real world, populations with 2% and
higher growth rate have a large rural share, which presents its own obstacles to universal
vaccination.

Supplementary immunization activities canwork synergisticallywith routine vaccination
(Helleringer, Asuming & Abdelwahab, 2016), especially when net immunization from
routine vaccination is too low to provide good measles control. Low net immunization
can be the product of shortfalls in coverage, or low vaccine efficacy as a result of cold
chain problems. Even in simulated conditions of 65% routine vaccine coverage with a
75% effective vaccine (with the latter value chosen to reflect cold chain difficulties), good
control can be achieved if routine vaccination is augmented by a suitable regime of SIAs.
Our simulations assume SIA coverage is 70%, with 80% vaccine efficacy; we assume that
SIAs can do a little better on efficacy than routine vaccination. For example, seroconversion
rates are higher in older children, and SIAs cover older children on average, compared to
routine vaccination. In our simulations, good control can be achieved with SIAs, but there is
a trade-off between the frequency and the age range of SIAs. The longer time between SIAs,
the wider the target age range must be to suppress outbreaks. The frequency-maximum
age relationship is nonlinear, and is depicted graphically in Fig. 9 (p. 14). The dark blue
region represents effective control, and it shows clearly that as the interval between SIAs
increases, the upper bound of the target age range must increase (the lower bound is fixed
at 9 months). Verguet et al. (2015) analyze similar situations. Very frequent SIAs are for
all intents and purposes a different type of routine vaccination, thus we did not examine
frequency greater than once every 24 months.
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Figure 8 Heatmap, waiting time to occurrence of the first post-honeymoon epidemic, by net immu-
nization rate and the population growth rate. From 10,000 model runs.

DISCUSSION & CONCLUSIONS
Since the 1980s, enormous strides have been made in measles control (e.g., WHO, 2016).
Nonetheless, the model herein, validated (largely qualitatively) against field data on a
post-honeymoon epidemic in 1988–89, has lessons for measles vaccination policy today.
Catch-up SIAs can be an effective way to increase population immunity, especially in
areas where difficulties in cold chain maintenance result in lower average vaccine efficacy.
However, SIAs should cast a wide net, not only trying to vaccinate infants age 6 months–1
year for the first time, but also moving up in age, even up to 10 year-olds (Clements, 1994).
It should also be noted that SIAs work with routine vaccination, and are not a replacement
(Gay, 2000; Berhane et al., 2009). Due to cold chain breakdowns, many older children may
have been previously vaccinated (i.e.,received a shot) without being immunized: e.g., the
mean age of infection of 5 (±4.5) years (Fig. 6). The increasing use of bivalent (measles-
rubella) vaccines throughout much of the world (or trivalent measles-mumps-rubella or
quadrivalent measles-mumps-rubella-varicella) is all the more reason to cast a wide net in
SIAs, since these vaccines also confer protection against rubella (which undergoes similar
age shifts), and thus prevent congenital rubella syndrome.
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Figure 9 Heatmap, waiting time to occurrence of the first post-honeymoon epidemic, frequency of
SIA andmaximum age of SIA coverage. The maximum age refers to the target ages of the SIAs; the mini-
mum age is fixed at 9 months. From 10,000 model runs.

This work has several limitations. The assumption that β does not vary by age was
made due to the lack of empirical data from which to estimate age-dependent transmission
parameters. Thus, we use universal mixing as an approximation, which should be feasible
for a pathogen as contagious as the measles virus. The qualitative fit of the model to the
data is evidence of this. As noted, another limitation is the way the model handles maternal
antibody protection. A sudden drop at 6 months is an approximation (Williams, Cutts &
Dye, 1995). In the observed data, the number of cases below one year is low (5%), so the
approximation is an adequate fit in this case. Another limitation is that the model ignores
introduction of measles virus from neighboring districts. In real populations, importation
of cases alters the epidemiology from the purely endogenously-generated dynamics of the
model.

While seasonal forcing has been used in other settings (e.g., Ferrari et al., 2008), this
model does not include it. It seems to us that the transmission of measles is not significantly
seasonally forced in rural Burundi in the presence of vaccination. Burundi has two wet
seasons, February to May, and September to November (Republique du Burundi, 2006).
The observed epidemiology (Fig. 3) does not nest into this seasonality, and the model as
it stands fits the data well. This is not to say that adding seasonal terms to Eq. (6) would
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degrade the model, but at least to first order, they are not necessary. Elaboration of the
model with seasonal forcing would be a potential improvement.

Themodel was designed for a specific region (Muyinga sector, Burundi), using demogra-
phy (mortality and birth rate) and size tailored to the region, as well as a force of infection
drawing on a literature review of sub-Saharan African serosurveys. The results were
interpreted with respect to an empirical data set. In order to preserve population growth as
demographically-stable process (in the sense of Coale, 1972), we ignored measles mortality,
in favor of using life tables that are a fit to available mortality data (ostensibly including
measles mortality). This ignores long-run feedback effects of epidemics (John, 1990b).

Themain policy recommendation is that to avoidmeasles epidemics, SIAs should be used
in addition to routine vaccination, which cannot keep up with the increase in susceptibles
caused by population growth. This applies to settings in which vaccine efficacy is less
than 95%. Where cold chain challenges or vaccine coverage shortfalls are prevalent, SIAs
should be used to bolster immunization. The greater the hurdles to routine vaccination,
the more important is the role of supplementary immunization activities. Moreover, there
is a age-frequency trade-off for these SIAs, in which less frequent vaccination campaigns
must target older children (Fig. 9).

Measles continues to be a challenge in sub-Saharan Africa; although the data we analyze
come from an epidemic in Burundi from 25 years ago, the lessons from the present analysis
are still applicable today. For instance, measles outbreaks are a current public health
problem in the Democratic Republic of Congo, a border nation of Burundi (Grout et al.,
2013; Maurice, 2015; Scobie et al., 2015; Restrepo-Méndez et al., 2016), as well as elsewhere
in sub-Saharan Africa (Luquero et al., 2011;Minetti et al., 2013). The use of SIAs to achieve
measles control is not a novel idea; existing policy recognizes their importance (e.g.,Measles
& Rubella Initiative, 2016). However, as outbreaks continue, mathematical models can help
to refine vaccine policy.
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