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ABSTRACT
Dense Acropora cervicornis aggregations, or patches, have been documented within

nearshore habitats in Southeast Florida (SE FL) despite close proximity to numerous

anthropogenic stressors and subjection to frequent natural disturbance events.

Limited information has been published concerning the distribution and abundance

of A. cervicornis outside of these known dense patches. The first goal of this study

was to conduct a spatially extensive and inclusive survey (9.78 km2) to determine

whether A. cervicornis distribution in the nearshore habitat of SE FL was spatially

uniform or clustered. The second goal was to investigate potential relationships

between broad-scale seafloor topography and A. cervicornis abundance using high

resolution bathymetric data. Acropora cervicornis was distributed throughout the

study area, and the Getis-Ord Gi� statistic and Anselin Local Moran’s I spatial cluster

analysis showed significant clustering along topographic features termed ridge

crests. Significant clustering was further supported by the inverse distance weighted

surface model. Ordinal logistic regression indicated 1) as distance from a ridge

increases, odds of reduced A. cervicornis abundance increases; 2) as topographic

elevation increases, odds of increased abundance increases; and 3) as mean depth

increases, odds of increased abundance increases. This study provides detailed

information on A. cervicornis distribution and abundance at a regional scale and

supports modeling its distributions in similar habitats elsewhere throughout the

western Atlantic and Caribbean. Acropora cervicornis is frequently observed and in

areas an abundant species within the nearshore habitat along the SE FL portion of

the Florida Reef Tract (FRT). This study provides a better understanding of local

habitat associations thus facilitating appropriate management of the nearshore

environment and species conservation. The portion of the FRT between Hillsboro

and Port Everglades inlets should be considered for increased management and

protection to reduce local stressors.
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INTRODUCTION
Dating back to the late Pleistocene, Acropora cervicornis has been an important

component of southwestern Atlantic and Caribbean reef communities by providing
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habitat for numerous organisms and constructing a structurally complex reef framework

that cannot be replaced by other corals (Aronson & Precht, 2001a; Bruckner et al., 2002;

Knowlton, Lang & Keller, 1990). Acropora cervicornis has historically flourished over a wide

range of reef zones, depths and hydrodynamic regimes. After decades of reported

disturbances resulting in Acropora cervicornis population declines, this species was

formally listed as threatened by the US Endangered Species Act in 2006. Numerous

studies have investigated potential causes of A. cervicornis population decline in the

southwestern Atlantic and Caribbean. Major contributors to this mortality include

disease, predation, sedimentation, nutrient loading, thermal stress and storm damage

(Aronson & Precht, 2001a; Bruckner et al., 2002; Davis, 1982; Gladfelter, 1982; Hoegh-

Guldberg, 1999; Lang et al., 1992; Lessios, 1988; Lirman et al., 2011; Lirman & Fong, 1996;

Porter, Battey & Smith, 1982; Porter et al., 2001; Roberts et al., 1982). These stressors,

combined with the species dependence on asexual reproduction and limited potential

for larval recruitment, make substantial recovery of populations’ uncertain (Aronson &

Precht, 2001b; Hughes, Ayre & Connell, 1992; Knowlton, Lang & Keller, 1990).

A few remnant A. cervicornis populations have been reported in Florida (Vargas-Ángel,

Thomas & Hoke, 2003;Williams, Miller & Kramer, 2008;Walker et al., 2012); Punta Rusia,

Dominican Republic (Lirman et al., 2010); and Roatan, Honduras (Keck et al., 2005).

The relative health of the populations described by Lirman et al. (2010) and Keck et al.

(2005) may be attributed to the limited anthropogenic stress, either through separation

from human influence by strong currents or located within a marine protected area

offshore a region with limited development and small population. In Southeast Florida

(SE FL), little distance exists between A. cervicornis populations and the effects of

extensive urbanization from over population in addition to high frequency occurrences of

natural disturbances such as tropical storms and hurricanes. Despite these anthropogenic

and natural impacts which greatly stress the reefs along the northern extent of the Florida

Reef Tract (FRT), several high density A. cervicornis thickets, or patches, have been

documented nearshore SE FL at the latitudinal limit of the species. Some research has

been completed on the distribution, abundance and dynamics of a few known patches

in SE FL (Gilliam et al., 2015; Thomas, Dodge & Gilliam, 2000; Vargas-Ángel, Thomas &

Hoke, 2003; Vargas-Ángel et al., 2006; Walker et al., 2012; Walker & Klug, 2014); however,

little information has been published concerning A. cervicornis population characteristics

outside of dense patch boundaries. Wirt et al. (2013) found 17% of A. cervicornis

observations in Florida were in habitats not previously thought to be potential Acropora

spp. habitat. These results indicate that there is a wide range of variable habitat where

the species can survive which should not be neglected when investigating distribution.

Furthermore, the recent discovery of 28 more large dense patches of A. cervicornis in SE FL

via aerial imagery demonstrates the need for a regional understanding of A. cervicornis

distribution, demographics, and status (Walker & Klug, 2014).

The first objective of this study was to conduct a spatially extensive and inclusive

survey (9.78 km2) to determine whether A. cervicornis distribution in the nearshore

habitat of SE FLwas spatially uniform or clustered. The second objective was to investigate

potential relationships between topography and A. cervicornis abundance using high
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resolution bathymetric data. The results of this study provide detailed information on

A. cervicornis distribution at a regional scale, supporting and expanding previous

knowledge. These data provide a better understanding of local habitat associations, address

current gaps in baseline data, and support modeling A. cervicornis distributions in similar

habitats in other locations throughout the western Atlantic and Caribbean thus facilitating

appropriate management of the nearshore environment and species conservation.

METHODS
Study area
The reef habitats offshore SE FL (Miami-Dade, Broward, Palm Beach and Martin

Counties) define the northern portion of the FRT (Banks et al., 2007). Nine major reef

habitats have been described in this region including a nearshore ridge complex (NRC)

(Walker, 2012). This study was conducted within a portion of the NRC offshore

Broward County between Hillsboro and Port Everglades inlets (26.09–26.25 �N) (Fig. 1).
The NRC in this area is within 1.2 km of the shoreline and is composed of ridges and

areas of colonized pavement, rubble, and sand with depths ranging from three to six

meters (Walker, 2012). Ridges have vertical relief from crest to base ranging from one

to three meters.

Sampling–distribution
Because our goal was to provide a more thorough description of A. cervicornis distribution

within an area where it is already known to exist, we restricted our study to a portion of

the NRC. The survey area was established from the western most hardbottom edge to the

eastern most ridge crest within the NRC, spanning up to 900 m; an area where high

densities of A. cervicornis have been reported (Gilliam et al., 2015; Thomas, Dodge &

Gilliam, 2000; Vargas-Ángel, Thomas & Hoke, 2003; Vargas-Ángel et al., 2006;Walker et al.,

2012;Walker & Klug, 2014). In the most northern and southern portions of the study area,

the surveys were extended east, past the ridge crest due to the lack of hard bottom on the

western side.

Surveys were conducted over a two-year period and completed in 2013 with the

intent to characterize the relative nearshore abundance and distribution of A. cervicornis

along 18 km of coastline between Port Everglades and Hillsboro inlets (Fig. 1). A search

pattern and data collection procedure was adapted from the NOAA Recommended

Survey Protocol for Acropora spp. (NOAA, 2007) and conducted at 1,956 sites. Sites were

established by creating a 100 � 50 m polygon grid in ArcGIS covering the survey area.

XYdata was added to intersecting grid nodes to establish GPS points for each survey site

then shifted so that each western-most site was 50 m east of the nearshore hard bottom

edge. In the field, a buoy was dropped at the center of two 5,000 m2 sites. Divers on

SCUBA attached 50 m tapes to the weighted buoy and swam with their tapes in opposite

directions, either directly east or west. Divers counted the number of kicks to roll the

entire 50 m tape out in order to estimate distance to swim away from the tape in a

perpendicular direction, directly north or south. Divers surveyed sites in a parallel-track

type pattern.
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The objective of this study was to evaluate the current distribution and abundance

of A. cervicornis. All A. cervicornis colonies regardless of size and state (attached, loose,

or fragment) were included in the study. Although published studies investigating the

fecundity of A. cervicornis fragments are limited, Lirman (2000) found that large
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Figure 1 Survey area. Map showing location of eastern ridge crest, western hardbottom edge, and the

portion of the NRC that was surveyed during this study. Locations of previously documented patches of

A. cervicornis are also shown. Areas within the study area that are not shaded brown represent sand.
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fragments of A. palmata did, in fact, contain gametes. If fragments of A. cervicornis also

contain gametes and are potentially reproductively viable, they ought to be included when

estimating distribution and abundance. Therefore, it was important to include loose

colonies and fragments with living tissue in addition to those attached to substrate.

From more than six years of demographic monitoring data (E. Larson & D. Gilliam,

2013, unpublished data) conducted within the study area, the average single colony within

the region has approximate dimensions of 30 � 30 cm for an average projected area a

900 cm2 using a square approximation. This approximation was used to convert the

estimated area covered by large masses or thickets into the equivalent number of average

sized colonies for the region. Divers recorded abundance within each site. The time it took

to complete each survey ranged between 20–30 min depending on the abundance of

A. cervicornis present at the site. To effectively and efficiently survey a large area which

included a large number of sites, colonies were individually counted up to 50, and when

abundances exceeded 50, they were placed into bins of 51–150 or > 150. In order to

evaluate A. cervicornis association with substrate types within the study area, percentage of

sand, rubble, and hardbottom was estimated for each site.

During October 2012, Tropical Storm Sandy traveled north through the Caribbean

and the Bahamas; persistent northerly winds and the slow movement of Sandy caused

large swells for the region along the east-central and southeastern coast of Florida. In

addition to this and a gap in sampling periods, following established guidelines for

sampling finite populations (Yamane, 1973; Israel, 1992), a subset of 292 sites were

re-surveyed in 2013. Subset data from 2013 were compared to that from 2011 with a

nominal logistic regression analysis using presence and absence data followed by Poisson

regression analysis using count data. Results verified there was no significant change

in presence or abundance of A. cervicornis between sampling periods (p < 0.05).

Data were fit to an inverse distance weighted interpolation (IDW) model to visualize

continuous abundances throughout the area surveyed. IDW uses the measured values

surrounding the prediction location to predict abundance for any unsampled location

based on the assumption that objects that are close to one another are more similar than

those that are farther apart. A benthic habitat layer (Walker, 2012) was used to mask

the interpolation model so that only abundances within the NRC were predicted. The

IDW was then clipped to the grid of 1,956 polygons, representing the area of each site.

A Getis-Ord Gi� statistic, or “hot spot” analysis, was performed in ArcGIS to locate

spatial clusters of high and low abundances by calculating a Z-score and p-value.

The Z-scores and p-values determine whether the spatial arrangement of high and

low abundance was different than those expected in a random distribution (Getis &

Ord, 1992). High Z-scores (> 1.65) and low p-values (< 0.05) indicated the spatial

clustering of high abundance sites. Low Z-scores (< -1.65) and low p-values (p < 0.05)

indicated spatial clustering of low abundance sites. Z-scores near zero indicated no

apparent spatial clustering.

The Anselin Local Moran’s I spatial cluster and outlier analysis was also performed.

In addition to calculating Z-scores and p-values to determine statistically significant

clustering like the Gi� statistic, this analysis also identified spatial outliers (high
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abundance sites surrounded by low abundance sites and vice versa) (Anselin, 1995). The

output was displayed to distinguish between a statistically significant (p-value < 0.05)

cluster of high abundance (HH), cluster of low abundance (LL), and outliers that either

had a high abundance surrounded by low abundance (HL) or had a low abundance

surrounded by high abundance (LH).

Sampling–topographic metrics
A LIDAR bathymetric survey was conducted during 2007 which covered an approximate

total area of 110 km2 including this entire study survey area (Ramsay & Sinclair, 2008).

High resolution (four meter) bathymetry points from the LIDAR data set were imported

as XYZ data. Triangulated irregular networks (TINs) were created from the LIDAR data

points to produce a three-dimensional surface and used to calculate topographic metrics

(Jenness, 2004; Walker, 2008; Wang & Lo, 1999). The TINs referenced the grid of 1,956

polygons, representing each site. The TIN analysis was performed using the Surface Tools

Extension (Jenness, 2008) in ArcGIS to calculate a set of topographic metrics within each

individual site. Calculated metrics included surface rugosity, elevation change (maximum

depth–minimum depth), and mean depth. The surface rugosity index was calculated

by dividing the three-dimensional surface area by the two-dimensional planar area.

Additionally, the distance was measured from the geometric center of each grid polygon

to the closest prominent ridge crest. Site to ridge proximities were measured by drawing of

a vector line over the shallowest points along the ridges in the 2007 bathymetry.

Acropora cervicornis abundances recorded during the site surveys were placed into

one of six bins using a 6-point ACFORA scale: Abundant (species is prevalent within

the site, > 150 occurrences), Common (species is encountered often, with more than

50 occurrences but less than 150), Frequent (species is present, more than 30 occurrences

but less than 51), Occasional (present in low numbers, with more than 10 occurrences

but less than 31), Rare (10 or less occurrences of the species at the site), and Absent

(no occurrences of the species at the site) (Fig. 2; Table 1). Abundance categories,

dominant substrate, and topographic metrics were analyzed using a mixed-effects ordinal

logistic regression model.

RESULTS
Overall distribution
Surveys were conducted February through November 2011 and May through October

2013. Nearly half of all 1,956 survey sites had the presence of A. cervicornis (940 sites;

48%). Acropora cervicornis was rare at 13% of the sites, occasional at 8% of sites, frequent

at 5% of sites, common at 11% of sites, and abundant at 11% of sites (Table 1). Nearly half

of the 1,956 sites surveyed (48%) were characterized as hardbottom-dominated, 17% of

all sites were rubble-dominated, 30% were sand-dominated, 1% was dominated equally

by hardbottom and rubble, 3% were dominated equally by hardbottom and sand, and 1%

was dominated equally by rubble and sand. Acropora cervicornis was more frequently

present at sites dominated by hardbottom (26%) and rubble (12%). A summary of sites

with the presence of A. cervicornis on each substrate type is shown in Table 2.
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The IDW interpolation illustrates the results of A. cervicornis abundance observed

throughout the survey area unobstructed by site boundaries (Fig. 3). The Getis-Ord Gi�

statistic (Fig. 4) shows statistically significant (p-value < 0.05) high abundance clustering

of A. cervicornis along nearly the entire eastern ridge crest of the NRC as well as a

several surveyed areas associated with shoreward ridges. The Anselin Local Moran’s I

also shows clustering in the same locations and no outliers.

Figure 2 Illustrated examples of sites classified within each abundance category. (A) Site recorded in

the Abundant category (> 150 colonies/5,000 m2), (B) a site recoded in the Common abundance

category (51–150 colonies/5,000 m2), (C) a site recorded in the Frequent abundance category (31–50

colonies/5,000 m2), (D) a site recorded in the Occasional abundance category (11–30 colonies/5,000 m2),

(E) a site recorded in the Rare abundance category (1–10 colonies/5,000 m2), and (F) a site in the Absent

abundance category.
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Topography and abundance
A mixed-effects ordinal logistic regression with robust clustered standard errors around

substrate was conducted. The fixed effects were distance to closest ridge, surface

rugosity, elevation, and mean depth. All of the predictor variables showed statistical

significance in the ordinal logistic regression model (p < 0.05) (Table 3). Results

showed the following: (1) when the distance to a ridge increases by one meter, the

odds of a site moving from a higher abundance category to a lower category are

1.08 times greater; (2) when elevation change increases by one meter, the odds of

moving from a lower abundance category to a higher category are 1.25 times greater;

and (3) when mean depth increases by one meter, the odds of moving from a lower

abundance category to a higher category are 1.27 times greater. Surface rugosity showed

statistical significance, however, the odds of a change in abundance category were so

low that the predictor can be considered applicably insignificant. This result can

likely be attributed to the calculation of rugosity at the coarse scale of 100 � 50 m

(area of each site).

DISCUSSION
This is the largest published area (9.78 km2) surveyed in such detail to document

A. cervicornis abundance and distribution. Although the nearshore area between Port

Everglades and Hillsboro Inlet is a small segment of the FRT that is greatly impacted by

Table 1 Acropora cervicornis abundance categories and number of corresponding sites. Colony

abundance categories used to compare A. cervicornis abundance to topographic metrics and substrate

type in ordinal logistic regression analyses, and the number of survey sites represented by each category.

Abundance Category # of sites

0 Absent No occurrences of the species at the site 1,016

1–10 Rare 10 or less occurrences of the species at the site 250

11–30 Occasional Present in low numbers 151

31–50 Frequent Species is present in moderate numbers 100

51–150 Common Species is encountered often 217

> 150 Abundant Species is prevalent within the site 222

Table 2 Abundance and dominant substrate results. Number of sites in each abundance category by

dominant substrate. Dominant substrate types included hardbottom (HB), rubble (RBL), sand (SND),

hardbottom and rubble (HB & RBL), hardbottom and sand (HB & SND), rubble and sand (RBL &

SND). Substrate composition estimates were not recorded for 12 of 1,956 sites.

Category HB RBL SND HB & RBL HB & SND RBL & SND Missing data Total

Absent 419 93 450 5 42 6 1 1,016

Rare 106 56 74 4 5 1 4 250

Occasional 82 35 29 2 2 0 1 151

Frequent 63 19 17 0 0 1 0 100

Common 137 62 9 3 1 2 3 217

Abundant 127 71 10 6 3 1 4 222

Total 934 336 589 20 53 11 12 1,956

D’Antonio et al. (2016), PeerJ, DOI 10.7717/peerj.2473 8/16

http://dx.doi.org/10.7717/peerj.2473
https://peerj.com/


anthropogenic stressors, the Threatened species, A. cervicornis, is frequently observed and,

in areas, an abundant species within this nearshore habitat.

All of the surveys occurred on the NRC (Walker, 2012) which is characterized as

sporadic sandy areas intermixed with consolidated hardbottom. This was confirmed by
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Figure 3 Inverse distance weighted interpolation model of Acropora cervicornis abundance within
surveyed area. Map showing the inverse distance weighted interpolation model, illustrating the

abundances of A. cervicornis observed within the study area, unobstructed by survey site boundaries.
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66% of all survey sites characterized as having hardbottom, rubble, or both as the

dominant substrate types. The observed high abundances of A. cervicornis on rubble

were not expected as the presence of loose substrate potentially increases the chances of

physical damage to or burial of existing colonies. Lirman & Fong (1997) stated that a
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critical factor affecting ability of a fragment to successfully attach is substrate type and that

in a study conducted in Florida, A. palmata fragments that landed on rubble substrate

had higher survivorship and lower percent tissue loss than those deposited on relict

reef substrate. Bak & Criens (1981) found that A. palmata fragments fuse to other living

fragments faster than to any other type of substrate. Fusion of A. cervicornis fragments

may be occurring in rubble-dominated areas away from prominent ridges in SE FL

(Fig. 2B). The species’ potential to persist in rubble, as shown in this study, is consistent

with high survivorship of A. palmata fragments on rubble and hardbottoms over a

four-month period (Lirman, 2000) and the fusing together of A. cervicornis fragments in

soft or sandy bottoms (Highsmith, 1982).

The significant spatial clustering of areas with abundant A. cervicornis spanned

over 12 km along a clearly-defined unique topographic ridge. Klug (2015) assessed

the benthic cover of five cross-shelf corridors within the northern portion of the FRT

(25.5–26.3 �N) and found over 85% of all A. cervicornis colonies observed were

within just two corridors, both of which were included in this study. In addition to

the seven patches noted by Vargas-Ángel, Thomas & Hoke (2003) in SE FL, Walker &

Klug (2014) recently identified 28 high density A. cervicornis patches not previously

reported. The spatial clustering observed in our study supports the existence of these

high density patches associated with the western side of the ridge crest. Vargas-Ángel,

Thomas & Hoke (2003) stated that the highest density thickets occurred in calmer waters

closer to shore. This includes the two monitored patches that were documented to

have declined in cover between 2008 and 2011 (Walker et al., 2012). In contrast to

the results of the current study, Vargas-Ángel, Thomas & Hoke (2003) reported the

thickets that occurred on the carbonate coquina platform (i.e. ridge crest), were

composed of interspersed colonies of A. cervicornis with patches of hard bottom and

isolated gorgonians. While this was observed on the eastern-most side of the ridge

crest, on the western edge, large and continuous areas of A. cervicornis were noted.

It appears that wave energy at the crest promotes colony fragmentation and fragment

movement to the west. Wave energy dissipates enough for fragments to attach and

flourish on the leeward side of the crest. The topographic analysis supported this by the

increased odds for higher abundances with an increase in elevation change. Larger

changes in elevation were most often observed at sites that included the ridge crest,

where clustering of high abundances also occurred. The increased odds for higher

abundances as depth increases may be explained by many sites exhibiting both high

Table 3 Results of ordinal logistic regression analysis. Results of ordinal logistic regression model to

predict A. cervicornis abundance category by distance to a ridge, surface rugosity, elevation change, and

mean depth.

Predictor X2 Std. error P Odds ratio

Distance to the closest ridge -0.007 0.001 < 0.0001 0.923

Surface rugosity -0.045 0.059 < 0.0001 3.25 � 10-197

Elevation (max depth–min depth) 0.222 0.048 < 0.0001 1.249

Mean depth 0.242 0.034 < 0.0001 1.274

D’Antonio et al. (2016), PeerJ, DOI 10.7717/peerj.2473 11/16

http://dx.doi.org/10.7717/peerj.2473
https://peerj.com/


elevation changes and high A. cervicornis abundance, not necessarily the presence of

higher abundances observed at greater depths.

This study shows that nearshore bottom topography can provide some insight

into predicting the distribution of high abundances of A. cervicornis but alone, it

cannot explain where and why high and low densities of A. cervicornis exist. This is

a unique coral in that, to some extent, it is motile. Two patches of A. cervicornis

in SE FL were found to move in a northwest direction expanding in area over a

three year monitoring period (Walker et al., 2012). This is an indicator of

oceanographic influence on location of patch growth. The reported direction of

patch movement can be expected since fragment transport mimics nearshore

oceanographic processes (Lee & Mayer, 1977). These processes result in a dominant

north and west direction of water movement and are strongly influenced by the

Florida Current (Banks et al., 2008; Lee, Schott & Zantopp, 1985; Molinari &

Leaman, 1987). It is clear there are key explanatory variables required to successfully

predict A. cervicornis distribution that our study did not include. Many areas where

A. cervicornis colonization has occurred are the result of the either sexual recruitment

or the transport of fragments broken off colonies from other distant locations

(Highsmith, 1982; Highsmith, Riggs & D’Antonio, 1980). In order to follow the

transport of loose fragments to their point of attachment, elements of directional

water movement must be incorporated into the research. This is an area of study for

future exploration in order to more fully understand the forces acting upon the

population of A. cervicornis nearshore in SE FL.

The directional movement of the patches studied by Walker et al. (2012) and the

A. cervicornis population within this region may also be influenced by effects of

climate change. There is some conjecture that Acropora communities in SE FL may be

exhibiting poleward expansion as sea surface temperatures rise (Precht & Aronson, 2004;

Walker, 2012). Walker (2012) defined three potential biogeographic barriers to northern

expansion in SE FL, one of them being at the northern limit of our survey area, the

Hillsboro boundary. The high abundances observed in our study are already located

near the species’ present latitudinal margin and a lack of suitable nearshore substrate

combined with more frequent and intense upwelling may be limiting any potential

northern expansion (Walker, 2012; Walker & Gilliam, 2013).

This research supplements previous work done in SE FL to characterize abundance

and distribution of A. cervicornis. In addition to supporting recent findings of several

new A. cervicornis dense patches, results of this study illustrate the gradient of

abundances that exist outside of these high density areas. This gradient may be

key in answering questions proposed by Walker et al. (2012): is coral cover truly

declining or are patches just spreading out and/or moving due to coastal water

circulation processes and/or climate change? These findings offer a more thorough

description of the distribution and abundance of the Threatened coral, A. cervicornis,

than previously known while providing a better understanding of local habitat

associations in SE FL. The portion of the FRT between Hillsboro and Port Everglades
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inlets should be considered for increased management and protection to reduce

local stressors.
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