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ABSTRACT
Calcification is one of the most distinctive traits of scleractinian corals. Their hard
skeletons form the substratum of reef ecosystems and confer on corals their remarkable
diversity of shapes. Corallimorpharians are non-calcifying, close relatives of sclerac-
tinian corals, and the evolutionary relationship between these two groups is key to
understanding the evolution of calcification in the coral lineage. One pivotal question
is whether scleractinians are a monophyletic group, paraphyly being an alternative
possibility if corallimorpharians are corals that have lost their ability to calcify, as is
implied by the ‘‘naked-coral’’ hypothesis. Despite major efforts, relationships between
scleractinians and corallimorpharians remain equivocal and controversial. Although
the complete mitochondrial genomes of a range of scleractinians and corallimor-
pharians have been obtained, heterogeneity in composition and evolutionary rates
means that mitochondrial sequences are insufficient to understand the relationship
between these two groups. To overcome these limitations, transcriptome data were
generated for three representative corallimorpharians. These were used in combination
with sequences available for a representative range of scleractinians to identify 291
orthologous single copy protein-coding nuclear markers. Unlike the mitochondrial
sequences, these nuclear markers do not display any distinct compositional bias in their
nucleotide or amino-acid sequences. A range of phylogenomic approaches congruently
reveal a topology consistent with scleractinian monophyly and corallimorpharians as
the sister clade of scleractinians.
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INTRODUCTION
Scleractinian corals are the subject of intense scientific, public and, therefore,media interest,
particularly because of the uncertain fate of coral reefs in the face of ever increasing
anthropogenic challenges (Done, 1999; Hughes, 2003; Hughes et al., 2003). Due to their
capacity to deposit massive continuous calcareous skeletons, the coral reef framework built
by scleractinians provides one of themost complex and diverse of biological habitats (Cohen
& Holcomb, 2009). Despite their ecological importance and our economic dependence on
them (Moberg & Folke, 1999), we know remarkably little about the evolutionary history of
this animal group. This lack of understanding limits our ability to predict how corals, and
therefore the diverse habitats that they support, will respond to climate change and ocean
acidification (OA).

Although the vast majority of scleractinian fossils post-date the sudden appearance of
diverse coral families 14 My after the Permian/Triassic boundary, there is now evidence
that the evolutionary origin of the group is rooted deep in the Paleozoic. In brief, molecular
clock estimates calibrated using the earliest fossils that can be unambiguously assigned
to extant clades, and whose unique skeletal characters can be unequivocally recognized
in fossil coralla, imply that the scleractinian corals originated from a non-skeletonized
ancestor in the Ordovician (Stolarski et al., 2011). When considered in conjunction with
the elusive Paleozoic fossil record of the scleractinian lineage (Ezaki, 1997; Ezaki, 2000;
Scrutton & Clarkson, 1991), this suggests that either the fossil record for the period between
the Ordovician and late Permian is yet to be discovered, or that skeleton formation may
be an ephemeral trait within the Scleractinia (Stanley & Fautin, 2001).

The idea that the ability of corals to deposit a skeleton may be an ephemeral trait
on evolutionary time scales, the presence or absence of a calcareous skeleton potentially
reflecting prevailing environmental conditions, together with the anatomical similarity of
Actiniaria, Corallimorpharia, and Scleractinia (Daly et al., 2007; Stanley & Fautin, 2001),
led Stanley (Stanley, 2003) to propose the ‘‘naked coral’’ hypothesis (Fig. 1A). The central
idea of this hypothesis is that ‘‘different groups of soft-bodied, unrelated anemone-like
anthozoans gave rise to various calcified scleractinian-like corals through aragonitic
biomineralization’’ (Stanley, 2003), potentially explaining the sudden appearance of a
diverse and differentiated range of scleractinian skeletal types in the Triassic. Under
this hypothesis, the scleractinian skeleton is not a synapomorphy, but stands for an
organization grade. Consistent with this hypothesis, the Scleractinia were paraphyletic
in molecular phylogenetic analyses based on amino acid (aa) sequence data from
mitochondrial protein-coding genes (Medina et al., 2006). In these analyses, it was
estimated that corallimorpharians—anthozoans without a skeleton—diverged from
the Robust scleractinian clade during the late- and mid-Cretaceous, implying that
corallimorphs were descended from a coral that had undergone skeleton loss during a
period of increased ocean acidification. Whilst ocean acidification events occurred in that
period they did not cause any reef crisis (Honisch et al., 2012; Kiessling, Simpson & Foote,
2010; Pandolfi et al., 2011). Moreover, some alternative phylogenetic analyses based on a
range of other molecular markers (Chen, Wallace & Jackie, 2002; Fukami et al., 2008; Lin
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Figure 1 Relationship between Scleractinia and Corallimorpharia. (A) The two competing hypotheses
regarding the relationship between Corallimorpharia and Scleractinia: scleractinian monophyly and the
‘‘naked coral’’ topology. Scleractinian monophyly implies that the ability to calcify was acquired in the an-
cestor of Scleractinia, whilst the naked coral hypothesis requires secondary loss of this trait in the ancestor
of Corallimorpharia. (B) Maximum likelihood phylogenetic tree based on the amino acid sequences of 291
nuclear genes from 15 anthozoans with the JTT+ GAMMA+ I model. The critical nodes (1, 2, 3 and 4)
are fully supported, as reported in Table 1. The same topology was obtained for all the other analyses with
equally strong support (see Table 1).

et al., 2014; Romano & Palumbi, 1996) did not support the naked coral senario, and it
has become apparent that mitochondrial sequence data might not be appropriate for the
elucidation of phylogenetic relationships within the Corallimorpharia/Scleractinia clade
(Kitahara et al., 2014).

The issue of coral/corallimorpharian relationships is of particular importance, because
the idea that skeleton loss can occur as a consequence of ocean acidification carries
implications for the future of corals and coral reefs under climate change and elevated
atmospheric [CO2]. A better understanding of coral evolution more broadly has further
implications for coral reef futures. For instance, it is important to understand how prior
OA events (Kiessling, Simpson & Foote, 2010) have impacted the scleractinian lineage, and
the underlying causes of previous ‘‘reef crises’’ (Hoegh-Guldberg et al., 2007).

In order to shed light on the relationship between Corallimorpharia and Scleractinia,
phylogenomic analyses were carried out based on 291 single-copy nuclear protein-coding
genes from a representative range of robust and complex corals, corallimorpharians, and
sea anemones. To enable the phylogenomic analysis, it was first necessary to generate
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comprehensive transcriptome assemblies for the three corallimorpharian species—
Rhodactis indosinensis, Ricordea yuma and Corynactis australis. These molecular data
constitute an important resource for this neglected animal group. Analyses were carried out
both at the amino acid and nucleotide levels on concatenated, partitioned and individual
alignments using multiple inference methods. The results provide strong support for
scleractinian monophyly, allowing rejection of the hypothesis that corallimorpharians are
‘‘naked corals’’—descendants of a scleractinian that had undergone skeleton loss.

MATERIALS AND METHODS
Transcriptome assembly and data matrix
The complete workflow from data collection to analysis is summarized in Fig. S1. The
taxonomic sampling (Table S1) included three ‘‘Complex’’ corals from two families,
six ‘‘Robust’’ corals from five families, three corallimorpharians representing three
families, and two actiniarians. Gorgonia ventalina was used as the outgroup. The
new corallimorpharian transcriptome data were obtained from two zooxanthellate
species (Ricordea yuma and Rhodactis indosinensis) and an azooxanthellate species
(Corynactis australis). Ricordea yuma samples were collected from the Great Barrier
Reef (18◦25′35.20′′S, 146◦41′10.91′′E). Corynactis australis colonies were collected from
Jervis Bay, New South Wales (35◦4′14.11′′S, 150◦41′48.20′′E). The Rhodactis indosinensis
samples were collected at Beitou fishing harbor, Keelung, Taiwan. The transcriptomes
were generated from purified RNA extracted by using Trizol Reagent (Invitrogen, USA)
and dissolved in RNase-free water. High throughput sequencing was conducted using
the Illumina HiSeq 2000 platform. The transcriptomes were then assembled with Trinity
(r2013_08_14) using default settings (Grabherr et al., 2011). Symbiodinium sequences
were eliminated using PSyTranS (https://github.com/sylvainforet/psytrans). The resulting
contigs were clustered with CD-HIT-EST (Li & Godzik, 2006) at a sequence similarity
threshold of 0.9. The contigs were then translated into amino acid sequences with
TransDecoder (Grabherr et al., 2011). A summary of the resulting transcritpome assemblies
is given in Table S2. The raw reads and the transcriptome assemblies have been deposited
to NCBI under BioProject PRJNA313487.

HaMStR v13.2 (Ebersberger, Strauss & Von Haeseler, 2009) was used to search
for orthologs using three available cnidarian genomes as primer taxa, Acropora
digitifera (Shinzato et al., 2011), Nematostella vectensis (Putnam et al., 2007) and Hydra
magnipapillata (Chapman et al., 2010), with A. digitifera as the reference taxon, resulting
in 1,808 core orthologs. The same program was used for an extended search for orthologs
in the other scleractinians, corallimorpharians, and actiniarian transcriptomes. The
H. magnipapillata sequences were excluded from the phylogenetic analyses due to their very
high divergence with the Anthozoan sequences. In the end, we identified 291 one-to-one
orthologs across all 15 taxa. Each orthologous group was annotated according to the best
blast hit of the A. digitifera protein in that cluster against the NCBI nr database with an
e-value cut-off of 1e-5.

The amino acid (aa) sequences from the 291 orthologous genes were aligned using
MAFFT L-INSI v7.13 (Katoh & Standley, 2013) and subsequently trimmed using trimAl
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v1.2 with the Heuristic method (Capella-Gutierrez, Silla-Martinez & Gabaldon, 2009). The
nucleotide (nt) alignments were deduced from the aa alignments as described in (Kitahara
et al., 2014). The saturation at each nucleotide position was estimated with DAMBE
v5.3.110 (Xia, 2013), revealing no significant saturation in the dataset (Table S3).

Supermatrix phylogeny
For the concatenated aa matrix, the best fitting model determined using ProtTest v3
(Darriba et al. 2011) was JTT+G+ I. Maximum likelihood (ML) analyses were carried out
with RAxML v7.2.6 (Stamatakis, 2006) using rapid bootstrapping (-f a). Phylogenies based
on the supermatrix were also computed using Bayesian inference (BI) with PhyloBayes
MPI v1.5a (Lartillot et al., 2013) using the JTT + G + I model. Identical topologies were
recovered with CAT-Possion, and CAT + GTR models. Each run contained four chains
and ran until convergence. Convergence was assessed after a burn-in period of 2,000
generations following the author’s guidelines (maxdiff > 0.1 and effective size > 300). The
best fitting model for the nt alignment determined by jModelTest 2 (Darriba et al., 2012)
was the GTR + G + I, and the phylogenetic inference was carried out in a similar way as
the aa analysis. Trees and alignments have been deposited to TreeBase (ID 19254).

Partitioned phylogeny
Partitions and their corresponding best-fittingmodels were identified using PartitionFinder
(Lanfear et al., 2012) with the relaxed clustering algorithm, checking the top 1% schemes.
ML analysis was conducted on the partitioned datasets using RAxML v7.2.6 (Stamatakis,
2006) with 100 bootstrap replicates. The partitions identified by Partition finder were also
used for Bayesian inference using MrBayes v3.2.3 (Ronquist & Huelsenbeck, 2003) with 4
runs, 2 million generations saving topologies each 1,000 generations and discarding the
first 25% generations as burn-in.

Concordance factor estimation
Concordance factors were estimated on the 291 individual topologies inferred by MrBayes
v3.2.3 (Ronquist & Huelsenbeck, 2003) (four runs, 2 million generations 25% burn-in)
using BUCKy (Ane et al., 2006) with default settings (α= 1).

RESULTS AND DISCUSSION
Analyses of the concatenated nucleotide supermatrix
The data matrix for the 15 taxa (Table S1) comprised 291 nuclear protein-coding genes, 263
of which have functional annotations, the other 28 coding for unknown proteins (Table S5)
that probably correspond to cnidarian- or anthozoan-specific genes. The final alignment
of the nucleotide sequences contained 370,809 positions, around 30 times longer than in
the previously published phylogenies based on whole mitochondrial genomes (Kitahara
et al., 2014). A ML phylogeny was inferred using the best fitting model (GTR + G + I),
resulting in a topology consistent with scleractinian monophyly and with a bootstrap
support of 100% for every node (Table 1). This result is consistent with analyses based
on the nucleotide sequences of mitochondrial protein-coding genes (Fukami et al., 2008;
Kitahara et al., 2010; Kitahara et al., 2014).
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Table 1 Support values of critical nodes (see Fig. 1B for the numbering of nodes) for ML and BI analyses inferred using unpartitioned and partitioned phylogenetic
analyses of amino acid and nucleotide data. The best fitting substitution model for each concatenated unpartitioned dataset is indicated; the best fitting models for the
partitioned phylogenies are detailed in Table S4. Scleractinian monophyly is fully supported by all the analyses.

Data type Amino acid dataset Nucleotide dataset

Method Maximum likelihood
analyses

Bayesian inference Maximum likelihood
analysis

Bayesian inference

Supporting
value

Bootstrap support(%) Posterior probability Bootstrap support(%) Posterior probability

Matrix type Concatenated
matrix

Partitions Concatenated
matrix

Partitions Concatenated
matrix

Partitions by
gene

Partition by
codon

Partitions by
gene

Partition by
codon

Selected nodes/
substition
model

JTT+G+ I 153 subset JTT+G+ I 15 GTR+G+ I 75 subsets 106 subsets 75 subsets 106 subsets

1 (Corallimor-
pharia, Sclerac-
tinia)

100 100 1 1 100 100 100 1 1

2 (Corallimor-
pharia)

100 100 1 1 100 100 100 1 1

3 (Robusta 100 100 1 1 100 100 100 1 1
4 (Complexa) 100 100 1 1 100 100 100 1 1
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To take into account the fact that different regions of the alignment can evolve at
different rates and according to different models, the aa supermatrix was partitioned using
PartitionFinder, by gene and by codon, resulting in 75 and 106 partitions respectively. ML
and BI phylogenies were then inferred for each partitioning scheme, all strongly supporting
scleractinian monophyly (Table 1). Thus, both unpartitioned and partitioned analyses
of the nucleotide supermatrix consistently support the monophyly of Scleractinia. These
findings corroborate a number of previous studies (e.g., Fukami et al., 2008; Kitahara et
al., 2010; Kitahara et al., 2014; Lin et al., 2014; Stolarski et al., 2011). However, as analyses
of mitochondrial protein-coding sequences at the amino acid and nucleotide levels result
in distinct tree topologies (Kitahara et al., 2014; Medina et al., 2006), ML and BI analyses
were also conducted based on the aa sequences of the nuclear protein-coding genes.

Analyses of the concatenated amino acid supermatrix
The concatenated amino-acid alignment consisted of 122,170 positions. Both ML and
BI methods generated phylogenetic trees in which all nodes were strongly supported
(Table 1). In the ML reconstruction, all the bootstrap values were >70% and most nodes
had 100% support. In the BI analysis, the posterior probability for all the nodes was
100%. Partitioning of the amino acid alignment resulted in 153 subsets. ML and BI
phylogenies were then inferred based on the best substitution model for each partition
(Table S6) and also strongly supported the monophyly of scleractinians (Table 1). In
summary, unpartitioned and partitioned analysis of nuclear markers at the amino-acid and
nucleotide level are congruent. The major implication of these analyses of nuclear sequence
data is that corallimorpharians are not scleractinians that have undergone skeleton loss
(Fig. 1A). However, a ML tree based on the mitochondrial proteins of a set of species close
to those used for nuclear markers recovered the naked coral topology (Fig. S2), consistent
with the results reported by Kitahara et al. (2014), which could be a result of the sequence
composition biases in these mitochondrial genomes.

Sequence composition
In the case of mt genomes, significant differences in the base composition of protein coding
genes were observed between corallimorpharians, robust and complex corals, resulting in
different patterns of codon usage and amino acid composition across the various lineages
(Kitahara et al., 2014). In order to investigate the potential for compositional bias to affect
the topology recovered for nuclear protein-coding genes, base composition was estimated
for each of the 15 taxa included in the present analyses (Table S4). Base composition was
generally similar across all the hexacorallian groups, but the octocoral (A + T) content
(57.96%) was significantly higher. Within the Hexacorallia, the complex scleractinian
clade had the highest (A + T) content (56.5%) and, consequently, a higher proportion
of (A + T)-rich aa (FYMINK). The remaining groups (i.e., Actiniaria and Scleractinia
[Robusta clade]) displayed an overall (A + T) content between 55.00 and 55.95% and
no major differences between FYMINK and (G + C)-rich aa (GARP) (Fig. S3). The
thymine and cytosine contents of nuclear protein coding genes of Robusta differed slightly
(<1%) across all three codon positions compared to other scleractinians,. The nuclear
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protein-coding genes of Actinaria, Corallimorpharia and Scleractinia have therefore a very
similar composition (Fig. S3). In comparison to proteins encoded by the mitochondrial
genome, nuclear-encoded proteins of anthozoans contain, in general, more lysine (7% vs
2%), aspartic acid (5.5% vs 2%), and glutamic acid (7% vs 2.5%) residues, but significantly
less phenylalanine (4% vs 8%, and 13% in robust corals).

Major differences in the composition of mitochondrial protein-coding genes at both the
nucleotide and amino acid levels support the idea that themitochondrial genomes of robust
corals are evolving at a different rate to those of other hexacorallians (Aranda et al., 2012;
Fukami & Knowlton, 2005; Kitahara et al., 2014). However, no such compositional biases
appear to hold for nuclear protein-coding genes, implying that these nuclear sequences are
more appropriate sources of phylogenetic information than mitochondrial data (Kitahara
et al., 2014).

Analysis of individual gene topologies
Genes at different genomic locations may have distinct evolutionary histories, and thus
different topologies may be recovered (Akanni et al., 2014; Ane et al., 2006; Pisani, Cotton
& Macinerney, 2007). We constructed trees based on individual genes using ML and BI and
explored the distribution of the various topologies. For all types of inference, scleractinian
monophyly was recovered by the majority of genes, while only a small proportion of the
trees were concordant with the naked coral hypothesis (Fig. 2A). The patterns of topologies
for each tree across all types of inference was then investigated. Again, the most common
pattern was genes producing scleractinian monophyly across all types of inference, while
only a few genes were consistent with the naked coral hypothesis for all the reconstruction
methods (Fig. 2B). A sizeable proportion of genes did not agree with either scenario, as
can be expected when inferring such deep relationships based on single markers. A search
for systematic differences between the genes supporting the two competing of topology
did not reveal any differential Gene Ontology enrichment. However, genes supporting the
naked coral topology for all types of inference were found to be significantly shorter than
genes supporting the alternative topology (Fig. 2C). This suggests that genes supporting
the naked coral hypothesis might be too small for the inference of the correct topology.

Bayesian Concordance Analysis was then used to evaluate the contribution of individual
genes to the final topology in the BI trees. High concordance factor (CF) values on branches
indicate support from multiple genes (Weisrock, 2012). The primary topology recovered
by concordance analysis supported scleractinian monophyly (Fig. S4). In particular,
the branches descending from the split between Scleractinia and Corallimorpharia have
mean sample-wise CF values of 0.627 and 0.756 respectively. This result is consistent
with the unpartitioned and partitioned analyses of the concatenated sequence data and
therefore indicates broad support across the sampled nuclear genes for the monophyly of
scleractinians.

Are corallimorpharians naked corals?
Comparisons based on mitochondrial genomic architecture (Lin et al., 2014) suggest that
corallimorpharians are derived from an azooxanthellate ancestor. Anatomical similarities
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Figure 2 (A) Numbers of trees based on individual genes supporting scleractinian monophyly, naked
coral or other topologies for maximum likelihood (ml) and Bayesian inference (bi) for amino-acid
(aa) and nucleotide alignments (nt). The majority of trees are consistent with scleractinian monophyly,
whereas few support the naked corals scenario. (B) Summary of the concordance of phylogenetic
inference for each gene. Each line represents a gene. (continued on next page. . . )
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Figure 2 (. . .continued)
The main pattern (black lines) represents genes that are fully consistent with scleractinian monophyly,
whilst only a small proportion of genes consistently agree with the naked coral hypothesis (white lines).
The checkered lines correspond to genes producing topologies that are not consistent across the different
types of inference. The patterns are sorted from most abundant at the top of the figure to least abundant
at the bottom. (C) Distribution of sequence lengths for genes consistent with scleractinian monophyly (S,
black lines in B) and the naked coral hypothesis (N, white lines B). The sequences of the genes consistent
with scleractinian monophyly are significantly longer (Mann Whitney U test p= 0.0004).

between scleractinians and corallimorpharians support a close relationship between
them, but corallimorpharians not only lack mineralized skeletons, but also differ from
scleractinians in terms of several characters—for example: the condition of the mesoglea,
tentacular arrangement and the presence of homotrichs in the tentacles (Den Hartog, 1980).
Systematically, the taxonomic rank of Corallimorpharia has been controversial (Budd et
al., 2010; Daly, Fautin & Cappola, 2003; Den Hartog, 1980; Medina et al., 2006; Romano
& Cairns, 2000). The phylogenomic analyses presented here provide strong support for
scleractinian monophyly, and allow rejection of the idea that the corallimorpharian lineage
was derived from corals by skeleton loss. The analyses supporting this latter idea were
based on amino acid sequence data from mitochondrial genomes (Medina et al., 2006),
but it is now clear there are fundamental problems in using mitochondrial data to infer
phylogenetic relationships amongst hexacorallians (Kitahara et al., 2014), as is also the case
in beetles (Sheffield et al., 2009) and some groups of mammals (Huttley, 2009).

Insights into coral evolution
Taking into account the fossil and published molecular data (Kiessling, Simpson & Foote,
2010; Stolarski et al., 2011), the analyses above imply that the ability to secrete a skeleton was
acquired early in scleractinian evolution, but was followed by multiple origins of skeleton
complexity in various subclades (Romano & Cairns, 2000). The Paleozoic fossil record
(Ezaki, 1997; Ezaki, 1998; Scrutton, 1993; Scrutton & Clarkson, 1991) and molecular data
(Stolarski et al., 2011) both imply that the earliest scleractinians were solitary and inhabited
deep water and therefore lacked photosynthetic symbionts. The sudden appearance of
highly diversified forms of Scleractinia about 14 Ma after the end-Permian extinction (the
‘‘Great Dying’’ (Roniewicz & Morycowa, 1993; Stanley, 2003; Veron, 1995; Wells, 1956))
might be explained by multiple independent origins from deep-water ancestors (e.g., the
family Agariciidae (Kitahara et al., 2012)). It thus appears likely that the acquisition of
photosynthetic symbionts and the development of coloniality have probably both occurred
independently on multiple occasions (but see Barbeitos, Romano & Lasker, 2010), resulting
not only in a wide range of skeletal phenotypes but also in habitat expansion, which has
played important roles in the formation of shallow-water reefs.

It has been demonstrated that, when maintained under acidic conditions (pH7.3–7.6),
at least some corals can survive for 12 months after undergoing skeleton loss, recovering
fully after return to normal seawater (Fine & Tchernov, 2007). One interpretation of these
experiments is that, during evolution, the coral lineage might have been able to alternate
between soft and skeletonized forms, potentially explaining the gaps in the fossil record.
However, the fact that corallimorpharians are not derived from corals, and the monophyly

Lin et al. (2016), PeerJ, DOI 10.7717/peerj.2463 10/16

https://peerj.com
http://dx.doi.org/10.7717/peerj.2463


of extant Scleractinia, suggests otherwise—that skeleton-less corals are not viable on
evolutionary time scales. This has important implications for the future of the coral
lineage—the evolutionary resilience of the Scleractinia may have depended in the past on
deep sea refugia, as most of the ‘‘reef crises’’ have coincided with rapid increases in both OA
and sea surface temperature (Pandolfi et al., 2011). Deep-sea corals would have escaped the
challenges of high SST, thus the coral lineage may have been able to re-establish itself in the
shallows when more favourable conditions returned. At the present time, unprecedented
rates of increase in OA and SST are occurring concurrently with massive disruption of
deep-sea habitats caused by deep sea trawling, prospecting and mining (Guinotte et al.,
2006; Ramirez-Llodra et al., 2011; Barbier et al., 2014). Is the resilience of the Scleractinia as
a lineage therefore at risk?
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