Spatial heterogeneity of ions concentration explains
microbial diversity distribution in arid soils from
Cuatrocienegas Mexico (#9954)

First submission

Please read the Important notes below, and the Review guidance on the next page.
When ready submit online. The manuscript starts on page 3.

Important notes

Editor and deadline
Budiman Minasny / 14 May 2016

Files 8 Figure file(s)
5 Table file(s)
1 Raw data file(s)
Please visit the overview page to download and review the files
not included in this review pdf.

Declarations Involves a field study on animals or plants.

For assistance email peer.review@peerj.com



https://peerj.com/submissions/9954/reviews/108317/
https://peerj.com/submissions/9954/
mailto:peer.review@peerj.com

Review 2
guidelines

Please in full read before you begin

How to review

When ready submit your review online. The review form is divided into 5 sections. Please consider
these when composing your review:
1. BASIC REPORTING

2. EXPERIMENTAL DESIGN

3. VALIDITY OF THE FINDINGS
4. General comments

5. Confidential notes to the editor

You can also annotate this pdf and upload it as part of your review

To finish, enter your editorial recommendation (accept, revise or reject) and submit.

BASIC REPORTING EXPERIMENTAL DESIGN
Clear, unambiguous, professional English Original primary research within Scope of
language used throughout. the journal.
Intro & background to show context. Research question well defined, relevant
Literature well referenced & relevant. & meaningful. It is stated how research

fills an identified knowledge gap.

Structure conforms to Peer] standard,
discipline norm, or improved for clarity. Rigorous investigation performed to a

) i . high technical & ethical standard.
Figures are relevant, high quality, well
labelled & described. Methods described with sufficient detail &

, ) information to replicate.
Raw data supplied (See Peer] policy).

VALIDITY OF THE FINDINGS

Impact and novelty not assessed. Conclusion well stated, linked to original
Negative/inconclusive results accepted. research question & limited to supporting
Meaningful replication encouraged where results.

rationale & benefit to literature is clearly

stated. .Specgllat|on is welcome, but should be
identified as such.
Data is robust, statistically sound, &

controlled.

The above is the editorial criteria summary. To view in full visit https://peerj.com/about/editorial-
criteria/



https://peerj.com/submissions/9954/reviews/108317/
https://peerj.com/about/author-instructions/#standard-sections
https://peerj.com/about/policies-and-procedures/#data-materials-sharing
https://peerj.com/about/aims-and-scope/
https://peerj.com/about/aims-and-scope/
https://peerj.com/about/editorial-criteria/
https://peerj.com/about/editorial-criteria/

Peer]

unclear

Spatial heterogeneity of ions concentration explains microbial
diversity distribution in arid soils from Cuatrocienegas Mexico

Silvia Pajares, Ana E. Escalante, Ana M. Noguez, Valeria Souza, Luis Enrique Eguiarte, Felipe Garcia-Oliva, Celeste Martinez, Silke
Cram

Arid ecosystems are characterized by high spatial heterogeneity, being discontinuous
vegetation distribution a clear representation of such heterogeneity. Soil biotic and abiotic
factors associated with vegetation patches have also been well documented as highly
heterogeneous in space. Given the low vegetation cover and little precipitation in arid
ecosystems, soil microorganisms are the main drivers of nutrient cycling. Nonetheless,
little is known about the spatial distribution of microorganisms and the relationship that
their diversity holds with nutrients and other physicochemical gradients in arid soils. In this
study, we evaluated the spatial variability of soil microbial diversity and biogeochemical
parameters (nutrients and ions content) at local scale (meters) occurring in a gypsum-
based desert soil, to gain knowledge on what soil abiotic factors control the distribution of
microbes in arid ecosystems. We analyzed 32 soil samples within a 64 m? plot and: a)
characterized microbial diversity through 16S rDNA-TRFLPs, b) determined soil
biogeochemical parameters, and c) identified relationships between microbial diversity
and biogeochemical properties. Overall, we show a strong correlation between microbial
composition heterogeneity and spatial variation of ions content. Our results could be
attributable to spatial differences of soil saline content, favoring the patchy emergence of
salt and biological crusts.
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ABSTRACT

Arid ecosystems are characterized by high spatial heterogeneity, being discontinuous vegetation
distribution a clear representation of such heterogeneity. Soil biotic and abiotic factors associated
with vegetation patches have also been well documented as highly heterogeneous in space.
Given the low vegetation cover and little precipitation in arid ecosystems, soil microorganisms
are the main drivers of nutrient cycling. Nonetheless, little is known about the spatial distribution
of microorganisms and the relationship that their diversity holds with nutrients and other
physicochemical gradients in arid soils. In this study, we evaluated the spatial variability of soil
microbial diversity and biogeochemical parameters (nutrients and ions content) at local scale
(meters) occurring in a gypsum-based desert soil, to gain knowledge on what soil abiotic factors
control the distribution of microbes in arid ecosystems. We analyzed 32 soil samples within a 64
m? plot and: a) characterized microbial diversity through 16S rDNA-TRFLPs, b) determined soil
biogeochemical parameters, and c¢) identified relationships between microbial diversity and
biogeochemical properties. Overall, we show a strong correlation between microbial composition
heterogeneity and spatial variation of ions content. Our results could be attributable to spatial

differences of soil saline content, favoring the patchy emergence of salt and biological crusts.

INTRODUCTION

Spatial heterogeneity is an inherent feature of soils and has significant functional implications,
particularly when the activities and distribution of microorganisms are considered. The scale at
which environmental variation is considered in association with microbial diversity varies
greatly, from tens to thousands of kilometers, to meters and even at the microscale (Vos et al.,
2013). Depending on the spatial scale at which microbial diversity is studied, different
environmental parameters and ecological processes may be associated to the observed diversity
distribution (Martiny et al., 2011). At large spatial scales (tens to thousands of kilometers), soil
microbial community structure is correlated to edaphic variables, such as soil pH (Fierer &
Jackson, 2006), temperature (Garcia-Pichel et al., 2013), and moisture content (Angel et al.,
2010). At smaller scales (tens of meters), plant communities have been shown to have a strong
influence on soil microbial diversity through interactions within the rhizosphere (Berg & Smalla,

2009; Hartmann et al., 2009; Ben-David et al., 2011). However, little is known about the effects
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57 of small-scale habitat variation on the spatial patterns of microbial diversity and its interactions

58 with the soil abiotic properties (Maestre et al., 2005).

59 Arid soils have a particularly heterogeneous spatial distribution of abiotic properties

60 (Schlesinger et al., 1996), particularly in nutrients content. Vegetation patches, deemed “fertility

61 orresource islands”, are also scarce and sparsely found in arid environments (Cross &

62 Schlesinger, 1999; Hirobe et al., 2001; Schade & Hobbie, 2005). At the same time, there are

63 large areas deprived of vegetation and severely limited in nutrients and water (Evans et al., 2001,

64 Belnap et al., 2005), in which microorganisms are the main drivers of energy input and

65 biogeochemical processes (Titus, Nowak & Smith, 2002; Housman et al., 2007; Bachar, Soares

66 & Gillor, 2012). Among soil microbial communities, biological soil crusts (hereafter termed

67 Dbiocrusts), consisting mainly of cyanobacteria, lichens and mosses, are one of the most important

68 biotic components of arid and semi-arid ecosystems (Belnap, 2003). Biocrusts occur in

69 vegetation interspaces (Belnap, 2003) and contribute actively to natural small-scale soil

70  heterogeneity, not only in terms of biological diversity but also in relation to soil function,

71 including nutrient cycling and physicochemical properties associated with their spatial structure

72 (Maestre et al., 2005) Again, what percentage of landscape process rates occur in these hyperarid soils to make them important?

73 Given the tight connection between microbial activity and nutrient cycling, it is

74  reasonable to think that microbial distribution in soils might be somehow correlated with

75 nutrients content across space. Despite the idea of resource island formation in arid soils, many

76 studies have shown that spatial distribution of microorganisms and nutrients is not correlated in

77  these ecosystems (Belnap et al., 2005; Housman et al., 2007). Thus, there is a imperative need

78  for understanding both the soil spatial heterogeneity and the complex interactions between these

79 factors, which explain this heterogeneity and its role in arid ecosystem processes (Maestre et al.,

80 2005; Ben-David et al., 2011). Moreover, for desert soils, the biochemical and biological

81 heterogeneity may change depending on the scale analyzed, the type of vegetation and the degree

82  of perturbation (Schlesinger et al., 1996). ggi'fd';zJgfg)zgi’%g%g‘;;;{ﬂg;gi Barott ot a. 2006 (DO 10.1017/50954102006000587)
. Geyer et al. 2013 (DOI 10.1890/es13-00048.1)

83 In the present study, we aim to determine the spatial heterogeneity of microbial diversity

84 and soil biogeochemical parameters occurring in an arid soil, in order to gain understanding into

85 which aspects of the soil environment are more strongly associated with differences in microbial

86 community distribution. We hypothesize that the spatial heterogeneity in biogeochemical

87 properties, previously reported for desert soils (Schlesinger et al., 1996), will be reflected in
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I would push back at the assertion that this scale is “unexplored.” Again, there are a number of studies from the polar deserts of
Antarctica examining geochemical effects on biodiversity (see a few citations above).

microbial diversity distribution at a yet unexplored local scale (order of meters). Thereby, this
study aims to: a) characterize microbial community structure, b) determine soil physicochemical
and biochemical parameters and, c) identify relationships among microbial community structure
and biogeochemical soil properties at a local spatial scale.

The study site, Cuatro Cienegas Basin (CCB), is located in a desert ecosystem in the
middle of the Chihuahuan desert in Mexico. This is a gypsum-based system and it is one of the
most oligotrophic environments in the world. In contrast, the microbial diversity is very high
with respect to other arid soils (Lopez-Lozano et al., 2012). Thus, these soils provide-with-the

opportunity to investigate the spatial relationship between biogeochemical distribution and

The similarities between this study site and the McMurdo Dry Valleys of Antarctica are again striking, as the polar
desert is THE most oligotrophic soil in the world and also has relatively high diversity. See Zeglin et al. 2011 (DOI
10.1007/s00248-010-9782-7) for a comparison of these ecosystems.

microbial community structure.

MATERIALS AND METHODS

Study Area. The study site is locally known as “Churince system”. It is located in the western
part of the CCB (26° 50’ N, 102° 08” W; Figure 1) at 740 m a.s.l. The system consists of a
spring, an intermediate lagoon, and a dry desiccation lagoon connected by short shallow creeks.
The annual precipitation in the area is less than 250 mm, occurring mainly from May to October.
Temperatures fluctuate from 0°C in January to 45°C in July, with a mean annual temperature of
21.4°C (CCB weather station). Halophile and gypsophile grasslands are the main vegetation
present in this area (Challenger, 1998), which is also dominated by physical and biological soil
crusts. The soil is predominantly basic, rich in calcium and sulfates but very poor in nutrients,
and belongs to Gypsisol type (IUSS Working Group WRB, 2007).

Sampling design. The sampling plot wangvlvomsagz IjE(e;tetrlslgw(aﬁ"?y desiccation lagoon. It was dominated
by the gypsophile grass Sesuvium erectum that has only 10% of pleijrq?egé)verage (Figure 1).
Physical and biological crusts occupied the open areas between plants. The sampling scheme was
spatially structured and details of the setting are described elsewhere (Noguez et al., 2005). We
used a plot of 8§ m x 8 m that consisted of a nested system of four quadrats (4-D quadrats), which
were non-randomly divided in eight 1 m? “replicates” (Figure 1). Vegetation cover for each
sampling “replicate” or site (1 m?) was registered qualitatively in order to have further ecological
context for the results. In August 2007, we collected soil samples (500 g) from the first 10 cm at
each site to a total of 32 samples (eight samples for each 4 m? quadrat) under the SEMARNAT

collection permits 06590/06 and 06855/07. Soil samples were homogenized in the field and
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divided in two subsamples, which were stored at -20°C (for molecular analyses) and at 4°C (for
biogeochemical analyses), respectively. Analyses were performed upon arrival to the laboratory.
Physicochemical and biochemical analyses. Soil samples were air dried and sieved through a 2
mm mesh prior to physicochemical and biochemical determinations, which were performed
twice for each sample. Total carbon (TC) was determined by dry combustion with a Total
Carbon Analyzer (TOC). For total nitrogen (TN) and phosphorus (TP), the samples were acid
digested and determined colorimetrically using a Bran-Luebbe Auto-analyzer, according to
Bremner (Bremner, 1996) and Murphy & Riley (Murphy & Riley, 1962), respectively. Inorganic
N forms (NH4" and NOj5-) were extracted with 2M KCI, followed by filtration through a
Whatman #1 filter, and measured colorimetrically by the phenol-hypochlorite method. Inorganic
P (P1) was extracted with sodium bicarbonate, and determined colorimetrically by the
molybdate-ascorbic acid method (Murphy & Riley, 1962). Dissolved organic C (DOC), N
(DON) and P (DOP) were extracted with deionized water after shaking for 1 h and then filtered
through a Whatman #42 filter. DOC was determined with a TOC module for liquids, while DON
and DOP were acid digested and measured colorimetrically.

Electrical conductivity and pH were determined in soil with deionized water (soil solution
ratio 1:2). To quantify water-soluble cations (Ca?*, Mg?", K*, Na") and anions (HCOj5", Cl-, SO4*
), soil samples were shaken with deionized water for 19 h, centrifuged at 2500 rpm and filtered
through a Whatman #42 filter. Ca>* and Mg?" were analyzed by atomic absorption
spectrophotometry, while Na* and K™ by flamometry. Anions were determined by liquid
chromatography with a mobile phase of borate sodium glucanate, e detallforflamometry is necessary.
Molecular analyses. Microbial community structure was characterized using terminal restriction
fragment length polymorphisms (T-RFLPs) of 16S rDNA genes.

Genomic DNA was extracted from the soil samples using the Soil Master DNA
Extraction Kit (Epicentre Biotechnology), with an additional previous step based on the
fractionation centrifugation technique in order to reduce the high salts concentration (Holben et
al., 1988). After extraction, genomic DNA was cleaned with Microcon columns (Fisher
Scientific) with the purpose of removing any substance that could inhibit PCR amplification.
These protocol modifications gave the best results from various methodologies tested, however
we were J(jlsy‘f able to amplify the 16S rDNA from 21 out of the 32 soil sampling sites (amplicons
obtained in each quadrat: A=3; B=3; C=7; D=8). The low yield in the DNA amplification was
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due to the high concentration of salts, polysaccharides, and secondary compounds in these soil
samples (Lopez-Lozano et al., 2012).

Amplification of the 16S rDNA was carried out in a final volume of 50 pL containing:
0.2 uM of each fluorescently labeled domain-specific primers (VIC-27F and FAM-1492R)
(Lane, 1991), 0.2 mM of each dNTP, 1 U of Taq Platinum DNA polymerase (Invitrogen), 2.5 uL
DMSO, 2.5 uL. BSA, 1 mM MgCl,, 1 mM buffer, and 20 ng of DNA. Five independent PCR
reactions were performed for each sample with the following program: 5 min at 94 °C; 30 cycles
at 94 °C for 1 min, 52 °C for 2 min, 72 °C for 3min; and 72 °C for 10 min. PCR products were
pooled and purified from 2% agarose gel (Gel extraction kit, Qiagen Inc.). The amplicons were
restricted with Alul enzyme (Promega) at 37 °C for 3 h and 65 °C for 20 min. Three independent
readings of terminal restriction fragments (t-RFs) were performed for each sample, using an ABI
3100-Avant Prism Genetic Analyzer (Applied Biosystems).

Each t-RF was considered to be an operational taxonomic unit (OTU) and only those
OTUs with heights >50 fluorescent units were used for the analyses (Blackwood et al., 2003).

We constructed presence-absence matrices to determine the spatial patterns and diversity of

No relative abudnance

OTUs among the 4 m? quadrats (for details of the method see (Noguez et al., 2005)). matrices were used?

Statistical analyses. Statistical and diversity analyses were performed in R (R Development
Core Team, 2011), mainly with vegan, ggplots and BiodiversityR packages.

Soil properties were analyzed using univariate ANOVA and residuals were explored for
normality and variance homogeneity. When residuals did not satisfy these assumptions, a
Kruskal-Wallis test was applied. These analyses were followed by multiple pairwise tests, using
Tukey’s honestly significant difference (HSD), at the 5% level of significance, to identify
possible differences in the soil variables between quadrats. The correlations between each pair of
variables were calculated using Pearson’s correlation coefficient. Soil properties were then
standardized and ordered by principal components analysis (PCA), and the sampling points from
the four quadrats were visualized with the two first principal components.

Alpha diversity indices (Shannon, Simpson, and Berger-Parker) and richness estimates
were calculated for each quadrat using the T-RFLPs profiles. Microbial diversity indices were
also analyzed using ANOVA type Il for unbalanced data and evaluated using Renyi's entropy
profiles (Rényi, 1961; Chao et al., 2014). To evaluate sampling effort, rarefaction curves were
constructed for each quadrat using EstimateS v.9.1.0 (Colwell, 2005). Microbial community

Renyi’s entropy profile is an unusual metric

and | would like to see a broader discussion of
how it works!
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structure was examined through Venn diagrams and ordination analyses. To visualize
communities’ structure, Bray-Curtis dissimilarity distances were calculated with the T-RFLPs
profiles. Similar communities were then clustered using the Ward’s hierarchical clustering
algorithm, which tries to minimize variances in agglomeration. A heatmap was constructed with
dual hierarchical clustering.

Community structure was also investigated for correlations with biogeochemical
parameters following a multivariate analysis. For this, T-RFLPs profiles were ordered by
Detrended Correspondence Analysis (DCA) with Hellinger transformation (Blackwood et al.,
2003), and correlations between the ordination axes and soil properties were calculated. This
eigenvector-based ordination technique uses a chi-square distance measure, and assumes that
TRFs have a unimodal distribution along ecological gradients (Legendre & Legendre, 1998),
which is a more appropriate assumption than linearity for ecological analysis of T-RFLPs data
(Culman et al., 2008). Permutation tests under reduced model were used to identify significant
explanatory soil variables. Only the soil variables corresponding to the same sampling sites as

the T-RFLPs data were used for this analysis.

RESULTS
Spatial heterogeneity in physicochemical and biochemical parameters
The total plant cover in the experimental plot was only 10%. However, quadrats C and D were
more densely and homogeneously covered than 4 and B, since the latter were more distant from
the desiccation lagoon (Figure 1). Overall there was a high presence of soil crusts and biocrusts,
particularly in the 4 quadrat. [
Soil samples were alkaline (pH between 8.6-8.8) due to the high presence of salts in this
arid ecosystem (Table 1). The high concentration of Na* found in these soils (mean value of 147
cmol kg!) indicates salinity stress. Ions and C availability (DOC) were the most variable
parameters in this small plot. C and D quadrats had the greatest concentration of cations (except
for Na®), while 4 and B quadrats had the highest concentration of anions. Nutrients content was
very low in this arid soil, as expected, and it did not show significant differences among
quadrats. On the other hand, DOC was significantly higher in D quadrat, which means greater

substrate availability for microbial metabolism in this quadrat. As expected, the pH was

positively correlated with Mg?* and Na* (Table S1). The TC was only positively correlated with
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Ca?", while TP was positively correlated with pH and cations, as well as negatively with DOP.
The TN was positively correlated with DON and negatively with C:N, NH4*, NO;- and HCO;.
Finally, N inorganic forms were also positively correlated between them and the C:N ratio,
which was very low in the four quadrats (from 4.6 to 6.1).

The complex biogeochemical spatial heterogeneity among these four quadrats was
explored using a PCA (Figure 2). The first component (PC1) explained 54.3%, while the second
component (PC2) explained 34.3% of the total variation in the soil parameters among quadrats
(Table S2). The variables associated with the PC1 were cations and anions, as well as pH, TP,
DOC and DOP. The PC2 was mainly related to soil nutrients (TN, C:N, NH4", NO5-, DON,
DOC:DON). A clear separation between quadrats was observed along the PC1 axis, mainly
explained by the spatial heterogeneity distribution of ions.

Spatial heterogeneity of microbial diversity

A total of 184 different OTUs were obtained in the four quadrats. Unfortunately, the number of
available samples was unbalanced for the microbial diversity study in this plot (amplicons in
each quadrat: 4=3; B=3; C=7; D=8) due to the high concentrations of salts, which hampered the
16S rDNA amplification from all samples sites. Despite this constraint, rarefaction curves
showed a good community sampling for quadrats 4, C and D, with evident subsampling for
quadrat B, which is one of the two quadrats for which only 3 out of 8 samples could be analyzed
in terms of microbial diversity (Figure S1). Significant variation in alpha diversity indices
among quadrats was detected. Dgtsh;g‘ig the A quadrat was also limited in the number of analyzed
samples (3), it was the most diverse and with the highest evenness, followed by C, D, and B
(Table 2). It was also evident the high variability in microbial diversity among replicates (with
the exception of 4), which reflects the spatial heterogeneity at local scale of this arid soil. A
summary of diversity indices was obtained by calculating Renyi’s community profiles, reveling
the same pattern of diversity, both in terms of richness and evenness, where the highest diversity
was found for quadrat 4 and the lowest for quadrat B (Figure 3).

Despite the high heterogeneity in microbial diversity in such a small plot, Venn diagram
revealed a considerable overlap of OTUs among the four quadrats: 18% of OTUs were shared by
all quadrats, and the C quadrat had the most “unique” OTUs (12%), followed by quadrat D, B
and A4 in decreasing order (Figure 4). Interestingly, C and D quadrats shared 84 of the 184

recovered OTUs (46%), suggesting that both quadrats had more similar community composition
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than 4 and B quadrats. Moreover, the cluster dendrogram (Figure 5) and the heatmap (Figure
S2) showed the same pattern of grouping as the PCA analysis for soil biogeochemical properties,
separating quadrats in two groups: A-B and C-D. As in the PCA analysis, there was a sample in
the C quadrat that clearly deviated from the other samples.

Multivariate analyses of microbial community structure

To explore the association between OTUs abundance and soil parameters, we performed a DCA
analysis. The original 19 soil parameters were reduced to 7 non-redundant explanatory variables
(TN, DON, Ca?**, K*, HCOj5", ClI-, and SO4>; Table S3), which were the factors that contributed
significantly to differences in community composition among the four quadrats. The analysis
showed a clear separation of the quadrats in two groups, mainly explained by soil salinity: anions
(HCOys, CI, and SO4*) significantly correlated with OTUs from the 4 and B quadrats, while TN,
DON, Ca”" and K* significantly correlated with OTUs from the C and D quadrats (Figure 6).
The grouping pattern of these microbial communities showed in the above analyses was also

confirmed by the DCA analysis.

DISCUSSION

Biogeochemical heterogeneity at local spatial scale is mainly due to ions concentration
variability

The values of TC, TN and TP in the experimental plot were lower than that reported for other
deserts (Thompson et al., 2006; Strauss, Day & Garcia-Pichel, 2012), as well as for soils in the
CCB (Lopez-Lozano et al., 2012; Tapia-Torres et al., 2015). The very low C:N ratio also
suggests relative low retun;n(c)l;'a(r)rganic matter, therefore a low nutrient availability to soil
microbes and vegetation, limiting the N cycle due to the lack of C availability. The Redfield ratio
in this soil was 71:17:1, which indicates that the C is the limiting nutrient in comparison with a
general “average” soil C:N:P of 186:13:1 (Cleveland & Liptzin, 2007). On the other hand, this
result differs from the Redfield ratio of 104:5:1 reported for the same soil system (Lopez-Lozano
et al., 2012). These differences could be attributable to the great heterogeneity of this arid
environment and the different time of soil sampling in both studies: February 2007 (dry cold
season with low evapotranspiration) in (Loépez-Lozano et al., 2012) and August 2007 (rainy hot

season with high evapotranspiration) in this study.
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All soil samples in this study had high alkalinity due to elevated concentrations of ions,
which is a general pattern in desert soils (Titus, Nowak & Smith, 2002). The high pH makes
even less available the scarce P in these soils, which eventually is bound by Ca?* and Mg?* ions
(Cross & Schlesinger, 2001). It is worth to mention that ions varied spatially in identity in this
small plot: quadrats 4 and B were significantly high in anions, while quadrats C and D were
significantly high in cations. The huge concentration of Na* in the four quadrats is an indicator
of the extremely high salinity in these soils, which negatively affects the soil aggregates stability
and nutrients and water availability for plants, favoring the development of soil crusts, which are
typical in arid and semiarid soils (Belnap, 2003; Zhang et al., 2007). In particular, salt crusts are
abundant in this area of CCB. They consist of layers at the soil surface mainly formed by soluble
salt crystallizing soil particles at shallow saline groundwater level regions (Zhang et al., 2013).

The high concentration of ions can be attributed to the gypsum-rich nature of the CCB
soils, where groundwater rises to the surface by soil capillarity action, and water evaporation
promotes salt accumulation. This results in rivers with a steep salinity gradient (Cerritos et al.,
2011) and pools surrounded by saline soils rich in sulfates and extremely poor in nutrients
(Lopez-Lozano et al., 2012). Therefore, it is not surprising to find that the soil properties
variation in this small plot was mainly explained by 10ns concentration, grouping the four
quadrats in two broad clusters: 4-B and C-D. These clusters had a qualitative pattern associated
with the vegetation cover, being quadrats C and D more densely and homogeneously covered
than 4 and B. Although the present research refers to soil communities, a previous study of
microbial communities of the water system associated with the studied plot showed a clear
correlation of microbial composition and water conductivity gradients (Cerritos et al., 2011).
Thus, the spatial variation in these physicochemical properties among the four quadrats may be a
consequence of differences in moisture content due to the proximity to a subterranean water
flow, indirectly evidenced by the marked patchy distribution of the vegetation cover and the
“open” areas occupied by soil crusts (Lopez-Lozano et al., 2012).

Heterogeneity in microbial diversity at local spatial scale is explained by physicochemical
factors, not by vegetation cover neither by nutrients content

Despite important advances in our knowledge of the structure, composition and physiology of
biotic components in arid soils (Belnap et al., 2005; Caruso et al., 2011; Maestre et al., 2015;
Makhalanyane et al., 2015), little is known about the spatial variability of microbial diversity at

Peer] reviewing PDF | (2016:04:9954:0:1:NEW 6 Apr 2016)


geyerkev

geyerkev

geyerkev


Peer]

304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334

local scales and its interactions with biogeochemical heterogeneity in these ecosystems
(Housman et al., 2007; Castillo-Monroy et al., 2011; Andrew et al., 2012). Thus, T-RFLPs
fingerprinting was used in this study to assess the relationship between microbial structure and
the small-spatial heterogeneity of soil biogeochemical properties. We are aware that this
technique cannot recognize taxonomic groups and accounts mainly for relatively abundant
microbial groups, while rare groups, comprising the majority of the population, are unaccounted
for. Nevertheless, it has been shown that T-RFLPs fingerprinting facilitates replication, allowing
comparisons among communities’ diversity and pattern identification by the analysis of large
number of samples (Fierer & Jackson, 2006). In addition, it is a robust method capable of
revealing reproducible spatial patterns of soil microbial communities (Angel et al., 2013). In line
with this, the number of total OTUs identified with this technique is within the expected range,
given a previous report from the same study area using 16S rDNA clone libraries (Lopez-Lozano
et al., 2012). However, the heterogeneity in OTUs diversity among these quadrats is evident,
being the 4 quadrat the most different with respect to the other quadrats.

Despite the fact that the 4 quadrat had scarce plant cover and similar nutrients and ions
concentrations to the B quadrat, it showed the greatest microbial diversity, which could be
related to the high presence of biocrusts. Soil crust communities occur in vegetation interspaces
(Belnap, 2003) and contribute importantly to soil fertility and stability, favoring microbial
activity and diversity and enhancing the overall spatial patterns of ecosystem processes (Maestre
et al., 2005; Castillo-Monroy et al., 2011). For instance, autotrophic groups, such as
Cyanobacteria and Chloroflexi, usually dominate biocrusts in arid soils (Nagy, Pérez & Garcia-
Pichel, 2005; Gundlapally & Garcia-Pichel, 2006; Rajeev et al., 2013) and facilitate available
nutrients to opportunistic heterotrophs that growth during the rainy season (from May to October
in CCB). This is also the case for this arid system, where Lopez-Lozano et al., (2013) reported a
high abundance of Chloroflexi and Cyanobacteria groups using a 16S rDNA 454 pyrosequencing
strategy to evaluate microbial community succession over a year after disturbance.

On the other hand, the B quadrat had the lowest microbial diversity, which could be
related to the lowest values of DOC found in this quadrat. Labile organic matter fractions, such
as DOC, are the primary energy source for soil microorganisms and are characterized by rapid
turnover (Bolan et al., 2011). It has been reported that even in disturbed sites, DOC is the main

source of C influencing the composition of the microbial community (Churchland, Grayston &
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Bengtson, 2013). Then, changes of soil microbial community could be regulated by C
availability through labile soil organic matter pools. idence of OG a5 a diiver of bacteral iohness i ard sois!
Regarding similarity in microbial composition among the four quadrats, cluster
dendogram and multivariate analyses showed two clear groups, which were 4-B and C-D,
corresponding to the same clustering of quadrats based on soil biogeochemical parameters. A
common explanation for the soil microbial composition patterns is related to the presence of
plants controlling levels of microbial diversity and driving community assembly (Singh et al.,
2007; Berg & Smalla, 2009; Ben-David et al., 2011). However, in our study the observed spatial
pattern of microbial diversity distribution at such local scale does not seem to be associated with
vegetation cover. For example, the 4 quadrat is the most diverse in microbial community and the
less vegetated, suggesting that microbial diversity in this arid soil could be more related to the
presence of “open” areas occupied by biocrusts. On the other hand, abiotic factors, such as ionic
content, are statistically explanatory variables in the spatial ordering of the microbial
communities analyzed. Abiotic drivers of microbial diversity in arid soils has been also reported
for the Sonoran desert (Andrew et al., 2012), where location, pH, cation exchange capacity and
soil organic C were highly correlated with microbial composition. Therefore, we showed that
microbial community diversity and distribution responds to and/or influences local soil

physicochemical characteristics at a small spatial scale in this arid ecosystem.

CONCLUSIONS

To our knowledge, this is the first study reporting the high spatial heterogeneity and the strong
relationship of soil physicochemical and microbiological diversity at local scale (plot of 64 m?)
in an arid ecosystem. In desert areas, such as CCB, soil moisture is one of main limiting factors
affecting vegetation growth and distribution, as well as soil microbiology. The gypsum-based
water system controls the soil physicochemical factors and ultimately the microbial community
distribution in this arid ecosystem. Thus, the high heterogeneity in the soil properties and
microbial community among these small four quadrats seems to be a consequence of differences
in the soil saline content. In addition, the high concentration of Na* favors the emergence of both
salt and biological crusts and the irregular plant cover distribution in this system. Local spatial
variability of physicochemical properties and microbial diversity observed in this arid ecosystem

is likely to exist in most soils ecosystems, and needs to be considered when making ecological
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inferences and when developing strategies to sample the soil environment. A better
understanding of the role of spatial heterogeneity in biotic and abiotic factors will help to

determine the relevance of small-scale studies for large-scale patterns and processes.
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FIGURES AND TABLES

Figure 1. Sampling scheme. An 8x8 m plot was selected in the Churince System within the
Cuatro Cienegas Basin, México. A checkerboard sampling scheme was followed (Noguez et al.,
2005) to a total of 32 samples, eight for each of the four quadrats (4, B, C, and D). Soil
parameters were determined for the 32 samples. Numbers with asterisks indicate samples that

were also analyzed for microbial diversity. Green colored areas indicate presence of vegetation.
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Figure 2. Biplot generated from a Principal Component Analysis (PCA) of the
standardized soil variables for the four quadrats. Symbols represent the different quadrats.
Each vector points to the direction of increase for a given variable and its length indicates the
strength of the correlation between the variable and the ordination scores. The first component of
the PCA analysis accounted for 54.3% of the total variation, and the second component

accounted for 34.3% of the variation.

Figure 3. Renyi’s entropy profiles for the studied quadrats (4: 3 samples; B: 3 samples; C:
7 samples; D: 8 samples). Profiles were calculated with the OTUs abundance matrix. The alpha
scale shows the different ways of measuring diversity in a community. Alpha=0 is richness,
alpha=1 shows Shannon diversity, alpha=2 is Simpson index (only abundant species are
weighted), and alpha= Infinite only dominant species are considered (Berger-Parker index). The

height of H-alpha values show diversity.

Figure 4. Venn diagrams displaying the degree of overlap of OTUs composition among the

four studied quadrats (4: 3 samples; B: 3 samples; C: 7 samples; D: 8 samples).

Figure 5. Cluster dendrogram of similar microbial communities from the TRFLPs profiles of the
four studied quadrats (4: 3 samples; B: 3 samples; C: 7 samples; D: 8 samples) using Bray-Curtis

dissimilarity distances and the Ward’s hierarchical clustering algorithm.

Figure 6. Detrended Correspondence Analysis (DCA) of the TRFLPs profiles with respect
to the soil properties. Sample sites for the four quadrats are represented by symbols, and OTUs
are represented by grey crosses. Vectors stand for significant soil variables (p < 0.1). Each vector
points to the direction of increase for a given variable and its length indicates the strength of the

correlation with the axes.

Table 1. Soil physicochemical parameters (mean + standard deviation) of the four studied

quadrats within Churince System in the Cuatro Cienegas Basin (Mexico).

Variable Quadrat Overall mean
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A B C D
Total C (mg g) 24+0.8 24+04 26+04 2.8+0.6 26+0.6
Total N (mg g'!) 0.57+0.13 048+0.18 0.59+0.1 0.60+0.18 0.56+0.15
Soil C:N 4.6+23 6.1+4 4.6+0.7 50+1.3 51+24
Total P (mg g!) 0.03+0.01 0.03+0.01 0.04+£0.01 0.04+0.02 0.04+0.01
NH," (ug gh) 4.0+0.6 42+0.8 4.0+0.6 3.6+1 4.0+0.7
NO; (uggh) 1.8+1.9 1.5+1.5 1.6+1.7 23+1.5 1.7+£1.6
Dissolved organic C (ug g") * 97.3+£27.8% 758+30* 83.0+33% 124+21.3> 95.1+33.2
Dissolved organic N (ug g™') 146+34 18.1+123 179+8.7 19.6+9.2 17.6 + 8.7
Dissolved organic C:N 7£29 64+48 52+£24 79+39 6.4=+3.5
Dissolved organic P (ug g) 43+3.6 56+2.1 2.6+3.5 33+3.7 39+£33
pH * 8.6+0.1° 8.7+0.1> 8.7+0.1*> 88=+0.1° 8.7+0.1
Electrical conductivity (dSm-')  1.4+0.1 1.4+£0.3 1.6 0.2 1.4+04 14+£03
Mg?* (cmol kg!) * 27.1+528 28+6.3* 352+43% 365+45> 31.7+6.5
Ca?" (cmol kg!) * 0.56 £0.032 0.55+£0.022 0.64 +£0.07®* 0.65+0.07° 0.59 £0.07
Na* (cmol kg') 140£159 127+16.1 166+38.1 157+284 147+29.1
K* (cmol kg') * 0.95+0.14* 0.82+0.19* 1.27+0.14*> 1.33+0.25> 1.09+0.28
HCOj5 (cmol kg!) * 2.8+0.2b 23+£0.6> 1.2+0.22 1.3+0.32 1.9+0.8
CI- (cmol kg') * 2.8 £0.2° 25+03%  1.1+048 1.3+£0.32 1.9+£0.8
SO,* (cmol kg!) * 15.1+£22% 164+25> 76+08  72+09° 11.6+4.6

572
573  Variable acronyms: C, carbon; N, nitrogen; P, phosphorous.
574  * Significant difference among quadrants (p < 0.05).

575 Different letters indicate that means are significantly different among quadrats.
576
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577 Table 2. Alpha diversity estimates. OTUs diversity indices (mean + standard deviation) from the
578 TRFLPs data of the four quadrats (4: 3 samples; B: 3 samples; C: 7 samples; D: 8 samples).

Quadrat  Richness (S) Shannon (H)* Simpson (1/D)*  Berger-Parker*

A 48 +£9 3.31+0.08  0.944+0.004*  0.153 +£0.004°
B 36 £15 1.98 £0.62°  0.704 £0.145>  0.497 +0.144*
C 45+ 13 2.56 £ (0.44zb 0.8 +0.1052 0.393 +£0.138*
D 47+ 19 2.3+0.77® 0.738 £ 0.189>  0.426 + 0.203*

579
580 * Significant difference among quadrats (p < 0.05).

581 Different letters indicate that means are significantly different among quadrats.

582
583
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Figure 1(on next page)
Sampling scheme

An 8x8 m plot was selected in the Churince System within the Cuatro Cienegas Basin,
México. A checkerboard sampling scheme was followed (Noguez et al., 2005) to a total of 32
samples, eight for each of the four quadrats ( A, B, C, and D). Soil parameters were
determined for the 32 samples. Numbers with asterisks indicate samples that were also

analyzed for microbial diversity. Green colored areas indicate presence of vegetation.

Peer] reviewing PDF | (2016:04:9954:0:1:NEW 6 Apr 2016)



jerpenb g

jeipenb y

ues9Q .

oloed
mmmw%_o obC m
021X\ O o‘_a:o /7

) _____ OPIPuNH |3

49

Manuscript to be reviewed

Lo

el

£ T\
./

e
B

8puel9
eunbe,

1

Il

. mmmocm_o oneng . _
m.&m fpnig

N

| |
enyenyiyo

\
1
1
\ ,
|
1
1

Peer] reviewing PDF | (2016:04:9954:0:1:NEW 6 Apr 2016)



Peer]

Figure 2(on next page)

Biplot generated from a Principal Component Analysis (PCA) of the standardized soil
variables for the four quadrats

Symbols represent the different quadrats. Each vector points to the direction of increase for a
given variable and its length indicates the strength of the correlation between the variable
and the ordination scores. The first component of the PCA analysis accounted for 54.3% of

the total variation, and the second component accounted for 34.3% of the variation.

Ellipses of standard deviation around each of the quandrants would highlight the separation
between A/B and C/D. This could replace the dendrogram (Fig. 5) which | feel is unnecessary.
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This figure is unclear to me. A broader discussion of how Renyi’s entropy profile works in the Results section

-
F Ig ure 3 (on next page) would be useful. Are the richness, Shannon diversity, and Simpson index calculated independently and then
plotted on a single figure, or are there other embedded calculations that make these estimates unique?

Renyi’'s entropy profiles for the studied quadrats (A-D).

Profiles were calculated with the OTUs abundance matrix. The alpha scale shows the
different ways of measuring diversity in a community. Alpha=0 is richness, alpha=1 shows
Shannon diversity, alpha=2 is Simpson index (only abundant species are weighted), and
alpha= Infinite only dominant species are considered (Berger-Parker index). The height of H-
alpha values show diversity. N for studied quadrats is A: 3 samples; B: 3 samples; C: 7

samples; D: 8 samples).
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Figure 4 (on next page)
Venn diagrams

Displaying the degree of overlap of OTUs composition among the four studied quadrats ( A: 3

samples; B: 3 samples; C: 7 samples; D: 8 samples).
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Figure 5(on next page)
Cl USter dend rOg ram | don't see this figure as necessary.

Cluster of microbial communities based on the TRFLPs profiles of the four studied quadrats (
A: 3 samples; B: 3 samples; C: 7 samples; D: 8 samples) using Bray-Curtis dissimilarity

distances and the Ward'’s hierarchical clustering algorithm.
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Figure 6(on next page)

Detrended Correspondence Analysis (DCA) of the TRFLPs profiles with respect to the soil
properties

Sample sites for the four quadrats are represented by symbols, and OTUs are represented by
grey crosses. Vectors stand for significant soil variables (p < 0.1). Each vector points to the
direction of increase for a given variable and its length indicates the strength of the

correlation with the axes
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Table 1(on next page)

Soil physicochemical parameters (mean + standard deviation) of the four studied
quadrats within Churince System in the Cuatro Cienegas Basin (Mexico).

Peer] reviewing PDF | (2016:04:9954:0:1:NEW 6 Apr 2016)



Peer]

2 Table 1. Soil physicochemical parameters (mean + standard deviation) of the four studied

3 quadrats within Churince System in the Cuatro Cienegas Basin (Mexico).

Variable Quadrat Overall mean
A B C D
Total C (mg g!) 24+0.8 24+04 2.6+04 2.84+0.6 2.6+0.6
Total N (mg g!) 0.57+0.13 048+£0.18 0.59+0.1 0.60+0.18 0.56+0.15
Soil C:N 46+23 6.1 4 4.6+0.7 50+1.3 51+£24
Total P (mg g!) 0.03+0.01 0.03+0.01 0.04+0.01 0.04+0.02 0.04=0.01
NH;" (ng gh) 4.0=£0.6 42+0.8 4.0+0.6 361 4.0+0.7
NO;s (ug g 1.8+1.9 1.5+1.5 1.6+1.7 23+1.5 1.7+1.6
Dissolved organic C (ug g") * 97.3+27.8% 758+30* 83.0+33% 124+21.3> 95.1+33.2
Dissolved organic N (ug g™') 146+34 18.1+123 17.9+8.7 19.6 £9.2 17.6 £ 8.7
Dissolved organic C:N 7+29 6.4+4.8 52+£24 7.9+£39 6.4+3.5
Dissolved organic P (ug g!) 43+3.6 5.6£2.1 2.6+3.5 33+£3.7 39+£33
pH * 8.6+0.1° 8.7+0.1* 8.7+0.12> 88+0.1° 8.7+0.1
Electrical conductivity (dSm')  1.4=+0.1 14+03 1.6+0.2 14+04 14+£03
Mg?* (cmol kg!) * 27.1+£52¢  28+£63* 352+43% 365+£45> 31.7+6.5
Ca*" (cmol kg) * 0.56 £0.032  0.55+£0.022 0.64 £0.07®* 0.65+0.07° 0.59 £0.07
Na* (cmol kg!) 140£159 127+16.1 166+38.1 157+284 147+29.1
K* (cmol kg!) * 0.95+0.14* 0.82+0.19* 1.27+0.14> 1.33+£0.25* 1.09+0.28
HCOj5 (cmol kg!) * 2.8+£0.2° 23+0.6° 1.2+0.22 1.3+0.32 1.9+0.8
CI- (cmol kg') * 2.8 +0.2° 25+03%  1.1+04° 1.3+0.32 1.9+0.8
SO,* (cmol kg!) * 15.1+£22% 164+25> 76+08  7.2+09° 11.6 +4.6
4
5  Variable acronyms: C, carbon; N, nitrogen; P, phosphorous.
6  * Significant difference among quadrants (p < 0.05).

7  Different letters indicate that means are significantly different among quadrats.
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Table 2(on next page)

Alpha diversity estimates

OTUs diversity indices (mean =+ standard deviation) from the TRFLPs data of the four

quadrats ( A: 3 samples; B: 3 samples; C: 7 samples; D: 8 samples).
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1 Table 2. Alpha diversity estimates. OTUs diversity indices (mean =+ standard deviation) from the

2 TRFLPs data of the four quadrats (4: 3 samples; B: 3 samples; C: 7 samples; D: 8 samples).

Quadrat  Richness (S) Shannon (H)* Simpson (1/D)* Berger-Parker*

A 48+ 9 3.31+£0.08%  0.944+0.004* 0.153 +0.004°
B 36 +15 1.98+0.62> 0.704 +£0.145> 0.497 +0.144*
C 45+ 13 2.56+0.44%  0.8+0.105®  0.393 +£0.138"
D 47+ 19 23+0.77®>  0.738+£0.189* 0.426 +0.203*
3
4 * Significant difference among quadrats (p < 0.05).

5 Different letters indicate that means are significantly different among quadrats.

~
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