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ABSTRACT
Background. Magnetic resonance imaging (MRI) is the best biomarker of inflam-
matory disease activity in relapsing remitting Multiple Sclerosis (RRMS) so far but
the association with disability is weak. Appearance of new MRI-lesions is used to
evaluate response to immunotherapies in individual patients as well as being the
most common primary outcome in phase-2 trials. Measurements of brain atrophy
show promising outcomes in natural cohort studies and some phase-2 trials. From
a theoretical perspective they might represent irreversible neurodegeneration and be
more closely associated with disability. However, these atrophy measurements are not
yet established as prognostic factors in real-life clinical routine. High field MRI has
improved image quality and resolution and newmethods tomeasure atrophy dynamics
have become available.
Objective. To investigate the predictive value of MRI classification criteria in to
high/low atrophy and inflammation groups, and to explore predictive capacity of
two consecutive routine MRI scans for disability progression in RRMS in a real-life
prospective cohort.
Methods. 82RRMS-patients (40 untreated, 42 treatedwith immunotherapies,mean age
40 years,median ExpandedDisability Status Scale (EDSS) of 2, underwent two clinically
indicated MRI scans (3 Tesla) within 5–14 months, and EDSS assessment after a mean
of 3.0 (1.5–4.2) years. We investigated the predictive value of predefined classifications
in low/high inflammatory and atrophy groups for EDSS progression (≥1.5 if baseline
EDSS= 0,≥1.0 if baseline EDSS<5,≥0.5 for other) by chi-square tests and by analysis
of variance (ANOVA). The classifications were based on current scientific or clinical
recommendation (e.g., treatment response criteria). Brain atrophy was assessed with
three different methods (SIENA, SIENAX, and FreeSurfer). Post-hoc analyses aimed
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to explore clinical data and dynamics of MRI outcomes as predictors in multivariate
linear and logit models.
Results. Progression was observed in 24% of patients and was independent from
treatment status. None of the predefined classifications were predictive for progression.
Explorative post-hoc analyses found lower baseline EDSS and higher grey matter
atrophy (FreeSurfer) as best predictors (R2

= 0.29) for EDSS progression and the
accuracy was overall good (Area under the curve = 0.81).
Conclusion. Beside EDSS at baseline, short-term grey matter atrophy is predictive
for EDSS progression in treated and untreated RRMS. The development of atrophy
measurements for individual risk counselling and evaluation of treatment response
seems possible, but needs further validation in larger cohorts. MRI-atrophy estimates
from the FreeSurfer toolbox seem to be more reliable than older methods.

Subjects Neurology, Psychiatry and Psychology, Radiology and Medical Imaging, Statistics
Keywords Multiple sclerosis, MRI, Disability progression, Predictors, Atrophy, Lesions

INTRODUCTION
Disability progression in Multiple Sclerosis (MS) is mediated by acute inflammation as
well as chronic inflammation and neurodegeneration (Hauser, Chan & Oksenberg, 2013;
Friese, Schattling & Fugger, 2014). Magnetic Resonance Imaging (MRI) is currently the best
available biomarker in relapsing-remitting Multiple Sclerosis (RRMS) (Hauser, Chan &
Oksenberg, 2013) and new T2-hyperintense or contrast enhancing lesions are outcomes of
inflammation in clinical trials (Sormani et al., 2009; Stellmann et al., 2015). New lesions are
associated as well with treatment failure in individual patients (Rio et al., 2008). Lesion load
at the time of diagnosis and its increase within the first five years are prognostic factors for
long-term disability at a group level (Fisniku et al., 2008; Popescu et al., 2013; Tintore et al.,
2015). However, the association between clinical and MRI measurements of inflammation
and disability progression is moderate at best. In contrast, there is growing evidence that
atrophymight be closer associated with disability than lesions (Rocca et al., 2013; Jacobsen et
al., 2014). Over 10 years, confirmed disability progression was associated with whole brain
atrophy, cortical atrophy and ventricular volume (Zivadinov et al., 2016). Cross-sectional
studies indicate a better correlation of atrophy with disability and cognitive decline than
lesions alone (Benedict, Carone & Bakshi, 2004; Steenwijk et al., 2016). Moreover, atrophy
is discussed as an additional criterion to define treatment response within the concept of
NEDA (‘‘No evidence of disease activity’’) as first studies report on the predictive value
of for example percentage brain volume change for treatment response to interferon-beta
(Perez-Miralles et al., 2015). However MRI atrophy measurements are not yet established
as individual prognostic factors and reliability has not yet been proven in a real-life setting.
Furthermore data about short-term atrophy dynamics (e.g., within one year) as predictor
of disability progression are rare (Popescu et al., 2013).

Bielekova et al. (2005) were the first to combine simple MRI measurements of
inflammation and atrophy as prognostic factors. They aimed to assign patients into
four risk groups based on their baseline inflammatory activity (high or low) and respective
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atrophy (high or low). After eight years the algorithm failed to predict progression. Since
then though, high field MRI has improved image quality and resolution and new methods
to measure brain atrophy dynamics have become available (Smith et al., 2002; Fischl, 2012).
It is therefore reasonable to investigate the predictive value of short-term atrophy and
inflammation measurements of two MRI scans in a real life setting, as most patients likely
receive them due to clinical monitoring anyway (Uher et al., 2015).

The current study was designed to validate the concept of Bielekova with different
classification algorithms representing widely accepted criteria such as the Rio criteria
for treatment failure. In addition we aimed to explore as to how far varying atrophy
measurements (SIENA/SIENAX from the Functional MRI software library, fmrib.ox.ac.uk
and FreeSurfer freesurfer.net) differ in their ability to predict EDSS progression.

METHODS
Study design
The study was designed to assess the predictive value of two standard MRI scans for
EDSS progression in treated and untreated RRMS in a real-life setting. Participants were
consecutively recruited and underwent two baseline visits five to 14months apart including
a neurological assessment as well as MRI scans. We scheduled annual follow-up visits but
due to an increasing dropout rate (25% in 2014) and a poor compliance to scheduled visits,
the study had to be terminated early with final visits in 2014/2015. As a result, patients had
heterogeneous follow-up times (median 2.9 years, range 1.5–4.2).

Our analysis plan included two steps: in an hypothesis driven approach, we used
short-term changes of lesions and atrophy to define four risk groups and validate their
predictive capacities: (I) Low inflammation and low atrophy, (II) high inflammation
and low atrophy, (III) low inflammation and high atrophy and (IV) high inflammation
and high atrophy. Since the original publication of Bielekova (Bielekova et al., 2005) new
methods to measure brain atrophy dynamics became available (Smith et al., 2002; Fischl,
2012). We aimed for a comparison of three frequently used techniques (SIENA, SIENAX,
FreeSurfer). Post-hoc, we explored clinical data and different volumetric methods in their
ability to predict EDSS progression.

Patients
Patients aged between 18 and 60 years with a confirmed diagnosis of RRMS according to
the revised McDonald Criteria (Polman et al., 2011) had to give written informed consent.
Patients were asked to participate at baseline if two MRI scans were clinically indicated
within one year. The local ethics committee (Board of Physicians, Hamburg, No. PV4405)
approved the study. Between the two baseline visits, patients had to be stable without
(untreated) or stable on any disease-modifying drug (DMD, treated). MRI scans were not
performed within 30 days after a steroid treatment. 109 patients were enrolled. 56 had a
DMD and 53 opted against any DMD in a shared decision process. The expanded disability
status scale (EDSS) (Kurtzke, 1983) of all patients was assessed by trained neurologists.
Treatment at follow-up was labelled as ‘‘no change’’ or ‘‘change’’. The kind of treatment
change was defined as ‘‘escalation’’, ‘‘no change’’ and ‘‘de-escalation.’’
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MRI and image analysis
MRI data were acquired on a 3T scanner including a magnetization prepared
rapid acquisition gradient-echo (MPRAGE) T1-weighted sequence (T1, pre-post
Gadolinium(Gd)) and a PD-T2-weighted sequence (T2). The software JIM was used
to semi-automatically mask lesions in T2 (T2-hyperintense lesions), T1 (T1-hypointense
lesions) and T1Gd sequence. Two raters counted lesions and evaluated new lesions. Regions
of Interest (ROI) were semi-automatically placed around single lesions in the PD/T2, T1
and T1Gd sequence. The number of lesions was determined manually while volumes
were calculated automatically with the ROI-analysis function. Two raters evaluated the
number of new T2/BH lesions. Afterwards, all images were processed with the FSL-
toolbox (Smith et al., 2004). Brain tissue volume, normalized for subject head size (NBV
= normalized brain volume, NGM = normalized grey matter, NWM = normalized
white matter), was estimated with SIENAX (Smith et al., 2002) and lesion volume was
normalized based on the SIENAX results. To reduce the risk of false tissue assignment
in lesions, lesion masks were dilated and filled with normal appearing white matter
contrast. Brain masks were manually corrected to minimize false tissue assignment by
the FSL-segmentation. Longitudinal atrophy was assessed with SIENA (Smith et al., 2002)
and results were corrected for the individual duration between the two baseline scans to
calculate an annualized Percentage Brain Volume Change (aPBVC). In addition, we used
FreeSurfer (Version 5.2.0, http://surfer.nmr.mgh.harvard.edu/). To extract reliable and
comparable volume estimates from both baseline MRI scans, images were processed with
the FreeSurfer longitudinal stream (Reuter et al., 2012). We extracted volumes of the grey
and white matter. Brain masks and white/grey matter segmentation were also manually
corrected if needed.

Statistics
We performed descriptive statistics according to the nature of the data by means with
standard deviation (sd) or as frequencies and/or percentages. Based on a single EDSS
at follow-up and the lowest baseline EDSS we calculated absolute change and EDSS
progression of each of the patients. Progression was stated if the EDSS increased by 1.5
points or more (baseline EDSS= 0), if the EDSS increased by one or more points (baseline
EDSS between one and four) or if the EDSS increased 0.5 points or more (baseline EDSS
above five) (Sormani & De Stefano, 2013). All changes were annualized based on the interval
between the two baseline visits (i.e., scan one and two). To identify potential cofounders for
EDSS progression, we checked if the variable baseline or follow-up time differed between
patients with or without EDSS progression (T -test). We investigated if baseline variables
or follow-up times differ between treated and untreated patients. In case of significant
differences we adjusted further analyses for treatment status if possible.

Predefined criteria
Classification into low and high inflammation was defined by four different criteria:
(A) No lesion vs. at least one lesion per year (representing no inflammatory activity versus

any activity, used with the No evidence for disease activity (NEDA) outcome in clinical
trials).
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(B) Two lesions per year vs. less (MRI-criterion of treatment non-response (Rio et al.,
2008)).

(C) Four lesions per year vs. less (extending criteria A/B towards a higher inflammatory
cut-off).

(D) One lesion per month (representing the original Bielekova criterion (Bielekova et al.,
2005)).
The four corresponding definitions for low and high atrophy groups represented three

commonly used methods to assess atrophy:
(1) Absolute change of NBV (any atrophy vs. none atrophy, SIENAX).
(2) SIENA-aPBVC (any atrophy vs. none atrophy).
(3) Total brain volume change from FreeSurfer longitudinal stream (any atrophy vs. none

atrophy).
(4) Median split of the absolute NBV of the first MRI (SIENAX, Bielekova et al., 2005).

Median NBV split values were 1,539,505 mm3 in untreated and 1,875,934 mm3 in
treated patients. The predictive value of each combination of criteria (e.g., 1A, 2C, 3B
etc.) for disease progression was evaluated by chi-square tests and by analysis of variance
(ANOVA).

Post-hoc exploratory analyses
First, we investigated the ability of the following variables to predict the EDSS change and
progression in linear and logit models adjusted for treatment status: gender, age, number of
T1-, T2- and Gd-lesions, the absolute change of lesion numbers and SIENAX volumes from
Visit 1 to Visit 2, aPBVC; as well as global atrophy measurements from the longitudinal
FreeSurfer processing (volumes: brain, white matter, grey matter, subcortical grey matter,
cortical grey matter, supratentorial brain). Potential interactions with treatment status
were investigated the same way. P-values were corrected for multiple testing with the false
discovery rate (FDR) method. Remaining significant predictors were afterwards combined
in multivariate models by forward stepwise selection of variables based on the Akaike
Information Criterion (AIC). To quantify the predictive value of the models we calculated
the coefficient of determination (R2) for linear models. In addition we computed Receiver
Operating Characteristic (ROC) curves and their Area under the curve (AUC) from logit
models with progression (‘‘yes’’, ‘‘no’’) as a binary outcome. Sensitivity, specificity, and
the negative (NPV) and positive predictive value (PPV) were estimated to be at the best
threshold from predicted values. Finally, we calculated odds ratios and their 95%Confident
Intervals (95%CI) for each variable. All analyses were performed with Statistics in R 3.1.2.

RESULTS
Cohort
From 109 patients recruited, a clinical follow-up of at least 1.5 years was available with 82
(75%) patients. Mean follow-up time was three years (range 1.5–4.2). Patients that did not
attend the follow-up were younger (p= 0.018) and had shorter disease duration at baseline
(p< 0.001) than the follow-up cohort but did not differ in any other baseline parameters.
In the follow-up cohort, 40 patients received DMDs and 42 were without medication. Six
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Table 1 Descriptive statistics.

All Untreate Treate p-value
N = 82 N = 42 N = 40

Baseline
Gender female n (%) 53(0.65) 27(0.64) 26(0.65) 1.0a

Age year 40.6(9.6) 42.9(9.2) 38.2(9.5) 0.029b

Disease duration 7.5(7.7) 6.9(9.3) 8.1(5.5) 0.5b

EDSS 1.6(1.4) 1.1(1.2) 2.1(1.4) <0.001b

EDSS median (range) 2 (0–6) 1 (0–5) 2 (0–6) <0.001c

Difference between two MRI month 7.5(2.1) 7.8(2.2) 7.1(1.9) 0.1b

T2-lesions n 61(46.6) 50.6(35.9) 71.9(54) 0.040b

T1-lesions n 5.9(7.8) 3.2(5.1) 8.8(9.2) 0.001b

GD-lesions n 0.2(0.4) 0.2(0.5) 0.1(0.3) 0.036b

Delta T2-lesions n/year 3(5.7) 3.9(6) 2(5.4) 0.1b

Delta T1-lesions n/year 0.8(1.5) 0.8(1.5) 0.8(1.5) 1.0b

NBV mm3 1,673,305(199,072) 1,538,369(85,524) 1,81,4987(185,529) <0.001b

NWMmm3 740,634(71,743) 737,318(45,178) 744,115(92,304) 0.7b

NGMmm3 932,671(179,778) 801,051(53,533) 1,070,872(160,836) <0.001b

Change NBV %/year −0.06(0.66) −0.035(0.52) −0.09(0.78) 0.7b

Change NWM%/year 0.15(0.57) 0.021 (0.504) 0.29(0.60) <0.031b

Change NGM%/year 0.02(0.75) 0.006 (0.883) 0.03(0.60) 0.9b

aPBVC 0.14(1.13) 0.03(0.88) 0.25(1.34) 0.4b

Follow-Up
Days of Follow-Up 1,084(245) 1,178(262) 985(181) <0.001b

EDSS 1.93(1.27) 1.48(1.07) 2.41(1.29) 0.001b

Delta EDSS 0.32(0.97) 0.37(0.92) 0.26(1.03) 0.6b

EDSS better n(%) 7 (9) 3 (7) 4 (10) 1.0a

EDSS stable n(%) 55(67) 28 (67) 27 (68) 1.0a

EDSS worse n(%) 20 (24) 11 (26) 9 (23) 1.0a

Treatment n(%) 0.2a

De-escalation 10(12) Not applicable 10(25)
No change 59(72) 35(83) 24(60)
Escalation 13(16) 7(17) 6(15)

Notes.
Data presented as mean (sd) if not indicated otherwise.
Delta, absolute differences; Change, relative difference per month; EDSS, Expanded Disability Status Scale; T2-Lesion, hyperintense on T2 weighted images; T1-Lesion, hy-
pointense on T1 weighted images; GD-lesions, Contrast enhancing lesions; NBV, normalized brain volume; NGV, normalized grey matter volume; NWM, normalized white
matter volume.
Volumes only from SIENAX.

aDifferences between treated and untreated patients were tested with Chi-square test.
bt -tests.
cMann–Whitney-U -test for ordinal data.

patients were treated with glatirameracetate, 19 with INF and 15 with natalizumab. About
a third of patients had an EDSS progression at last follow-up. Descriptive statistics of the
follow-up cohort are summarized in Table 1.

The variable time span between the baseline visits (median 7 months, range 5–14)
was not associated with progression nor were treatment status (stable or changed, Chi
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square p= 0.2, ANOVA p= 0.1) or escalation/de-escalation (Chi square p= 0.2, ANOVA
p= 0.3). Further analyses were not corrected for these potential confounders. Treated and
untreated patients differed in follow-up time, EDSS and NBV at baseline (all p< 0.001)
and we adjusted further analyses for treatment status.

Validation of predefined classification algorithm
None of the predefined classification algorithms in high/low inflammation and atrophy
groups were able to predict EDSS progression (Table 2)—except for one: change of
FreeSurfer brain volume (Criterion 3) and at least four T2-lesions per year (Criterion C)
in the whole cohort (p= 0.037). However, the algorithm failed to predict absolute EDSS
change if adjusted for treatment status (p= 0.261) and comparison of the three different
atrophy measurements was not possible.

Explorative classification algorithms
The results of screening predictors are summarised in Table 3. SIENA and SIENAX
measurements were not significantly associated. Corrected formultiple testing only baseline
EDSS, change of total grey matter volume and change of cortical grey matter remained
significant. After stepwise selection of variables, the final multivariate linearmodel included
treatment status, baseline EDSS and change of FreeSurfer grey matter volume (Table 4
and Fig. 1) as predictors (R2: 0.29). The corresponding logit model included cortical grey
matter instead of total grey matter (Table 4). Separation between patients with and without
progression was good (AUC = 0.81, Table 4 and Fig. 1). While higher atrophy indicated a
higher risk of progression in all models, the association of baseline EDSS and progression
was inverse, i.e., patients with lower EDSS had a higher risk to progress.

DISCUSSION
So far only lesion load and new lesions (within restrictions) can be used as individual
predictors of disease progression in routine imaging of MS patients. We identified short-
term grey matter atrophy as a potential better predictor. Except from a low predictive
value of Gd-enhancing lesions in treated patients, no lesion measurement was related to
progression. From a pathophysiological perspective, it is feasible to combinemeasurements
of inflammation and neurodegeneration to predict disability accumulation after several
years (Bielekova et al., 2005). Here, all but one simple classification algorithms of high and
low inflammatory or atrophy groups failed to foresee EDSS progression (Bielekova et al.,
2005; Fisniku et al., 2008; Popescu et al., 2013; Jacobsen et al., 2014; Tintore et al., 2015).

The negligible sensitivity of lesions in our cohort might be explained by the fact that
previous studies mainly investigated patients with a clinically isolated syndrome (CIS)
while we investigated established RRMS (Fernández, 2013; Odenthal & Coulthard, 2015;
Tintore et al., 2015). It is well known fromnatural history data that relapses do not influence
the risk of disability or the onset of a progressive disease course if they occur later than
two years after disease onset (Degenhardt et al., 2009; Scalfari et al., 2010). We assume that
our patients were in a later phase of the disease where T2-lesions may have only a minor
impact which is in accordance with other cohorts (Jacobsen et al., 2014; Uher et al., 2015)
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Table 2 Predefined classification algorithms.

Inflammation
criteri

Atrophy
criteria

High inflammation
and low atrophy

High inflammation
and low atrophy

Low inflammation
and high atrophy

High inflammation
and high atrophy

Chi-square Anova

1 33 18 10 21 0.344 0.382
2 24 27 16 15 0.214 0.521
3 32 19 15 16 0.184 0.262

A

4 24 27 15 16 0.877 0.477
1 35 18 8 21 0.304 0.806
2 26 27 14 15 0.093 0.529
3 34 19 13 16 0.195 0.469

B

4 26 27 13 16 0.768 0.861
1 40 23 3 16 0.152 0.189
2 29 34 11 8 0.089 0.614
3 38 25 9 10 0.037* 0.261

C

4 29 34 10 9 0.470 0.545
1 33 18 10 21 0.344 0.382
2 24 27 16 15 0.214 0.521
3 32 19 15 16 0.184 0.262

D

4 24 27 15 16 0.877 0.477

Notes.
Predictive value of predefined classification algorithms allocating patients based on two MRI five to 14 months apart in high/low inflammatory and atrophy groups. ANOVA adjusted for treatment status.
For details see method section.
*p< 0.05.
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Table 3 Predictors of EDSS progression.

Linear model Logit models

p-value FDR corrected p-value p-value FDR corrected p-value

Gender 0.048* 0.144 0.309 0.467
Age 0.156 0.312 0.337 0.467
Baseline EDSS <0.001* <0.001* 0.010* 0.072
Baseline T2-lesions 0.230 0.436 0.317 0.467
Baseline T1-lesions 0.273 0.467 0.242 0.436
Baseline Gd-lesions 0.453 0.604 0.868 0.913
Delta T2-lesions 0.586 0.681 0.038* 0.137
Delta T1-lesions 0.815 0.889 0.509 0.611
Change NBV 0.497 0.611 0.092 0.220
Change NWM 0.335 0.467 0.071 0.185
Change NGM 0.484 0.611 0.045* 0.145
aPBVC 0.974 0.974 0.707 0.795
Change cortex volume 0.020* 0.090 0.002* 0.036*

Change white matter volume 0.888 0.913 0.318 0.467
Change subcortical grey matter volume 0.101 0.220 0.026* 0.104
Change total grey mater volume 0.014* 0.072 0.004* 0.048*

Change supratentorial brain volume 0.104 0.220 0.009* 0.072
Change total brain volume 0.074 0.185 0.012* 0.072

Notes.
*p< 0.05.

but not all (Popescu et al., 2013). The association between lesions and relapses could not be
evaluated as information about relapses was not reliable, but based on the considerations
stated this is not a major limitation.

In our cohort, grey matter atrophy was more predictive than total brain or white matter
atrophy. This observation is in line with previous studies, where progression was associated
with cortical atrophy and subcortical grey matter changes (Rocca et al., 2013; Jacobsen et al.,
2014) It is known that clinical disability is closer associatedwith cortical pathology thanwith
T2-lesions or normal appearing white matter (Filippi et al., 2013). DMDs or their change
were not associated with disability progression. The missing effect of immunotherapies
might be due to inconsistent treatment effects of DMD. Again, these findings are in line with
previous studies (Daumer et al., 2009; Hauser, Chan & Oksenberg, 2013). So far, most of
the reported associations between grey matter and disability are based on absolute volumes
e.g., grey matter volume from a single MRI (Rocca et al., 2013; Jacobsen et al., 2014; Tintore
et al., 2015). The use of absolute cut-offs as predictors, for example, Bielekovas’ 83% brain
parenchymal fraction (Bielekova et al., 2005) are restricted and specific to each cohort as
different scanners, and sequences and processing pipelines have a major influence on these
values and calibration is not possible (Obuchowski et al., 2014). For example, even in our
cohort the absolute brain volumes differed between treated and untreated patients and
inversely as assumed; treated and more disabled patients with longer disease duration had
higher baseline brain volume. As the scanner sequences and analysis pipeline were the same
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Table 4 Multivariate models and EDSS progression.

Linear model

R2 = 0.29
Variables Coeff se p-value

Intercept 0.723 0.149 <0.001
Treatment ‘‘yes’’ 0.433 0.202 0.035
Baseline EDSS −0.370 0.071 <0.001
Change total grey matter volume 0.129 0.419 0.003

Logit model
Area under the curve 0.82
Specificity % 72.6
Sensitivity % 85.0
NPV % 93.8
PPV % 50.0
Variables OR 95%CI p-value
Intercept 0.43 0.17–1.03 0.068
Treatment ‘‘yes’’ 2.96 0.77–13.54 0.132
Baseline EDSS 0.52 0.29–0.85 0.004
Change cortex volume 0.71 0.55–0.87 0.016

Notes.
Multivariate models investigating the predictive value of clinical and MRI measurements for EDSS progression. Details see
methods and results.
Data presented as mean (sd) if not indicated otherwise.
Coeff, coefficient estimate; se, standard error of Coeff; NPV, Negative Predictive Value; PPV, Positive Predictive Value;
OR, Odds ratio; 95% CI, 95% Confidence Interval.

the observation must be due to an unknown bias. Using relative values such as changes
from baseline, is a feasible approach to overcome such short-comings even though they are
less informative than calibrated quantitative measurements (Obuchowski et al., 2014). In
our study we used three different kinds of relative values (Fischl, 2012). Only the FreeSurfer
algorithm was associated with progression and seems to be more reliable and sensitive than
SIENA/SIENAX. However, computing these measurements still requires several hours and
is not yet feasible for clinical routine.

The higher risk for progression in patients with lower EDSS seems counterintuitive at
first sight. EDSS scores below four represent mainly the neurological examination (Kurtzke,
1983) and even non-disabling new symptoms may lead to an increase of the EDSS. Most
of our patients had no or only mild disability at baseline. Therefore EDSS-progression
represents non-disabling symptoms in most cases. Whether or not such EDSS changes
are predictive in the long-run is questionable and cannot (could not?) be improved by
confirming EDSS changes after three or six months which was not possible in our cohort
(Ebers et al., 2008). Over all, the risk of progression in our cohort was in line with other
cohorts (Jacobsen et al., 2014). Furthermore the median time from disease onset to EDSS
three is about 12 years which is still above the median disease duration at follow-up in
our cohort (Scalfari et al., 2010). Our findings are somehow limited as 25% were lost
to follow-up, which is similar to other cohorts (Jacobsen et al., 2014). Accounting for
heterogeneous follow-up by implementing survival analyses was not possible as the lack
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Figure 1 Predictive value of multivariate models. (A) Predicted values (multivariate linear model) and
EDSS change. Dotplots and regression estimate (blue line) including 95%-CI (grey area). (B) ROC-curves
of multivariate logit model predicting EDSS progression. (C) Odds ratios (OR) and 95% CI, red, signifi-
cant, blue not significant. See Table 4 as well.

of independency of censoring violates a fundamental assumption of survival analyses
(Leung, Elashoff & Afifi, 1997). As dropouts did not differ relevantly from follow-up
patients, we assume no major impact on our results. Our relatively small sample size
restricts the generalization of our findings but overall FreeSurfer measurements are a
promising method to enhance individual risk stratification.

CONCLUSION
Besides EDSS at baseline, grey matter atrophy within one year is a valuable predictor
for EDSS progression in treated and untreated RRMS. The development of atrophy
measurements for individual risk counselling and evaluation of treatment response seems
possible but defining a simple to compute generalizable measurement is still challenging.
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