The HOSPITAL score as a predictor of 30 day readmission in a university affiliated community hospital (#11069)

First submission

Please read the **Important notes** below, and the **Review guidance** on the next page. When ready **submit online**. The manuscript starts on page 3.

Important notes

Editor and deadline

Harry Hochheiser / 22 Jul 2016

1 Raw data file(s)
Please visit the overview page to download and review the files not included in this review pdf.

Declarations Involves the study of human participants/human tissue.

Please in full read before you begin

How to review

When ready <u>submit your review online</u>. The review form is divided into 5 sections. Please consider these when composing your review:

- 1. BASIC REPORTING
- 2. EXPERIMENTAL DESIGN
- 3. VALIDITY OF THE FINDINGS
- 4. General comments
- 5. Confidential notes to the editor
- You can also annotate this **pdf** and upload it as part of your review

To finish, enter your editorial recommendation (accept, revise or reject) and submit.

BASIC REPORTING

- Clear, unambiguous, professional English language used throughout.
- Intro & background to show context.
 Literature well referenced & relevant.
- Structure conforms to **PeerJ standard**, discipline norm, or improved for clarity.
- Figures are relevant, high quality, well labelled & described.
- Raw data supplied (See <u>PeerJ policy</u>).

EXPERIMENTAL DESIGN

- Original primary research within **Scope of** the journal.
- Research question well defined, relevant & meaningful. It is stated how research fills an identified knowledge gap.
- Rigorous investigation performed to a high technical & ethical standard.
- Methods described with sufficient detail & information to replicate.

VALIDITY OF THE FINDINGS

- Impact and novelty not assessed.

 Negative/inconclusive results accepted.

 Meaningful replication encouraged where rationale & benefit to literature is clearly stated.
- Data is robust, statistically sound, & controlled.
- Conclusion well stated, linked to original research question & limited to supporting results.
- Speculation is welcome, but should be identified as such.

The above is the editorial criteria summary. To view in full visit https://peerj.com/about/editorial-criteria/

The HOSPITAL score as a predictor of 30 day readmission in a university affiliated community hospital

Robert Robinson

Introduction

Hospital readmissions are common, expensive, and a key target of the Medicare Value Based Purchasing (VBP) program. Risk assessment tools have been developed to identify patients at high risk of hospital readmission so they can be targeted for interventions aimed at reducing the rate of readmission. One such tool is the HOSPITAL score that uses 7 readily available clinical variables to predict the risk of readmission within 30 days of discharge. The HOSPITAL score has been internationally validated in large academic medical centers. This study aims to determine if the HOSPITAL score is similarly useful in a moderate sized university affiliated hospital in the midwestern United States.

Materials and Methods

All adult medical patients discharged from the SIU-SOM Hospitalist service from Memorial Medical Center from October 15, 2015 to March 16, 2016, were studied retrospectively to determine if the HOSPITAL score was a significant predictor of hospital readmission within 30 days.

Results

During the study period, 998 discharges were recorded for the SIU-SOM Hospitalist service. The analysis includes data for the 963 patients who were discharged alive. Of these patients, 118 (12%) were readmitted to the same hospital within 30 days. The patients who were readmitted were less likely to have a length of stay greater than or equal to 5 days (45% vs. 59%, p = 0.003) but were more likely to have been admitted to the hospital within the last year. A receiver operating characteristic evaluation of the HOSPITAL score for this patient population shows a C statistic of 0.762 (95% CI 0.720 - 0.805), indicating good discrimination for hospital readmission. Kaplan-Meier analysis of 30-day readmission free survival showed a significant (p < 0.001) increase in the risk of readmission in patients with a HOSPITAL score of 5 or more.

Discussion

This single center retrospective study indicates that the HOSPITAL score has good discriminatory ability to predict hospital readmissions within 30 days for a medical hospitalist service a university-affiliated hospital. This data for all causes of hospital readmission is comparable to the discriminatory ability of the HOSPITAL score in the international validation study (C statistics of 0.72 vs. 0.762) conducted at considerably larger hospitals (975 average beds vs 507 at Memorial Medical Center) for potentially avoidable hospital readmissions. Higher risk patients, identified as having a HOSPITAL score of 5 or more, clearly show an increased risk of hospital readmission within 30 days.

Conclusions

The internationally validated HOSPITAL score may be a useful tool in moderate sized community

hospitals to identify patients at high risk of hospital readmission within 30 days. This easy to use scoring system using readily available data can be used as part of interventional strategies to reduce the rate of hospital readmission.

PeerJ

- 1 The HOSPITAL score as a predictor of 30 day readmission in a university affiliated community hospital
- 2 By Robert Robinson*

3

- 4 *Corresponding Author
- 5 Address for Correspondence
- 6 Robert Robinson, MD
- 7 Associate Professor of Clinical Medicine
- 8 Department of Internal Medicine
- 9 Southern Illinois University School of Medicine
- 10 701 North First Street
- 11 PO Box 19636
- 12 Springfield, IL 62794-9636
- 13 Phone 217-545-0182
- 14 Fax 217-545-7127
- 15 Email rrobinson@siumed.edu

Introduction

Hospital readmissions are common and expensive, with nearly 20% of Medicare patients being readmitted to a hospital within 30 days of discharge at an overall cost of nearly 20 billion US dollars per year (Jencks, Williams and Coleman 2009). Because of this high frequency and cost, hospital readmissions within 30 days of discharge are a target for health care cost savings in the Medicare Value Based Purchasing (VBP) program. The VBP aims to incentivize hospitals and health systems to reduce readmissions through reductions in payments to hospitals with higher than expected readmission rates (Centers for Medicare and Medicaid Services, 2016). Because of the VBP initiative, health care organizations are investing considerable resources into efforts to reduce hospital readmission. Identifying patients at increased risk of hospital readmission can be accomplished with a variety of assessment tools that range from multidisciplinary patient interviews to simple screening tools using a handful of variables (Kansagara et al, 2011; Silverstein et al., 2008; Smith et al., 2000). These tools use risk factors such as age, ethnicity, socioeconomic status, severity of illness, previous hospitalizations, and other factors to predict who is likely to be readmitted.

The easy to use HOSPITAL score is one such screening tool. The HOSPITAL score uses 7 readily available clinical predictors to accurately identify patients at high risk of potentially avoidable hospital readmission within 30 days. This score has been internationally validated in a population of over 100,000 patients at large academic medical centers (average size of 975 beds) and has been shown to have superior discriminative ability over other prediction tools (Kansagara et al, 2011; Donze, Aujesky, William and Schnipper, 2013; Donze et al, 2016).

This study aims to determine if the HOSPITAL score is a useful predictor of hospital readmission within 30 days of discharge in a moderate sized (507 bed) university affiliated hospital.

10 11	Materials and Methods All adult medical patients discharged from the SIU-SOM Hospitalist service from Memorial Medical
12	Center from October 15, 2015 to March 16, 2016, were studied retrospectively to determine if the
13	HOSPITAL score was a significant predictor of hospital readmission within 30 days.
14	Memorial Medical Center is a 507 bed not-for-profit university-affiliated tertiary care center located in
15	Springfield, Illinois, USA. The SIU-SOM Hospitalist service is the general internal medicine residency
16	teaching service staffed by board certified or board eligible hospitalist faculty. Patients for the
17	hospitalist service are primarily admitted via the hospital emergency department or transferred from
18	other regional hospitals with acute medical issues. Elective hospital admissions are extremely rare for
19	this service.
50	Data on age, gender, diagnosis related group, length of stay, hospital readmission within 30 days, and
51	the 7 variables in the HOSPITAL score (Table 1) were extracted from the electronic health record in a de-
52	identified manner for analysis. Missing laboratory data moglobin and sodium from the day of
53	discharge) were coded to be in the normal range.
54	Patients with HOSPITAL scores of 5 or more were considered to be at high risk for readmission within 30
55	days.
56	Patients were determined to have been discharged from an oncology service if their DRG diagnosis
57	indicated the presence of an active malignance his reflects local practice patterns where hospitalists
58	often admit patients to the general medicine service for oncologists.
59	
50	
51	

62 Table 1. HOSPITAL Score

Attribute	Points if Positive
Low hemoglobin at discharge (<12 g/dL)	1
Discharge from an Oncology service	2
Low sodium level at discharge (<135 mEq/L)	1
Procedure during hospital stay (ICD10 Coded)	1
Index admission type urgent or emergent	1
Number of hospital admissions during the previous year	
0-1	0
2-5	2
>5	5
Length of stay ≥ 5 days	2

64

63

65 Institutional review board review for this study was obtained from the Springfield Committee for

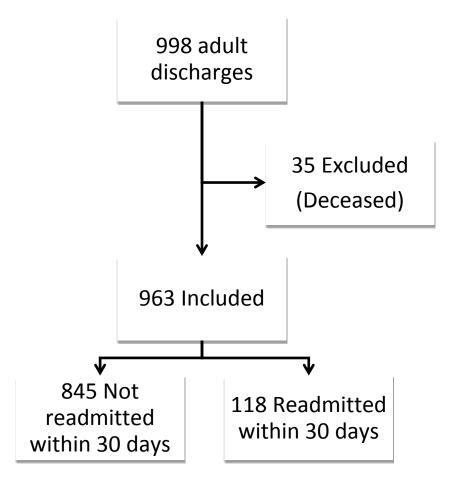
Research Involving Human Subjects. This study was determined to need criteria for research

involving human subjects according to 45 CFR 46.101 and 45 CFR 46.102.

68

66

- 69 Statistical analysi
- 70 The HOSPITAL score was investigated as a predictor of any cause hospital readmission within 30 days.
- 71 Qualitative variables were compared using Pearson chi² or Fisher's exact test and reported as frequency
- 72 (%). Quantitative variables were compared using the non-parametric Mann–Whitney U or Kruskal–



73	Wallis tests and reported as mean ± standard deviation. Ratesurvival were evaluated by the
74	Kaplan–Meier method and compared using the log-rank test.
75	Statistical analyses were performed using SPSS version 22 (SPSS Inc., Chicago, IL, USA). Two sided <i>P</i> -
76	values < 0.05 were considered significant.
77	Results
78	During the study period, 998 discharges were recorded for the SIU-SOM Hospitalist service. The analysis
79	includes data for the 963 patients who wer charged alive (Figure 1). Of these patients, 118 (12%)
80	were readmitted to the same hospital within 30 day
81	The patients who were readmitted were less likely to have a length of stay greater than or equal to 5
82	days (45% vs. 59%, $p = 0.003$) but were more likely to have been admitted to the hospital within the last
83	year (Table 2). A receiver operating characteristic (ROC) evaluation of the HOSPITAL score for this
84	patient population shows a C statistic of 0.762 CI 0.720 - 0.805, Figure 2), indicating good
85	discrimination for hospital readmission.
86	Kaplan-Mei halysis of 30-day readmission free survival showed a significant (p < 0.001) increase in
87	the risk of readmission in patients with a HOSPITAL score of 5 or more (Figure 3).
88	
89	
90	
91	
92	
93	
94	

95 Figure 1. Study Flow Diagram

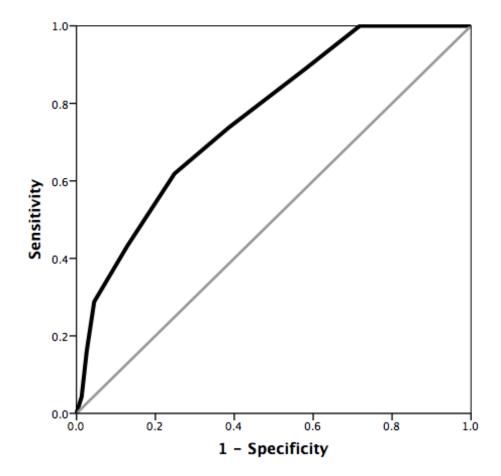
96

97

98

PeerJ

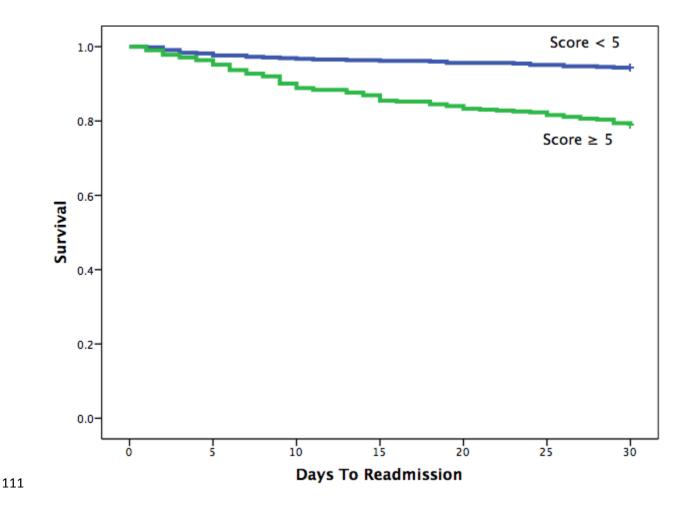
Table 2. Baseline characteristics of the study population stratified according to 30 day readmission
 status


	Not readmitted within	Readmitted	
	30 days	within 30 days	
Characteristic	n = 845	n = 118	
Age, mean (SD)	63 (17.16)	64 (15.78)	P = 0.
Female	428 (51%)	63 (53%)	P = 0.577
Urgent or emergent admission	845 (100%)	118 (100%)	
Discharge from oncology division	22 (2.6%)	4 (15%)	P = 0.622
Length of stay > = 5 days	501 (59%)	53 (45%)	P = 0.003
Hospital admissions in the last year			
0-1	435 (51%)	0	P < 0.001
2-5	371 (44%)	80 (68%)	
>5	39 (5%)	38 (32%)	
An ICD10 coded procedure during	389 (46%)	55 (47%)	P = 0.907
hospitalization			
Low hemoglobin level at discharge (<12	46 (5%)	11 (9%)	P = 0.094
g/dL)			
Low sodium level at discharge (<135	461 (55%)	57 (48%)	P = 0.202
mEq/L)			

102

103

105 Figure 2. Receiver operating characterist rive of the HOSPITAL score in the study population


106

107

108

Figure 3. Kaplan-Meier plot comparing 30-day readmission free survival of patients by HOSPITAL score

Discussion

112

113

114

115

116

117

118

119

This single center retrospective study indicates that the HOSPITAL score has good discriminatory ability to predict hospital readmissions within 30 days for a medical hospitalist service a niversity-affiliated hospital. This data for all causes of hospital readmission is comparable to the discriminatory ability of the HOSPITAL score in the international validation study (C statistics of 0.72 762) conducted at considerably larger hospitals (975 average beds vs 507 at Memorial Medical Center) for potentially avoidable hospital readmissions (Donze 2016). Higher risk patients, identified as having a HOSPITAL score of 5 or more, clearly show an increased risk of hospital readmission within 30 days.

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

hospital readmission.

The study population differs from the international validation study of the HOSPITAL score in two important ways. The study hospital does not have a distinct oncology admitting service and all of the admissions during this timeframe were classified as urgent or emergent. These factors are due to the local practice environment at the study site. To partly address the increased risk of readmission in oncology patients, this study classified patients with oncology related diagnosis related group (DRG) codes to have been discharged from an oncology service. This study has several limitations. This study is retrospective, single center, focused on medical patients, and shaped by local practice patterns (no oncology admitting service, few elective admissions). Because data is only available from the study hospital, readmissions at other hospitals will not be detected. These limitations may reduce the generalizability of these results. The strength of this study is that the HOSPITAL score appears useable in smaller community based, hospitals to identify patients at high risk of readmission. Identifying these patients for interventions targeted at reducing hospital readmissions may result in improved patient care outcomes and healthcare quality. **Conclusions** The internationally validated HOSPITAL score may be a useful tool in moderate sized community hospitals to identify patients at high risk of hospital readmission within 30 days. This easy to use scoring system using readily available data can be used as part of interventional strategies to reduce the rate of

139

140

Further research is needed to determine if the HOSPITAL score is useful in other patient populations.

PeerJ

141	References		
142	Jencks SF, Williams MV, Coleman EA. Rehospitalizations among patients in the Medicare fee-for-		
143	service program. N Engl J Med. 2009;360(14):1418-1428.		
144	Centers for Medicare and Medicaid Services. Hospital Value Based Purchasing.		
145	https://www.cms.gov/Medicare/Quality-Initiatives-Patient-Assessment-Instruments/hospital-value-		
146	based-purchasing/index.html (Accessed 5/31/2016)		
147	Kansagara D, Englander H, Salanitro A, Kagen D, Theobald C, Freeman M, Kripalani S. Risk prediction		
148	models for hospital readmission: a systematic review. JAMA. 2011 Oct 19;306(15):1688-98. doi:		
149	10.1001/jama.2011.1515.		
150	Silverstein MD, Qin H, Mercer SQ, Fong J, Haydar Z. Risk factors for 30-day hospital readmission in		
151	patients ≥65 years of age. Proc (Bayl Univ Med Cent). 2008 Oct;21(4):363-72.		
152	Smith DM, Giobbie-Hurder A, Weinberger M, Oddone EZ, Henderson WG, Asch DA, Ashton CM,		
153	Feussner JR, Ginier P, Huey JM, Hynes DM, Loo L, Mengel CE. Predicting non-elective hospital		
154	readmissions: a multi-site study. Department of Veterans Affairs Cooperative Study Group on Primary		
155	Care and Readmissions. J Clin Epidemiol. 2000 Nov;53(11):1113-8.		
156	Donzé J, Aujesky D, Williams D, Schnipper JL. Potentially Avoidable 30-Day Hospital Readmissions in		
157	Medical Patients: Derivation and Validation of a Prediction Model. JAMA Intern Med. 2013;173(8):632-		
158	638. doi:10.1001/jamainternmed.2013.3023.		
159	Donzé JD, Williams MV, Robinson EJ, et al. International Validity of the HOSPITAL Score to Predict 30-Day		
160	Potentially Avoidable Hospital Readmissions. JAMA Intern Med. 2016;176(4):496-502.		
161	doi:10.1001/jamainternmed.2015.8462.		
162			
163			