
PhyloSift: phylogenetic analysis of genomes and 
metagenomes

Like all organisms on the planet, environmental microbes are subject to the forces of 

molecular evolution. Metagenomic sequencing provides a means to access the DNA 

sequence of uncultured microbes. By combining DNA sequencing of microbial communities 

with evolutionary modeling and phylogenetic analysis we might obtain new insights into 

microbiology and also provide a basis for practical tools such as forensic pathogen detection. 

In this work we present an approach to leverage phylogenetic analysis of metagenomic 

sequence data to conduct several types of analysis. First, we present a method to conduct 

phylogeny-driven Bayesian hypothesis tests for the presence of an organism in a sample. 

Second, we present a means to compare community structure across a collection of many 

samples and develop direct associations between the abundance of certain organisms and 

sample metadata. Third, we apply new tools to analyze the phylogenetic diversity of microbial 

communities and again demonstrate how this can be associated to sample metadata. 

These analyses are implemented in an open source software pipeline called PhyloSift. As a 

pipeline, PhyloSift incorporates several other programs including LAST, HMMER, and 

pplacer to automate phylogenetic analysis of protein coding and RNA sequences in 

metagenomic datasets generated by modern sequencing platforms (e.g. Illumina, 454).
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Introduction12

Metagenomics - the sequencing of DNA isolated directly from the environment - has become a routinely13

used tool with wide applications [57]. Used primarily in the study of microorganisms, metagenome14

sequencing has now been carried out on a variety of environments where one finds microbes - from15

plants and animals to every kind of natural and man-made environment around the globe. Metagenomic16

sequencing has provided fundamental insight into the diversity of microbes and their function and roles17

in ecosystems. Initially, metagenomics was used largely as a way of simply obtaining some genomic18

information about organisms for which culturing technique was unknown[4]. However, due to decreases19

in the cost and the difficulty of sequencing, metagenomics has become a tool for studying any microbial20

community, regardless of cultivability.21

One strength of metagenomic approaches arises from the ability to sample the genomes of organisms22

in a particular environment approximately uniformly at random. This effect is achieved with the random23

“shotgun” sequencing methods originally applied for de novo genome sequencing of individual organ-24

isms [60, 59]. From random shotgun sequence data of DNA isolated from environmental samples, one25

can make inferences about what organisms are present in a sample (i.e., who is there?) as well as their26

functional potential (i.e., what are they doing?). In addition, by comparing shotgun metagenomic data27

across samples one can study larger scale issues such as ecology and biogeography and also attempt to28

correlate particular organisms or functions with “metadata” about samples (e.g., health status, nutrient29

cycling rates, etc [58]). Furthermore, by sampling a community directly one can avoid certain problems30

inherent in culturing such as contamination, population bottlenecking, and taxonomic bias [17]. In this31

sense metagenomics can be considered an extension of “culture-independent” ribosomal RNA gene sur-32

veys [23]. The great potential for novel insight into microbial communities has led researchers in fields33

as diverse as medicine and agriculture, law enforcement, biodefense, ecology, evolution, and industry to34

apply metagenomic methods.35

Athough great potential exists for metagenomics to yield insight into the hidden world of microbes,36

many challenges remain before this potential can be realized. Perhaps the biggest challenges lie in analysis37

of the data [12]. First, metagenomic samples reflect entire communities of organisms, unlike “traditional”38

genome sequencing of individual organisms or clones (i.e., from cultures of a single isolate where genetic39

diversity has undergone a bottleneck). The large number of microbial taxa in environmental samples can40

be a challenge for some types of analysis. Within-species genomic polymorphism presents an even greater41

challenge [29]. This challenge arises largely because shotgun metagenomic sequencing protocols destroy42

some of the most valuable information present in a sample: genetic linkage. Loss of linkage information43

occurs in two ways: during sample extraction and fragmentation of DNA for sequencing. In nearly all44

metagenomic sample processing methods, cells from the microbial community are lysed together to obtain45

a common pool of DNA. This practice causes DNA from many different cells to mix together, so that the46

cellular compartmentalization of individual genotypes is destroyed. Subsequently, long chromosome-scale47

DNA fragments are typically broken by mechanical or enzymatic means into fragments small enough for48

processing with current sequencing protocols. The resulting sequenced fragments are usually less than 149

Kbp in length. Although it is possible to generate data for larger fragments via cloning [4] or using Pacific50

Biosciences sequencing, most metagenomic data is currently being generated with short read/short insert51

sequencing chemistry such as that offered by Illumina. Though short read methods are quicker, easier,52

and lower cost per base and per read than large fragment approaches, there is a tradeoff in information53

quality. The shearing results in further loss of genetic linkage information, since we no longer have direct54

information on how short DNA fragments are arranged into chromosome-scale molecules.55

The lack of linkage information limits the ability to use metagenomic data for phylogenetic and56

population genetic analysis, since most current methods assume complete linkage information is available.57

In practice, improved sample processing methods could potentially retain the genetic linkage information58

of a microbial community throughout the sequencing process. High throughput single-cell genomics (e.g.59

applied to hundreds or thousands of cells) offers an alternative to the standard metagenomics workflow60
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that preserves information about the compartmentalization of genetic material into cells [62, 32, 48]61

However, single cell approaches are still limited in their utility by a number of technical issues including62

contamination, expensive and extensive equipment needs, missing data, and the creation of chimeras [6];63

they will always be more limited in throughput than their standard metagenomics counterparts.64

Thus the research community is left with developing and using computational methods to sift through65

and make sense of short read, random shotgun metagenomic data. Though there are many important66

steps in analyzing metagenomic data, we believe that a critical component is phylogenetic analysis of67

the sequences. Among the uses of phylogenetic analysis in metagenomics are: improved classification68

of sequences using phylogenetic methods, functional prediction for genes, alternative metrics of alpha69

and beta diversity, improved identification of operational taxonomic units (OTUs), and sequence binning70

[40, 37, 19, 27, 25, 54, 65, 9, 8, 52, 26, 55, 18].71

In the present manuscript, we introduce PhyloSift, a new method for phylogenetic analysis of metage-72

nomic samples and for comparison of community structure among multiple related samples. The new73

method leverages phylogenetic models of molecular evolution to provide high resolution detection of74

organisms in a metagenome. Our approach is based on well known statistical phylogenetic models, is75

amenable to Bayesian hypothesis testing, and uses name-independent and OTU-free analyses to provide76

higher resolution about microbial community assemblages (versus methods that rely on taxonomy or77

OTUs). These methods can be applied to any single phylogeny at a time, and expand on our previous78

experience building AMPHORA [66]. We additionally propose a set of 37 “elite” marker gene families79

that have largely congruent phylogenetic histories, thus improving the limit of detection for rare organ-80

isms in microbial communities. We contribute an open-source implementation of the method that has81

been engineered for ease-of-use on 64-bit Linux and Mac platforms. Finally, we compare the features of82

PhyloSift to some related methods to provide readers with insight into when use of our approach is and83

is not appropriate.84

Previous work85

Estimating community composition from amplicon data86

High throughput sequencing of marker gene amplicons (homologous loci such as 16S/18S rRNA) has87

emerged as a powerful and straightforward means to analyze microbial community structure. In con-88

trast to shotgun metagenomics, amplicon approaches currently make the detection of rare taxa easier89

and require less starting genomic material than some metagenomic approaches, although transposon-90

catalyzed libraries have been generated from as little as 30 pg total material [2]. By design rRNA surveys91

offer a “standardized” snapshot of microbial communities with reads from a single or small number of92

genes, considerably simplifying the tasks of alignment and analysis. Amplicon studies generally focus on93

characterizing and comparing microbial community structure without much analysis of functional gene94

repertoire.95

A variety of software pipelines can be used to process and analyze rRNA amplicon data [5]. Inferring96

microbial assemblages typically relies on clustering of Operational Taxonomic Units (e.g. at a 97%97

sequence identity cutoff, using either de novo or reference-based clustering), where taxonomy is assigned98

to representative sequences using either BLAST searches or the RDP classifier (a Naive Bayesian Classifier99

[61] ). Users can subsequently carry out a suite of downstream ecological and diversity analyses, including100

rarefaction (e.g. analyses for Chao1 estimation, OTU richness, or phylogenetic diversity as implemented101

in QIIME [11]), and Principal Component Analysis and Jackknife cluster analysis (e.g. using phylogeny-102

derived UniFrac distances [35]).103

Amplicon approaches are now relatively cheap and easy to carry out. However some computational104

bottlenecks hinder fine-scale analysis of amplicon data. Analysis pipelines can not readily distinguish rare105

members of a microbial community from noise in data caused by sequencing errors or chimeric reads [5].106

The RDP classifier [61] provides a statistical method for assessing confidence in taxonomic classifications.107
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Any of these methods are limited relative to phylogenetic methods, in that they can only distinguish108

named groups of organisms and are limited to the resolution of the taxonomy.109

Community composition from metagenomes110

Methods have also been developed to estimate and analyze community composition from metagenomic111

data sets. These methods typically focus on a small subset of widely conserved marker genes mined from112

metagenomic sequence reads, usually representing 1% of any given shotgun dataset. Marker genes include113

well-characterized protein coding genes (e.g. ribosomal proteins or elongation factor genes) or conserved114

noncoding regions (e.g. rRNA). A variety of computational approaches are now available to investigate115

the community composition of metagenome datasets, including: AMPHORA (bacterial protein markers116

and tree insertion via parsimony) [66] and AMPHORA2 (bacterial/archael protein and DNA markers117

and tree insertion via likelihood or parsimony) [65], MLTreeMap (reference gene families with taxonomic118

and functional information and tree insertion via maximum likelihood) [54], MetaPhyler (taxonomic119

classifiers for each of the reference marker genes published in the AMPHORA set) [33], EMIRGE (an120

expectation-maximization method to reconstruct rRNA genes from metagenome data and estimate taxon121

abundance) [41], and PhylOTU (phylogenetic methods to mine rRNA and define OTUs from metagenome122

data)[52].123

An interesting alternative approach is employed by the software MetaPHlan [51], which instead of124

using universally conserved genes, employs a database of clade-specific genes to estimate abundance of125

known taxonomic groups. This approach may work well in environments where the genomic diversity is126

very well characterized.127

Community composition analysis from metagenomes has some potential advantages over amplicon128

studies. For example, metagenome sequencing might avoid bias introduced by preferential binding of129

PCR primers to DNA from some organisms in amplicon studies and can also capture genomes from130

organisms which lack amplicon target genes, such as viruses. Whole-metagenome surveys also have the131

potential to provide insight into enzymatic and other functional processes in microbial communities, and132

so a single dataset can provide both community composition and functional information. One major133

limiting factor is that reference genome databases have narrow phylogenetic breadth relative to marker134

genes (e.g. rRNA) [63].135

Taxonomic classification of metagenome sequences136

Current methods for taxonomic classification of metagenomic sequences generally leverage one or two137

information sources: sequence composition and/or sequence identity to reference databases. Some ex-138

isting composition classifiers include TACOA (supervised classification using k-nearest neighbors) [13],139

PhyloPythia [39] and PhyloPythiaS (multiclass support vector machine classifier using oligonucleotide140

frequencies) [46], NBC (Naive Bayesian Classifier) [49], and Eu-Detect (oligonucleotide binning to sep-141

arate eukaryote sequences in feature vector space) [42], although this is not an exhaustive list. Related142

methods such as Self-Organizing Maps (e.g. eSOMS [14]) can be applied to tetranucleotide frequencies in143

combination with other information sources such as contig coverage/abundance information to produce144

visual ”maps” displaying different bins, although this does not result in taxonomic assignment.145

Identity-based classification methods compare metagenome sequences against reference databases to146

identify putative homologs. Examples of current identity-based classification tools include MEGAN147

(a Lowest Common Ancestor algorithm that summarizes BLAST outputs to assign taxonomy) [24],148

SORT-Items (reciprocal BLAST approach to detect significant orthology) [43], MTR (a variation on149

Lowest Common Ancestor approaches that uses multiple taxonomic ranks) [22], and ProViDE (analysis150

of alignment parameter thresholds, specifically customized for classifying viral sequences) [21]. Some151

approaches are able to combine both sequence identity and composition when classifying [9, 8]. Again,152

this is not an exhaustive list.153
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As the focus of our current work is on phylogenetic analysis rather than taxonomic classification, we154

do not discuss the relative merits of each approach to taxonomic classification in detail, nor do we provide155

benchmarks of taxonomic classification methods.156

Methods157

PhyloSift implements a method for analyzing microbial community structure directly from metagenome158

sequence data. Figure 1 gives an overview of the analysis workflow as executed when analyzing a metage-159

nomic sample. The analysis can be decomposed into four stages: 1. searching input sequences for identity160

to a database of known reference gene families; 2. adding input sequences to a multiple alignment with161

reference genes; 3. placement of input sequences onto a phylogeny of reference genes; and 4. generation162

of taxonomic summaries. We now describe the details of each step along with our design decisions and163

rationale.164

Reference gene families used by PhyloSift165

The standard PhyloSift database includes a set of 37 “elite” gene families previously identified as nearly166

universal and present in single-copy. These 37 gene families are a subset of the 40 previously reported [64],167

with three families excluded because they frequently have partial length homologs in some lineages. These168

“elite” families represent about 1% of an average bacterial genome, as estimated from current genome169

databases. In other work we have demonstrated that phylogenetic trees reconstructed on individual genes170

in this set are generally congruent with each other [30, 48], suggesting that concatenating alignments of171

these families will yield a valid and more powerful estimate of their phylogenetic history. Other groups172

have also demonstrated that trees inferred from concatenate alignments demonstrate the least conflict173

with trees inferred separately from other microbial amino acid sequences [1]. During the database update174

process (described below), these gene families are automatically extended to include putative homologs175

from eukarya and some viruses with large genomes such as the Mimivirus. Most small viral genomes lack176

homologs of these gene families.177

In addition to the elite 37 families, the PhyloSift database also includes four additional sets of gene178

families:179

• 16S and 18S ribosomal RNA genes180

• mitochondrial gene families181

• Eukaryote-specific gene families182

• Viral gene families183

Combined, this yields a set of approximately 800 gene families in the standard PhyloSift database, most184

of which are viral.185

Detailed PhyloSift client workflow186

Sequence identity search187

This first step in a PhyloSift analysis aims to identify regions of the input sequences that may be homolo-188

gous to gene families in the reference database. Input sequences to this step can be of any length ranging189

from short 30nt next-generation sequence reads to fully assembled genomes or metagenomes. Recognized190

input formats include FastA and FastQ (paired, unpaired, phred33, phred64, and/or interleaved pairing),191

and these can optionally be supplied as bzip2 or gzip compressed data files. Sequence input can be192

streamed via stdin or unix named pipes. Amino acid input sequences can also be processed.193
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PhyloSift uses LAST [28] for sequence similarity search against the reference databases. We evaluated194

many possible search algorithms and implementations before finally selecting LAST. Other options we195

evaluated were BLAST [3] v2.2.23, BLAST+ [10] v2.2.28+, and RAPsearch2 [68] v2.04, and bowtie2 [31]196

v2.0.0-beta5. Given the large volume of sequence data that must be processed, a key evaluation criterion197

was algorithm efficiency both in CPU time and memory requirements. A second criterion is the ability198

to perform six-frame translated searches of DNA sequence against an amino acid database with the199

possibility to tolerate frame-shift errors in the sequence. Among the evaluated methods, BLAST and200

BLAST+ were slowest (data not shown) and frameshift detection was non-functional in the version of201

BLAST+ we obtained from NCBI. We excluded these from futher consideration. RAPsearch2 was much202

more computationally efficient than either BLAST or BLAST+, but the version we obtained could not203

process sequences > 1kbp and did not support frameshift detection. In our testing, LAST was able to204

process sequence data as quickly as RAPsearch2 (e.g. orders of magnitude more quickly than BLAST)205

and supports both frameshift detection and input sequences of arbitrary length. LAST also supports206

all three of the primary search types we require: DNA vs. DNA, DNA vs. AA, and AA vs. AA.207

We also evaluated bowtie2, a program typically used for mapping reads to a reference genome, for the208

purpose of screening reads against a database of noncoding RNA sequences (currently 16S and 18S).209

bowtie2 does not offer translated amino-acid searches. Relative to LAST, bowtie2 is able to identify210

similarity to the RNA database sequences more quickly. However, even though the speedup over LAST211

was substantial (data not shown), the compute time saved is small relative to the total time consumed in212

the complete PhyloSift client workflow. Therefore we decided to use only LAST since using only a single213

local alignment search tool simplifies the code. One shortcoming of LAST is that current versions do not214

support multithreaded parallelism. PhyloSift implements optional process-level parallelism by spawning215

multiple LAST searches against the protein database.216

One feature of reference gene family sequences being searched at this stage bears special mention.217

During database construction (described elsewhere) a representative subset of all available sequences are218

selected from each gene family to be searched in the search stage. These representatives are chosen to219

span the phylogenetic diversity of the gene family without including closely related sequences (see Section220

“PhyloSift database update workflow”). This is important because it reduces the volume of sequence to221

search and because part of LAST’s fast heuristic to identify candidate regions to align involves eliminating222

redundant and repetitive k-mers from the search space [28]. Thus, a database constructed with all223

sequences (and not just divergent representatives) could in principle reduce sensitivity in aligning reads224

to those database sequences.225

The search stage identifies a set of candidate amino acid sequences from the input data that are226

similar to reference gene families. If DNA was provided as input the corresponding DNA sequences are227

also reported.228

Alignment to reference multiple alignment229

Prior to the alignment stage all input sequence regions with putative homology to reference gene families230

have been identified and extracted. In this stage, each candidate sequence is added to an amino acid231

or RNA multiple sequence alignment of the reference gene family. If the input sequences were DNA, a232

codon multiple sequence alignment congruent to the amino acid alignment is also generated.233

PhyloSift applies the hmmalign program from the HMMER 3.0 software package [15] to add the234

candidate sequences to reference multiple sequence alignments. During construction of the PhyloSift235

reference database (described in section “Custom gene families”) a profile-HMM is generated from a mul-236

tiple alignment of the gene family reference sequences. When processing candidate sequences, PhyloSift237

then uses the profile-HMM to map the input sequence to the reference multiple alignment. Applica-238

tion of a profile-HMM to align highly divergent sequences suffers some documented shortcomings, in239

particular that alignment accuracy decreases with divergence of source sequences used to construct the240

profile-HMM [34]. This is one avenue for future improvement of PhyloSift and protein evolution models241
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in general.242

Finally, PhyloSift concatenates the alignments of the 37 elite markers to a single multiple sequence243

alignment. When a single input sequence aligns to multiple genes, the aligned sequence becomes a single244

row in the concatenated alignment. All other sequences are represented in separate alignment rows.245

PhyloSift treats input sequences with similarity to non-coding RNAs differently than protein genes.246

Sequences longer than 600nt are aligned using Infernal’s cmalign program with the global alignment247

option. Short sequences are aligned with hmmalign to a profile-HMM of the non-coding RNA molecule.248

Although the profile-HMM does not capture secondary structure, the alignment computation is signif-249

icantly faster with currently available versions of Infernal and HMMER. In our experience a banding250

threshold (a parameter that determines the size of the search space and hence amount of computational251

effort) of 1x10−20 is required to obtain accurate local alignments with Infernal for short sequences, but252

this requires several minutes of CPU time per aligned sequence, which is not practical when aligning253

millions of amplicon sequences.254

Placement on a phylogenetic reference tree255

At this stage, aligned input sequences are placed onto a phylogenetic tree of the reference sequences.256

PhyloSift employs pplacer [37] for this task. pplacer can be run in either maximum likelihood (ML, the257

default) or Bayesian mode. When run in ML mode, pplacer identifies and reports a set of most likely258

attachment points for each aligned sequence to the reference phylogeny, as well as a “likelihood weight259

ratio” representing the relative likelihood for the chosen attachment point over other possible attachment260

points.261

When run in Bayesian mode, pplacer calculates the posterior probability that the query sequence262

diverged from particular branches of the reference tree via direct integration. In contrast to ML placement263

which selects a single most likely attachment point, the branch posterior probability integrates over all264

possible attachment points for the query sequence on the branch. The posterior probability is used when265

calculating Bayes factors for lineage tests, described below.266

Taxonomic summary of read placements267

At this final stage of analysis, PhyloSift summarizes the phylogenetic placements in a human-friendly268

format. For each gene family, the PhyloSift database contains a gene-tree/taxonomy reconciliation en-269

coding a pre-computed mapping of edges in the gene family phylogeny to edges in the NCBI taxonomy.270

The method used to calculate these reconciliations is described in the database update workflow section,271

below.272

Input to this stage of analysis is one or more “jplace” format [36] files containing an edge-labeled273

reference tree for a gene family along with a collection of one or more sequence placements onto that274

tree. Information about each sequence’s placement consists of the log-likelihood of placement at several275

(usually up to 7, a configurable limit) of the highest likelihood edges on the reference tree, along with276

the probability mass that the sequence belongs at that position of the tree, and finally the weight of277

the sequence. When analyzing unassembled reads the sequence weights are typically always 1, when278

analyzing assembled contigs the weights may be set to a value based on estimated depth-of-coverage for279

that contig.280

PhyloSift parses each of the jplace files and uses the gene-tree/taxonomy reconciliation to convert281

probability mass over read placements into a probability mass over the taxonomy, summing these masses282

over all reads and gene families. Any particular edge in the gene tree may be mapped to many equally283

optimal locations in the taxonomy. PhyloSift distributes the placed sequence’s mass equally among all284

optimal locations.285

Finally, PhyloSift reports the summarized taxonomy probability mass distribution in a variety of286

formats.287
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Visual presentation of taxonomic summary288

For easy visualization and exploratory data analysis, PhyloSift produces Krona plots [45] showing tax-289

onomic probability mass in the 37 elite gene families, and a separate Krona plot showing taxonomic290

probability mass distribution summed across the elite families and all other families.291

Figure 5 provides an example of PhyloSift’s Krona reports.292

Parallelism and stream computing293

PhyloSift supports streaming input of sequences, this permits analysis to proceed as sequences arrive294

over a network connection, for example.295

Comparison among samples296

One of the unique aspects of PhyloSift relative to other methods for comparative metagenomics is that the297

phylogenetic approach we have implemented enables direct comparison of the phylogenetic structure and298

relative abundance of metagenome samples without resorting to taxonomic relative abundance estimates.299

Perhaps the most powerful exploratory data analysis tool for comparing community structures among300

samples is Edge Principal Component Analysis, or edge PCA [25]. Edge PCA applies the standard301

dimensionality-reduction tool of PCA to a matrix where columns correspond to edges in the reference302

phylogeny, rows correspond to each sample, and each entry is the difference in placed sequence probability303

masses on either side of that edge. When applied in this manner, the eigenvalues of each eigenvector that304

results from PCA correspond to weights indicating how important each edge in the reference phylogeny305

is for explaining the variation among samples in that dimension. These eigenvectors can be naturally306

visualized as thickened branches along the reference phylogeny [25].307

PhyloSift includes the guppy program from pplacer, which in addition to edge PCA also provides308

means for hierarchical clustering of multiple samples using an algorithm specialized to the case of masses309

on a tree, calculation of Kantorovich-Rubenstein distances among samples [19], and other tools for cal-310

culating sample summary statistics such as weighted phylogenetic diversities.311

PhyloSift database update workflow312

An integral component of PhyloSift is an automated means to update the gene family database with313

newly sequenced genomes. Genome databases continue to grow quickly, with, on average, dozens of new314

genome sequences becoming available every week. The quality of these genomes can be highly variable,315

ranging from low-quality drafts to nearly finished sequence. PhyloSift’s database update mechanism316

incorporates some basic quality control measures.317

Acquiring new genome data318

The PhyloSift database update module maintains a local repository of all known and processed genomes.319

Upon initiating a new update, the database update module identifies any new genomes available in the320

NCBI finished, NCBI draft, NCBI WGS, and EBI viral, organelle, bacterial, archaeal, and eukaryal321

databases. Any new genomes are fetched and stored in the local repository.322

Gene family search and alignment workflow on each genome323

In this stage, the search and alignment stages of the previously described PhyloSift client workflow are324

run for each new genome. After this stage, the regions from each new genome that are highly similar325

to gene families in the database are identified, extracted, and aligned using the family’s profile-HMM.326

A complete multiple alignment for each family is then created by adding the aligned regions from each327
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genome to a single multiple alignment file. Because each region has been aligned to the same profile-HMM328

(or covarion model for noncoding genes) and non-aligning sites in the query genome removed, generation329

of a new multiple alignment is a simple matter of concatenating the individual alignments.330

PhyloSift also generates codon alignments for each protein-coding gene family at this stage by replacing331

amino acids with their codons and replacing each gap with a gap triplet.332

We note that profile-HMMs are not recomputed during the database update, thereby avoiding prob-333

lems with model drift.334

The PhyloSift reference database is available independently of the software at the following location:335

http://edhar.genomecenter.ucdavis.edu/ koadman/phylosift markers336

Phylogenetic inference and pruning337

The next step of database update involves constructing a phylogenetic tree for each gene family. Currently338

PhyloSift employs FastTree 2.1 [47] to generate approximate maximum likelihood trees for this task.339

PhyloSift also infers separate trees for the codon and amino acid alignments of each gene family.340

Reference databases frequently contain genomes for a multitude of closely related strains. In many341

gene families, the gene sequences present in genomes of closely related strains may be identical to each342

another. Identical gene sequences would create uncertainty in the placement of reads in a strain group.343

In order to reduce compute time and memory requirements, closely related sequences are pruned from the344

PhyloSift reference database. Pruning is done with an algorithm that maximizes phylogenetic diversity345

of the sequence set without including any sequence pairs separated by fewer than X amino acid (or346

nucleotide) substitutions per site, where X is a configurable variable with default value 0.01.347

Selection of representatives for similarity search348

The PhyloSift client workflow uses LAST to search for similarity between input sequences and reference349

sequences. During the database update the set of reference sequences is updated to include representatives350

of any newly sequenced genomes. As above, we select a subset of sequences that maximize phylogenetic351

diversity while requiring sequence pairs to be separated by at least X amino acid substitutions per site.352

In this case, X defaults to 0.1.353

Taxonomic reconciliation354

Many of the data sources for new genomes provide a taxonomic identifier for the genome that places it in
the NCBI taxonomy. Throughout the database update process, the associations between taxon ID and
individual sequences are maintained. The tips of reconstructed phylogenies can therefore have some or all
nodes annotated with the taxon ID associated with that tip. Given this information, PhyloSift generates
a mapping of edges (e.g. the edge above each node) in the gene tree phylogeny to edges in the taxonomic
tree. To do so, we first compute the split (bipartition) encoding of the gene tree and the taxonomic tree.
A tree’s split encoding is simply the set of splits encoded by each edge in the tree, where the split for
edge i is a binary vector Si = {si,1...si,n}, si,j ∈ {0, 1}. Here n is the number of leaf nodes shared by the
two trees. For convenience, we denote the split encoding for the gene tree as S(G) and use S(T ) for the
taxonomic tree. Then for each edge i in the gene tree, we compute its mapping Mi to taxonomic tree
edges as:

Mi = argmin
Sj∈S(T )

H(S
(G)
i , Sj)

Where H(·, ·) is defined as the Hamming distance among equal-length binary vectors. We note that355

there may be many possible edges in S(T ) with equally minimal Hamming distance to an edge i in S(G).356

In this case Mi includes all of these edges, and so Mi ⊆ S(T ) and |Mi| ≥ 1. In the client workflow357

when assigning placement probability mass to names, the placement mass on edge S
(G)
i is divided equally358
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among the taxonomic groups associated with Mi. Finally, we discard highly ambiguous mappings where359

|Mi| > y. Here y is an ad-hoc threshold with a default value of 30. These gene tree edges are labeled360

“Unclassifiable” due to their extreme topological discordance with the NCBI taxonomy.361

Custom gene families362

PhyloSift also supports the addition of custom gene families to its database. To add a gene family to the363

database, a multiple sequence alignment must be provided. Optionally, a table mapping each sequence364

identifier in the alignment and its NCBI taxon ID may also be provided. Given these inputs, PhyloSift will365

construct a phylogenetic tree, create a pruned set of representative sequences for similarity searching,366

construct a profile-HMM for alignment, and if taxon information was provided will also compute a367

reconciliation between the gene tree and taxonomy. The tree-building and reconciliation steps follow368

the approach outlined above in the PhyloSift database update workflow, with the exception that codon369

alignments are not generated. The resulting data is called a “package,” and is copied into the user’s370

PhyloSift database. The new package will be automatically included in any future runs of the PhyloSift371

client workflow.372

Results373

Bayesian hypothesis testing for the presence of phylogenetic lineages374

For various applications (e.g. microbial forensics) a practicioner might want to test for the presence of a375

particular lineage of interest in a metagenomic sample. Phylogenetic analysis of metagenomic reads has376

the potential to offer resolution beyond what would be available from taxonomic methods for metage-377

nomics. Whereas taxonomic methods can provide resolution at specific levels in the taxonomic hierarchy,378

such as species, genus, etc., phylogenetic methods might be able to distinguish different subtypes of379

named species or novel lineages at higher taxonomic levels. Phylogenetic methods are limited only by the380

resolution of the reference genome phylogeny and not by the resolution of manually curated taxonomies.381

Phylogenetic inference has the further advantage that it is based on a statistical model of sequence change382

where the marginal likelihood of the data given the model P (D|M) is well defined, making it possible to383

conduct model-based hypothesis tests using phylogenies. Taxonomic analysis methods for metagenomics384

are frequently based on machine learning classification methods which do not always lend themselves to385

such hypothesis testing.386

PhyloSift provides a means to conduct Bayesian hypothesis testing for the presence of one or more387

query sequences belonging to organisms that have diverged along specific branches of the reference phy-388

logeny. In order to describe the Bayesian hypothesis test we introduce the following notation: assume we389

are given a reference phylogenetic tree T consisting of n > 1 branches {t1 . . . tn}. Further assume we are390

given a collection S of sequences s1 . . . sm which are homologous to and aligned to the sequences at the391

leaf nodes of the reference phylogeny. We denote the marginal likelihood that a particular sequence sj392

diverged along branch ti of the reference phylogeny as P (sj |ti). Calculation of this marginal likelihood393

is implemented in the pplacer software and described elsewhere [37].394

The null hypothesis we wish to test is that there are no sequences diverging from a set of one or more395

lineages of interest Tx ⊆ T . We can express the marginal likelihood of the null hypothesis M0 as:396

P (D|M0) =
∏
sj∈S

[
1−

∑
ti∈Tx

P (sj |ti)

]
(1)

which can be interpreted as the product over all sequences of the probability that the sequence does not397

derive from a lineage of interest in Tx. The marginal likelihood of the alternative hypothesis, e.g. that398
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one or more reads derive from a lineage in Tx, can simply be expressed as:399

P (D|M1) = 1− P (D|M0) (2)

Using these marginal likelihoods we can construct a Bayes factor:400

K =
P (D|M0)

P (D|M1)
(3)

The Bayes factor K can then be interpreted with respect to how strongly the null hypothesis is rejected401

by the data.402

The current version of PhyloSift supports application of Bayesian hypothesis tests to a concatenated403

alignment of the 37 elite gene families or any other single marker gene, and can be applied to phylogenies404

inferred either from amino acid or codon-aligned DNA sequences.405

Community structure comparison: application to human microbiome data406

In addition to hypothesis testing for lineages, PhyloSift also provides a platform to conduct compar-407

ative analysis of microbial community structure directly from metagenomic data. To understand how408

community structure analysis with PhyloSift compares to similar analysis based on 16S rRNA amplicon409

sequencing we study a recently published human microbiome dataset where samples were sequenced both410

by a 16S amplicon and a shotgun metagenome approach [67]. In that study, fecal material was collected411

from infants and adults at diverse geographical locations and subjected to sequencing. Over 600 sam-412

ples were sequenced using the 16S amplicon protocol. Of those 106 were also subjected to metagenomic413

shotgun sequencing using 454 pyrosequencing chemistry. Here we apply PhyloSift to the 106 metage-414

nomic samples and conduct a community structure comparison among the samples, and replicate the415

Yatsunenko et al. QIIME analyses on this subset of data.416

All QIIME analyses were carried out using release 1.5.0 of the QIIME software toolkit, using the417

workflow and parameters reported by Yatsunenko et al. The Greengenes reference database (collapsed at418

97% identity) was used to carry out a closed-reference OTU picking protocol at 97% sequence identity with419

uclust. All reads which matched database sequences at this level were retained for downstream processing,420

while non-matching sequences were excluded from further analyses. Parameters for the pick otus.py script421

were as follows: –max accepts 1 –max rejects 8 –stepwords 8 –word length 8. Taxonomic assignments for422

OTUs were given by the Greengenes database. Rarefaction and PCoA analyses were carried out using the423

alpha diversity.py and beta diversity through plots.py workflows. A full list of these QIIME commands424

and output files have been publicly deposited in figshare (DOI: 10.6084/m9.figshare.650869) .425

PhyloSift processed each of the 106 samples, requiring an average of 2.5 hours per sample on a single426

2.27GHz Intel Xeon E5520 core (circa 2009 model). The majority of CPU time is spent in phylogenetic427

placement of reads. These samples have 154,485 non-human sequence reads on average, for an average428

of 52 Mbp of sequence data per sample.429

We then conducted Edge Principal Components Analysis (PCA) using the reads placed onto the430

phylogeny of elite gene families. Edge PCA identifies the combination of phylogenetic lineages that431

explain the greatest extent of variation in the microbial communities in each sample. The resulting PCA432

plot is shown in Figure 2, with each sample colored according to the age of the human host at the time of433

sampling. The PCA reveals a strong association between age and microbial community structure. This434

relationship was also identified by Yastunenko et al using 16S rRNA analysis on a set of >600 samples435

which included the 106 studied here. In order to quantify the degree of similarity between the PhyloSift436

Edge PCA and QIIME PCoA results, we calculated Procrustes distances among each pair of analyses,437

the results are given in Table 1. In general we find that QIIME’s PCoA analysis of metagenomic 16S438

reads produces results that are very different to all other methods, whereas results produced by QIIME439
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QIIME 16S Meta PhyloSift 16S Meta PhyloSift Elite Meta

QIIME 16S Amp 0.5134279 0.3873677 0.3762175
QIIME 16S Meta - 0.5376786 0.6351224

PhyloSift 16S Meta - - 0.2450837

Table 1. Procrustes distances between microbial community analysis methods. Analysis of 16S
amplicon sequences with QIIME (QIIME 16S Amp) produces results more similar to PhyloSift
analyzing either 16S or elite protein sequences from metagenomic data than to QIIME analysis of 16S
sequences from metagenomic data. PhyloSift results for 16S and elite proteins are more similar to each
other than to either QIIME method, possibly due to differences between Edge PCA and the
QIIME-generated PCoA on UniFrac distances.

PCoA analysis of 16S amplicon data are more similar to results produced by PhyloSift on metagenomic440

data.441

The nature of edge PCA lends itself to an intuitive inspection of the phylogenetic lineages explain-442

ing the difference in community structures. PhyloSift, by using pplacer’s guppy program and the Ar-443

chaeopteryx tree viewer, can produce a visualization of the lineages most strongly associated with each444

principal component. Figure 3 shows this visualization for the edge PCA analysis of 106 fecal metagenome445

communities. In that figure, lineages are thickened proportionally to their contribution to the principal446

component, and are colored according to whether they increase (red) or decrease (turqoise) in abundance447

along the principal component axis. As we can see from Figure 3 left, the first principal component is de-448

fined by an increase in Ruminococcacae, Clostridiales, and Bacteroides, with a decrease in Bifidobacteria.449

The association with age suggests that as communities develop in aging children, the Bifidobacteria be-450

come less abundant and members of those other lineages grow in abundance. The analysis of Yatsunenko451

et al on 16S rRNA data also identified age-associated increases in Ruminococcacae and Bacteroides and452

a decrease in Bifidobacteria.453

Whereas the first principal component agrees strongly with the analysis reported by Yastunenko et454

al, the second principal component appears to identify a previously unreported aspect of variation in455

these samples. Extreme samples on the 2nd principal component (PC2) are very young infants whose456

fecal microbiota appear to be dominated not by Bifidobacteria, but instead by members of the genus457

Enterobacter and family Lactobacillales (see Figure 3, right). One possible explanation for this obser-458

vation may be an association with breast-feeding status of the infants. However, inspection of publicly459

available metadata did not reveal any clear assocation of PC2 with breastfeeding status or other recorded460

metadata. Another possibile explanation is mode of birth, vaginal or caesarian, however no information461

on mode of birth is available for this dataset (Jeffrey Gordon, personal communication). We note that462

members of the Lactobacillales are abundant in the human vaginal tract, suggesting that newborns high463

on the 2nd principal component axis may be vaginally delivered if the two groups of newborns do indeed464

reflect differences in mode of delivery. Interestingly, the dimensions of community structure variation465

identified in the current set of 106 samples differ from those identified by Yatsunenko et al in the larger466

set of 600 samples for which amplicon data are available. Geography and age were associated with most467

variation in their analysis of >600 samples, and the 106 metagenome samples are primarily from in-468

fants and do not equally represent that variation. It seems that age-related variation in the microbiome469

dominates the 106 metagenome samples.470

We also investigated the diversity of microbes in the fecal samples. Classic measures of species471

diversity such as alpha and beta diversity have been applied to microbial communities by collapsing472

sequences to operational taxonomic units (OTUs). More recently, phylogenetic diversity (PD) [20] has473

been applied to metagenomic data, yielding a diversity metric that does not require defining OTUs [27].474

In the present work we compute phylogenetic diversity on the placed reads, using the attachment points475

of reads to the reference tree as the basis for the diversity calculation. Figure 4 shows the phylogenetic476
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diversity present in the fecal samples as a function of age. We observe a general trend where phylogenetic477

diversity grows quickly with age, presumably due to colonization of the infant gut, then continues to grow478

slowly throughout adult life. There is a significant log-linear relationship of phylogenetic diversity with479

age (Pearson’s product-moment correlation, p < 10−15). We also plot a variant of the PD metric called480

balance-weighted phylogenetic diversity [38], where diversity contributed by each lineage is weighted by its481

relative abundance. Balance-weighted PD exhibits a similar growth in early life, but values for individual482

samples shift relative to population median values. Notably, balance-weighted PD declines in old age,483

suggesting that a smaller number of divergent lineages may come to dominate the adult human gut. The484

maximum balance-weighted PD value observed among any sample in the dataset was at the 7th month of485

life. When samples from before and after the 7th month of life are tested separately, balance-weighted PD486

exhibits significant age-associated growth before the 7th month (p = 0.009, Spearman’s rank correlation)487

and age-associated decline after the 7th month (p < 10−5, Spearman’s rank correlation). It is not clear488

what drives the reduction in balance-weighted PD after the 7th month of life, though we note that solid489

food is commonly introduced to the infant’s diet around this time.490

PhyloSift provides a means to visualize the relative abundance of taxonomic groups present in a491

sample. Figure 5 shows two such plots for samples from a 1 month old breastfeeding infant and a 45 year492

old mother from the Yatsunenko et al data [67].493

Computational efficiency494

When processing large metagenomic datasets, computational efficiency and resources can become a lo-495

gistical challenge. For Illumina data, PhyloSift can process sequence reads on a single CPU core at least496

as quickly as they can be generated by current instruments. Figure 6 gives memory and running time497

requirements for some test Illumina datasets. The majority of PhyloSift’s running time is spent in phy-498

logenetic read placement (data not shown). Most stages of the workflow implemented by PhyloSift are499

amenable to both fine and coarse-grain parallelism, thus parallel implementations of the workflow could500

be created should future data volumes demand it. Finally, the peak memory usage recorded during each501

run remains roughly constant at 6-9 GB across all data set sizes. As such, PhyloSift is memory-efficient502

enough to process metagenomic datasets on modern laptop hardware, wherein configurations with 8 GB503

RAM are readily available.504

Discussion505

We have presented a new approach for phylogenetic analysis of genomes and uncultured microbial com-506

munities. The software implementation of our method, called PhyloSift, also provides a platform for507

comparison of community structure among many samples. Phylogenetic analysis (placement of short508

sequences onto reference phylogenies) offers a number of conceptual advantages over OTU-based or tax-509

onomic analysis (interpreting sequence data on the basis of hierarchal classification information) for510

metagenomic data. Without applying phylogenetic analysis, taxonomic analysis can produce results that511

are difficult to interpret, particularly when an unknown environmental sequence contains many high512

scoring hits to reference database sequences as is common in BLAST-based approaches. Alternatively,513

taxonomic information can be misleading for sequences from species lacking close relatives in public se-514

quence databases; these sequences may recover no match at all, or be assigned taxonomic annotations515

which do not accurately reflect phylogenetic relationships (e.g. the closest match is still a distant relative,516

as reflected by low BLAST scores) [16]. Phylogenetic analysis avoids both of these problems, relying in-517

stead on evolutionary models to accurately place unknown sequences within a known topology. In many518

cases, phylogenies will also offer a higher resolution representation of genetic ancestry than taxonomies.519

For these reasons, we focus on types of phylogenetic analysis enabled by PhyloSift and forgo a discussion520

of previous taxonomy-based metagenome analysis methods.521
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Phylogenetic analysis of metagenome sequence data could in principle offer several advantages in the522

area of microbial forensics. First, by studying an uncultured community, some potential pitfalls of culture523

bias and sample contamination can be avoided entirely. Second, the environmental shotgun sequencing524

approach can avoid problems related to PCR primer bias, though issues related to DNA extraction bias525

remain a problem [44] and might be especially relevant for sporulating organisms such as the Bacilli and526

their relatives. Third, the metagenomic approach can be applied without prior knowledge of which genes527

to target in the sample, and permits interrogation of both slow-evolving genes such as 16S rRNA and fast528

evolving genes that might offer greater resolution among closely related organisms. Finally, phylogenetics529

can be applied to any gene of interest regardless of whether its evolutionary history is concordant with a530

taxonomic hierarchy.531

Here we have introduced a means to statistically test for lineages of interest directly from an uncultured532

DNA sample. The test calculates a Bayes factor for the two competing hypotheses: zero sequences derive533

from the target lineage, versus one or more sequences in the sample derive from the target lineage. This534

method can be applied to any protein-coding or noncoding gene family of interest. Certain gene families535

will yield more sensitive tests than others, for example the 16S rRNA gene is slow-evolving and can536

not usually distinguish within-species relationships where some protein-coding genes might have greater537

resolution. We emphasize that the Bayes factor is not a test of homology – homology tests exist as e-value538

and related score statistics in aligners such as BLAST, LAST, and HMMER. Given sequences homologous539

to a gene family, the Bayes factor tests from which lineage they diverged. The limit of detection for this540

method will depend on how deeply a sample has been sequenced. This value will depend on several541

factors specific to the sequencing chemistry and currently must be calculated independently by the user.542

The 37 elite gene families were selected because they are universally present and almost always in543

single copy, but there are some exceptions. When partial homologs exist interpretation of the lineage544

test can become complicated by paralogs or ancient lateral gene transfer events. Thus one must exercise545

appropriate caution when interpreting the results of the lineage test. It is a test of whether the sample is546

void of DNA predicted to have derived from a particular lineage in the phylogeny. For applications like547

medical diagnostics a more elaborate Bayesian hypothesis test might be appropriate. Such a test might548

check for a collection of genes that are diagnostic of the organism rather than seeking a single gene, based549

on prior knowledge that most of the 37 genes are present in most lineages. Such an approach would be550

less sensitive to sporadic lateral gene transfer events in any single gene family and represents a direction551

for future work.552

Although we do not provide examples, it is possible to test the hypothesis that two microbial com-553

munities have equal composition using the phylogenetic Kantorovich-Rubenstein distance [19]. In a554

bioforensics context this approach could be applied to test whether two uncultured communities of in-555

terest “match” each other. The implementation of the method employs an efficient approximation to556

calculate p-values for the null hypothesis of equal community composition and has been described else-557

where [19]. This test can be applied directly to any individual gene family processed by PhyloSift or558

to the concatenated alignment of elite families at either the amino acid or DNA sequence level. One559

limitation of this test is that it does not currently provide a means to account for variability in apparent560

community structure introduced by normal sample handling procedures. Future work might develop tests561

that employ many technical replicates of samples to account for such variation in the hypothesis test.562

PhyloSift can also be applied to explore the variation in community structure present in a collection563

metagenomic samples. In recent years it has become standard practice to explore microbial community564

structure variation using amplicon sequencing of highly conserved genes such as 16S rRNA, 18S rRNA and565

ITS regions followed by analysis with a pipeline such as QIIME [11], VAMPS (http://vamps.mbl.edu), or566

mothur [50]. Analysis of community structure using metagenome sequence has some potential advantages,567

such as avoiding issues related to PCR primer bias and distinguishing between erroneous PCR chimeras568

and sequences representing the ”rare biosphere” [5]. However, there are also shortcomings, such as the569

relatively sparse phylogenetic diversity of available reference genomes relative to amplicon databases.570
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The reference-based approach taken by PhyloSift will suffer this database resolution limitation when571

processing metagenomic data, although not when processing amplicon data. Efforts to increase the572

phylogenetic diversity of available genome sequences are ongoing [63, 48, 53]573

Advances in the preparation of high throughput samples will make comparative metagenomics more574

tractable. The analysis we describe of human fecal microbial communities was possible with a median575

of only 50 Mbp sequence data per sample. Current Illumina HiSeq 2000 instruments generate up to 40576

Gbp per lane, suggesting that up to 800 samples could be processed in a single Illumina lane and yield577

similar findings. Based on current Illumina sequencing service provider costs this suggests large-scale gut578

metagenome surveys could be conducted for as little as to $2.50 to $5 per sample in sequencing costs.579

Library preparation would dominate the overall cost of such studies, as current kits from Illumina require580

about $37 per sample.581

Although we focus on phylogenetic analysis in this work, PhyloSift also provides a basic mechanism582

to attach taxonomic labels to branches of the phylogenetic trees. Our approach for taxonomic labeling583

of the phylogeny does not enforce a strict 1:1 mapping between taxonomic labels and branches in the584

phylogeny. Rather, each branch in the phylogeny is labeled with the entire set of most topologically585

consistent taxonomic labels. In cases where gene trees may be discordant with the taxonomic tree,586

this approach allows PhyloSift to represent some of this ambiguity in its results. A systematic study587

investigating the relationship between rates and patterns of LGT and the effectiveness of our approach588

for taxonomic labeling remains as future work, as does extension of the taxonomic labeling method to589

gene families for which duplication and loss is prevalent.590

One major limitation of the current approach is that all phylogenetic analysis is conducted indepen-591

dently on each gene. However, genes do not evolve in isolation but rather co-evolve with each other592

in genomes. Recent studies have demonstrated that large parts of the phylogenetic history in different593

microbial genes are congruent even though they have undergone lateral gene transfer, duplication, and594

loss [56, 7]. Large-scale statistical inference of phylogenetic networks (e.g. on > 1000 microbial genomes)595

that account for duplication, transfer, and loss histories have not yet been described in the literature,596

however if such a network could be constructed it might provide a means to co-analyze all genes and597

yield a corresponding increase in sensitivity and power for statistical tests.598

Availability599

Software for Linux and Mac OS X, along with source code is freely available from http://github.com/gjospin/PhyloSift600

Extensive user documentation is available at http://phylosift.wordpress.com The source code has been601

licensed under the GNU Public License (GPL) v3.0.602
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[34] Ari Löytynoja, Albert J. Vilella, and Nick Goldman. Accurate extension of multiple se-704

quence alignments using a phylogeny-aware graph algorithm. Bioinformatics, 28(13):1684–1691,705

2012. doi:10.1093/bioinformatics/bts198. URL http://bioinformatics.oxfordjournals.org/706

content/28/13/1684.abstract.707

[35] C. Lozupone and R. Knight. Unifrac: a new phylogenetic method for comparing microbial commu-708

nities. Applied and environmental microbiology, 71(12):8228–8235, 2005.709

[36] F.A. Matsen, N.G. Hoffman, A. Gallagher, and A. Stamatakis. A format for phylogenetic placements.710

PLOS ONE, 7(2):e31009, 2012. doi:10.1371/journal.pone.0031009.711

[37] Frederick Matsen, Robin Kodner, and E Virginia Armbrust. pplacer: linear time maximum-likelihood712

and Bayesian phylogenetic placement of sequences onto a fixed reference tree. BMC Bioinformatics,713

11(1):538, 2010. ISSN 1471-2105. doi:10.1186/1471-2105-11-538. URL http://www.biomedcentral.714

com/1471-2105/11/538.715

[38] Connor O McCoy, IV Matsen, and A Frederick. Abundance-weighted phylogenetic diversity mea-716

sures distinguish microbial community states and are robust to sampling depth. arXiv preprint717

arXiv:1305.0306, 2013.718

[39] A.C. McHardy, H.G. Mart́ın, A. Tsirigos, P. Hugenholtz, and I. Rigoutsos. Accurate phylogenetic719

classification of variable-length dna fragments. Nature methods, 4(1):63–72, 2006.720

[40] F Meyer, D Paarmann, M D’souza, R Olson, EM Glass, M Kubal, T Paczian, A Rodriguez,721

R Stevens, A Wilke, et al. The metagenomics rast server–a public resource for the automatic722

phylogenetic and functional analysis of metagenomes. BMC bioinformatics, 9(1):386, 2008.723

[41] Christopher Miller, Brett Baker, Brian Thomas, Steven Singer, and Jillian Banfield. EMIRGE:724

reconstruction of full-length ribosomal genes from microbial community short read sequencing data.725

Genome Biology, 12(5):R44, 2011. ISSN 1465-6906. doi:10.1186/gb-2011-12-5-r44. URL http:726

//genomebiology.com/2011/12/5/R44.727

[42] M.H. Mohammed, S. Chadaram, D. Komanduri, T.S. Ghosh, and S.S. Mande. Eu-detect: An728

algorithm for detecting eukaryotic sequences in metagenomic data sets. J Biosci, 36(4):709–17,729

2011.730

[43] M. Monzoorul Haque, Tarini Shankar Ghosh, Dinakar Komanduri, and Sharmila S. Mande. SOrt-731

ITEMS: Sequence orthology based approach for improved taxonomic estimation of metagenomic732

sequences. Bioinformatics, 25(14):1722–1730, 2009. doi:10.1093/bioinformatics/btp317. URL http:733

//bioinformatics.oxfordjournals.org/content/25/14/1722.abstract.734

[44] Jenna L. Morgan, Aaron E. Darling, and Jonathan A. Eisen. Metagenomic Sequenc-735

ing of an In Vitro-Simulated Microbial Community. PLoS ONE, 5(4):e10209, 04 2010.736

doi:10.1371/journal.pone.0010209. URL http://dx.doi.org/10.1371%2Fjournal.pone.0010209.737

PeerJ reviewing PDF | (v2013:03:340:1:1:NEW 9 Dec 2013) 

R
ev
ie
w
in
g
M
an

us
cr
ip
t

http://dx.doi.org/10.1186/gb-2009-10-3-r25
http://genomebiology.com/2009/10/3/R25
http://dx.doi.org/10.1093/bioinformatics/bts198
http://bioinformatics.oxfordjournals.org/content/28/13/1684.abstract
http://bioinformatics.oxfordjournals.org/content/28/13/1684.abstract
http://bioinformatics.oxfordjournals.org/content/28/13/1684.abstract
http://dx.doi.org/10.1371/journal.pone.0031009
http://dx.doi.org/10.1186/1471-2105-11-538
http://www.biomedcentral.com/1471-2105/11/538
http://www.biomedcentral.com/1471-2105/11/538
http://www.biomedcentral.com/1471-2105/11/538
http://dx.doi.org/10.1186/gb-2011-12-5-r44
http://genomebiology.com/2011/12/5/R44
http://genomebiology.com/2011/12/5/R44
http://genomebiology.com/2011/12/5/R44
http://dx.doi.org/10.1093/bioinformatics/btp317
http://bioinformatics.oxfordjournals.org/content/25/14/1722.abstract
http://bioinformatics.oxfordjournals.org/content/25/14/1722.abstract
http://bioinformatics.oxfordjournals.org/content/25/14/1722.abstract
http://dx.doi.org/10.1371/journal.pone.0010209
http://dx.doi.org/10.1371%2Fjournal.pone.0010209


19

[45] Brian Ondov, Nicholas Bergman, and Adam Phillippy. Interactive metagenomic visualization in a738

Web browser. BMC Bioinformatics, 12(1):385, 2011. ISSN 1471-2105. doi:10.1186/1471-2105-12-385.739

URL http://www.biomedcentral.com/1471-2105/12/385.740

[46] Kaustubh R Patil, Peter Haider, Phillip B Pope, Peter J Turnbaugh, Mark Morrison, Tobias Scheffer,741

and Alice C McHardy. Taxonomic metagenome sequence assignment with structured output models.742

Nature Methods, pages 191–192, 2011.743

[47] Morgan N. Price, Paramvir S. Dehal, and Adam P. Arkin. FastTree 2 Approxi-744

mately Maximum-Likelihood Trees for Large Alignments. PLoS ONE, 5(3):e9490, 03 2010.745

doi:10.1371/journal.pone.0009490. URL http://dx.doi.org/10.1371%2Fjournal.pone.0009490.746

[48] Christian Rinke, Patrick Schwientek, Alexander Sczyrba, Natalia N Ivanova, Iain J Anderson, Jan-747

Fang Cheng, Aaron Darling, Stephanie Malfatti, Brandon K Swan, Esther A Gies, et al. Insights748

into the phylogeny and coding potential of microbial dark matter. Nature, 2013.749

[49] Gail L. Rosen, Erin R. Reichenberger, and Aaron M. Rosenfeld. NBC: the Nave Bayes Classification750

tool webserver for taxonomic classification of metagenomic reads. Bioinformatics, 27(1):127–129,751

2011. doi:10.1093/bioinformatics/btq619. URL http://bioinformatics.oxfordjournals.org/752

content/27/1/127.abstract.753

[50] Patrick D Schloss, Sarah L Westcott, Thomas Ryabin, Justine R Hall, Martin Hartmann, Emily B754

Hollister, Ryan A Lesniewski, Brian B Oakley, Donovan H Parks, Courtney J Robinson, et al. Intro-755

ducing mothur: open-source, platform-independent, community-supported software for describing756

and comparing microbial communities. Applied and environmental microbiology, 75(23):7537–7541,757

2009.758

[51] N. Segata, L. Waldron, A. Ballarini, V. Narasimhan, O. Jousson, and C. Huttenhower. Metagenomic759

microbial community profiling using unique clade-specific marker genes. Nature Methods, 9(8):811–760

814, 2012.761

[52] T.J. Sharpton, S.J. Riesenfeld, S.W. Kembel, J. Ladau, J.P. O’Dwyer, J.L. Green, J.A. Eisen, and762

K.S. Pollard. Phylotu: a high-throughput procedure quantifies microbial community diversity and763

resolves novel taxa from metagenomic data. PLoS computational biology, 7(1):e1001061, 2011.764

[53] Patrick M Shih, Dongying Wu, Amel Latifi, Seth D Axen, David P Fewer, Emmanuel Talla, Alexan-765

dra Calteau, Fei Cai, Nicole Tandeau de Marsac, Rosmarie Rippka, et al. Improving the coverage766

of the cyanobacterial phylum using diversity-driven genome sequencing. Proceedings of the National767

Academy of Sciences, 110(3):1053–1058, 2013.768

[54] Manuel Stark, Simon Berger, Alexandros Stamatakis, and Christian von Mering. MLTreeMap - accu-769

rate Maximum Likelihood placement of environmental DNA sequences into taxonomic and functional770

reference phylogenies. BMC Genomics, 11(1):461, 2010. ISSN 1471-2164. doi:10.1186/1471-2164-771

11-461. URL http://www.biomedcentral.com/1471-2164/11/461.772

[55] Shinichi Sunagawa, Daniel R Mende, Georg Zeller, Fernando Izquierdo-Carrasco, Simon A Berger,773

Jens Roat Kultima, Luis Pedro Coelho, Manimozhiyan Arumugam, Julien Tap, Henrik Bjørn Nielsen,774

et al. Metagenomic species profiling using universal phylogenetic marker genes. Nature Methods,775

2013.776

[56] Gergely J. Szllsi, Bastien Boussau, Sophie S. Abby, Eric Tannier, and Vincent Daubin. Phylogenetic777

modeling of lateral gene transfer reconstructs the pattern and relative timing of speciations. Proceed-778

ings of the National Academy of Sciences, 109(43):17513–17518, 2012. doi:10.1073/pnas.1202997109.779

URL http://www.pnas.org/content/109/43/17513.abstract.780

PeerJ reviewing PDF | (v2013:03:340:1:1:NEW 9 Dec 2013) 

R
ev
ie
w
in
g
M
an

us
cr
ip
t

http://dx.doi.org/10.1186/1471-2105-12-385
http://www.biomedcentral.com/1471-2105/12/385
http://dx.doi.org/10.1371/journal.pone.0009490
http://dx.doi.org/10.1371%2Fjournal.pone.0009490
http://dx.doi.org/10.1093/bioinformatics/btq619
http://bioinformatics.oxfordjournals.org/content/27/1/127.abstract
http://bioinformatics.oxfordjournals.org/content/27/1/127.abstract
http://bioinformatics.oxfordjournals.org/content/27/1/127.abstract
http://dx.doi.org/10.1186/1471-2164-11-461
http://dx.doi.org/10.1186/1471-2164-11-461
http://dx.doi.org/10.1186/1471-2164-11-461
http://www.biomedcentral.com/1471-2164/11/461
http://dx.doi.org/10.1073/pnas.1202997109
http://www.pnas.org/content/109/43/17513.abstract


20

[57] Torsten Thomas, Jack Gilbert, Folker Meyer, et al. Metagenomics-a guide from sampling to data781

analysis. Microb Inform Exp, 2(3), 2012.782

[58] Susannah Green Tringe, Christian Von Mering, Arthur Kobayashi, Asaf A Salamov, Kevin Chen,783

Hwai W Chang, Mircea Podar, Jay M Short, Eric J Mathur, John C Detter, et al. Comparative784

metagenomics of microbial communities. Science, 308(5721):554–557, 2005.785

[59] Gene W Tyson, Jarrod Chapman, Philip Hugenholtz, Eric E Allen, Rachna J Ram, Paul M Richard-786

son, Victor V Solovyev, Edward M Rubin, Daniel S Rokhsar, and Jillian F Banfield. Community787

structure and metabolism through reconstruction of microbial genomes from the environment. Na-788

ture, 428(6978):37–43, 2004.789

[60] J Craig Venter, Karin Remington, John F Heidelberg, Aaron L Halpern, Doug Rusch, Jonathan A790

Eisen, Dongying Wu, Ian Paulsen, Karen E Nelson, William Nelson, et al. Environmental genome791

shotgun sequencing of the sargasso sea. science, 304(5667):66–74, 2004.792

[61] Q. Wang, G.M. Garrity, J.M. Tiedje, and J.R. Cole. Naive bayesian classifier for rapid assignment793

of rrna sequences into the new bacterial taxonomy. Applied and environmental microbiology, 73(16):794

5261–5267, 2007.795

[62] Tanja Woyke, Damon Tighe, Konstantinos Mavromatis, Alicia Clum, Alex Copeland, Wendy796

Schackwitz, Alla Lapidus, Dongying Wu, John P. McCutcheon, Bradon R. McDonald, Nancy A.797

Moran, James Bristow, and Jan-Fang Cheng. One Bacterial Cell, One Complete Genome. PLoS798

ONE, 5(4):e10314, 04 2010. doi:10.1371/journal.pone.0010314. URL http://dx.doi.org/10.1371%799

2Fjournal.pone.0010314.800

[63] Dongying Wu, Philip Hugenholtz, Konstantinos Mavromatis, Rdiger Pukall, Eileen Dalin, Natalia N801

Ivanova, Victor Kunin, Lynne Goodwin, Martin Wu, Brian J Tindall, and et al. A phylogeny-802

driven genomic encyclopaedia of bacteria and archaea. Nature, 462(7276):1056–1060, 2009. URL803

http://www.ncbi.nlm.nih.gov/pubmed/20033048.804

[64] Dongying Wu, Guillaume Jospin, and Jonathan A. Eisen. Systematic identification of gene families805

for use as markers for phylogenetic and phylogeny-driven ecological studies of bacteria and archaea806

and their major subgroups. PLoS ONE, 8(10):e77033, 10 2013. doi:10.1371/journal.pone.0077033.807

URL http://dx.doi.org/10.1371%2Fjournal.pone.0077033.808

[65] M. Wu and A.J. Scott. Phylogenomic analysis of bacterial and archaeal sequences with amphora2.809

Bioinformatics, 28(7):1033–1034, 2012.810

[66] Martin Wu and Jonathan Eisen. A simple, fast, and accurate method of phylogenomic inference.811

Genome Biology, 9(10):R151, 2008. ISSN 1465-6906. doi:10.1186/gb-2008-9-10-r151. URL http:812

//genomebiology.com/2008/9/10/R151.813

[67] Tanya Yatsunenko, Federico E. Rey, Mark J. Manary, Indi Trehan, Monica Contreras Maria Glo-814

ria Dominguez-Bello, Magda Magris, Glida Hidalgo, Robert N. Baldassano, Andrey P. Anokhin,815

Andrew C. Heath, Barbara Warner, Jens Reeder, Justin Kuczynski, J. Gregory Caporaso, Cather-816

ine A. Lozupone, Christian Lauber, Jose Carlos Clemente, Dan Knights, Rob Knight, and Jeffrey I.817

Gordon. Human gut microbiome viewed across age and geography. Nature, 486:222227, 2012.818

[68] Yongan Zhao, Haixu Tang, and Yuzhen Ye. RAPSearch2: a fast and memory-819

efficient protein similarity search tool for next generation sequencing data. Bioinformatics,820

2011. doi:10.1093/bioinformatics/btr595. URL http://bioinformatics.oxfordjournals.org/821

content/early/2011/10/28/bioinformatics.btr595.abstract.822

PeerJ reviewing PDF | (v2013:03:340:1:1:NEW 9 Dec 2013) 

R
ev
ie
w
in
g
M
an

us
cr
ip
t

http://dx.doi.org/10.1371/journal.pone.0010314
http://dx.doi.org/10.1371%2Fjournal.pone.0010314
http://dx.doi.org/10.1371%2Fjournal.pone.0010314
http://dx.doi.org/10.1371%2Fjournal.pone.0010314
http://www.ncbi.nlm.nih.gov/pubmed/20033048
http://dx.doi.org/10.1371/journal.pone.0077033
http://dx.doi.org/10.1371%2Fjournal.pone.0077033
http://dx.doi.org/10.1186/gb-2008-9-10-r151
http://genomebiology.com/2008/9/10/R151
http://genomebiology.com/2008/9/10/R151
http://genomebiology.com/2008/9/10/R151
http://dx.doi.org/10.1093/bioinformatics/btr595
http://bioinformatics.oxfordjournals.org/content/early/2011/10/28/bioinformatics.btr595.abstract
http://bioinformatics.oxfordjournals.org/content/early/2011/10/28/bioinformatics.btr595.abstract
http://bioinformatics.oxfordjournals.org/content/early/2011/10/28/bioinformatics.btr595.abstract


21

Figure Legends823

PeerJ reviewing PDF | (v2013:03:340:1:1:NEW 9 Dec 2013) 

R
ev
ie
w
in
g
M
an

us
cr
ip
t



22

Input	
  Sequences	
  

rRNA	
  

protein	
  

profile	
  HMMs	
  used	
  to	
  align	
  
candidates	
  to	
  reference	
  alignment	
  	
  

Taxonomic 
Summaries


parallel	
  op;on	
  

hmmalign

mul;ple	
  alignment	
  

LAST

fast	
  candidate	
  search	
  

pplacer

phylogene;c	
  placement	
  

LAST

fast	
  candidate	
  search	
  

LAST

fast	
  candidate	
  search	
  

search	
  input	
  against	
  references	
  
	
  

hmmalign

mul;ple	
  alignment	
  

hmmalign

mul;ple	
  alignment	
  

Infernal

mul;ple	
  alignment	
  

LAST

fast	
  candidate	
  search	
  

<600	
  bp	
  

>600	
  bp	
  

Sample Analysis & 
Comparison


Krona	
  plots,	
  	
  
Number	
  of	
  reads	
  placed	
  
for	
  each	
  marker	
  gene	
  	
  

	
  

Edge	
  PCoA,	
  	
  
Tree	
  visualiza;on,	
  	
  
Bayes	
  factor	
  tests	
  

	
  

Figure 1. PhyloSift client workflow. This workflow is applied to the user’s sequence data. DNA
input sequences are processed via both the rRNA and protein parts of the workflow.
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Figure 2. Comparison of QIIME PCA and edge PCA analysis of human fecal samples.
Samples from 106 individuals were analyzed by PCA to evaluate trends in community composition with
respect to host age. 16S rDNA amplicon data and metagenomic data from the same samples was
processed using QIIME and PhyloSift. QIIME analyzed the amplicon data (top left) and 16S rDNA
reads extracted from the metagenomic data (top right) using a reference-based OTU picking strategy.
PhyloSift analyzed the same metagenomic 16S rDNA reads (bottom left) and reads matching the 37
elite gene families (bottom right). Each PCA approach gives qualitatively similar results, differences as
quantified by Procrustes analysis are given in Table 1.
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Figure 3. Lineages contributing variation in human fecal sample community structure. 106
metagenomic samples were processed using PhyloSift and their community composition compared using
Edge PCA [25]. Lineages that decrease in abundance along the principal component axis are shown in
turquoise color, those increasing in abundance are shown in red. Edge width is proportional to the
change in abundance. Remaining lineages in the phylogeny of bacteria, archaea, eukarya, and some
viruses are shown in light gray. PC1 shown at left, PC2 at right.
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Age in months (log scale)
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Figure 4. Relationship betwen fecal community phylogenetic diversity and host age. 106
metagenomic samples were processed using PhyloSift and their phylogenetic diversity analyzed using
two metrics. Unweighted phylogenetic diversity (PD) simply measures the total branch length of the
reference tree covered by placed reads from a sample. Balance-weighted phylogenetic diversity adjusts
these values by the abundance of each lineage in the sample. In unweighted PD, a log-linear
relationship between host age and fecal community phylogenetic diversity can be observed. Balance
weighted PD, on the other hand, shows rapid growth in early life followed by slow decline after the first
year, consistent with a small number of divergent lineages becoming dominant in the fecal ecosystem.
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Figure 5. Taxonomic visualization of two human gut samples. Taxonomic plot at left shows an
infant, plot at right shows a 45 year old mother. Data analyzed by PhyloSift, visualized by Krona.

●
●
● ●

●

●

●

0e+00 2e+05 4e+05 6e+05 8e+05 1e+06

2
4

6
8

10

Number of Illumina reads from gut metagenome

S
in

gl
e 

C
P

U
 r

un
ni

ng
 ti

m
e 

(h
ou

rs
)

2
4

6
8

10
P

ea
k 

m
em

or
y 

us
ag

e 
(G

B
)

● Running time (hours)
Peak memory usage (GB)

Figure 6. PhyloSift performance and scaling behavior. PhyloSift v1.0 was used to process
Illumina sequence data from a human gut microbiome dataset subsampled to varying numbers of reads.
The program was run single-threaded on an Intel Xeon E5520 CPU core (circa 2009 model).
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