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WRKY proteins are the zinc finger transcription factors that were first identified in plants.
They can specifically interact with the W-box, which can be found in the promoter region of
a large number of plant target genes, to regulate the expressions of downstream target
genes. They also participate in diverse physiological and growing processes in plants. Prior
to this study, a plenty of WRKY genes have been identified and characterized in
herbaceous species, but there is no large-scale study of WRKY genes in willow . With the
whole genome sequencing of Salix suchowensis, we have the opportunity to conduct the
genome-wide research for willow WRKY gene family. In this study, we identified 85 WRKY
genes in the willow genome and renamed them from SSWRKY1 to SSWRKY85 on the basis
of their specific distributions on chromosomes. Due to their diverse structural features, the
85 willow WRKY genes could be further classified into three main groups (group | - Ill), with
five subgroups (lla - lle) in group II. With the multiple sequence alignment and the manual
search, we found three variations of the WRKYGQK heptapeptide: WRKYGRK, WKKYGQK
and WRKYGKK, and four variations of the normal zinc finger motif, which might execute
some new biological functions. In addition, the SSWRKY genes from the same subgroup
share the similar exon-intron structures and conserved motif domains. Further studies of
SsWRKY genes revealed that segmental duplication events played a more prominent role
in the expansion of SSWRKY genes. Distinct expression profiles of SSWRKY genes with RNA
sequencing data revealed that diverse expression patterns among five tissues, including
tender roots, young leaves, vegetative buds, non-lignified stems and barks. With the
analyses of WRKY gene family in willow, it is not only beneficial to complete the functional
and annotation information of WRKY genes family in woody plants, but also provide
important references to investigate the expansion and evolution of this gene family in
flowering plants.
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Abstract

WRKY proteins are the zinc finger transcription factors that were first identified in plants. They
can specifically interact with the W-box, which can be found in the promoter region of a large
number of plant target genes, to regulate the expressions of downstream target genes. They also
participate in diverse physiological and growing processes in plants. Prior to this study, a plenty
of WRKY genes have been identified and characterized in herbaceous species, but there is no
large-scale study of WRKY genes in willow. With the whole genome sequencing of Salix
suchowensis, we have the opportunity to conduct the genome-wide research for willow WRKY
gene family. In this study, we identified 85 WRKY genes in the willow genome and renamed
them from SSWRKY1 to SSWRKYS85 on the basis of their specific distributions on
chromosomes. Due to their diverse structural features, the 85 willow WRKY genes could be
further classified into three main groups (group I - III), with five subgroups (Ila - Ile) in group II.
With the multiple sequence alignment and the manual search, we found three variations of the
WRKYGQK heptapeptide: WRKYGRK, WKKYGQK and WRKYGKK, and four variations of
the normal zinc finger motif, which might execute some new biological functions. In addition, the
SsWRKY genes from the same subgroup share the similar exon—intron structures and conserved
motif domains. Further studies of SSWRKY genes revealed that segmental duplication events
played a more prominent role in the expansion of SSWRKY genes. Distinct expression profiles of
SsWRKY genes with RNA sequencing data revealed that diverse expression patterns among five
tissues, including tender roots, young leaves, vegetative buds, non-lignified stems and barks.
With the analyses of WRKY gene family in willow, it is not only beneficial to complete the
functional and annotation information of WRKY genes family in woody plants, but also provide
important references to investigate the expansion and evolution of this gene family in flowering

plants.
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Introduction

Plants form a series of adjustment mechanisms to adapt diverse environment stress in their long
evolutionary processes. Among the numerous adjustment mechanisms, transcription factors play
important roles (Jang et al. 2010). In plants, WRKY proteins constitute a large family of
transcription factors, involving in various physiological and developmental processes (Eulgem
2000; Rushton et al. 2010). Since the first WRKY gene was cloned and characterized from sweet
potato (Ishiguro & Nakamura 1994), many corresponding studies have been conducted rapidly.
Such as Arabidopsis thaliana, desert legume (Retama raetam), cotton (Gossypium arboreum),
rice (Oryza sativa), Pinus monticola, barley (Hordeum vulgare), sunflower, cucumber (Cucumis
sativus), poplar (Populus trichocarpa), tomato (Solanum lycopersicum) and grapevine (Vitis
vinifera) (Ding et al. 2015; Eulgem 2000; Giacomelli et al. 2010; Guo et al. 2014; He et al. 2012;
Huang et al. 2012; Ling et al. 2011; Liu & Ekramoddoullah 2009; Mangelsen et al. 2008; Pnueli
et al. 2002; Wu 2005).

The existence of either one or two highly conserved WRKY domains is the most vital structural
characteristic of WRKY gene. WRKY gene consists of about 60 amino acid residues with a
conserved WRKYGQK heptapeptide at its N-termini, and a zinc finger motif (C-Xy5-C-Xy 23-H-
Xi-H or C-X;-C-Xy;-H-X;-C) at the C-terminal region. Previous functional studies indicated that
WRKY genes could specifically interact with the W-box ([C/T]TGAC[T/C]), the promoter
region of plant target genes, to adjust the expressions of downstream target genes (Ciolkowski et
al. 2008). Additionally, SURE (sugar responsive elements), another prominent cis-element that
can promote transcription processes, was also found to bind to the WRKY transcription factors
under a convincing research (Sun 2003). The proper DNA-binging ability of WRKY genes could
be influenced by the variation of the conserved WRKYGQK heptapeptide (Duan et al. 2007;

Maeo et al. 2001).
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The WRKY proteins can be classified into three main groups (I, IT and III) on the basis of the
number of their WRKY domains and the pattern of the zinc finger motif. Proteins from group I
contain two WRKY domains followed by a C,H, zinc finger motif, while the other WRKY
proteins from group II and III only contain one WRKY domain followed by a C,H, or C,HC
correspondingly (Yamasaki et al. 2005). Group II can be further divided into five subgroups from
ITa to Ile based on additional amino acid motifs present outside the WRKY domain. Apart from
the conserved WRKY domains and the zinc finger motif, there are some WRKY proteins
appearing to have basic nuclear localization signal, LZs (leucine zipper) (Cormack et al. 2002),
serine-threonine-rich region, glutamine-rich region and proline-rich region (Ulker & Somssich
2004). Throughout the studies of WRKY gene family in many higher plants (Liu &
Ekramoddoullah 2009; Rushton et al. 2010; Wu 2005), WRKY genes have been identified to be
involved in various regulatory processes mediated by different biotic and abiotic stresses
(Ramamoorthy et al. 2008). In plant defense against various biotic stresses, such as bacterial,
fungal and viral pathogens, it has been well documented that the WRKY genes play vital roles
(Cheng et al. 2015; Dong et al. 2003; He et al. 2016; Jaffar et al. 2016; Jiang et al. 2016; Kim et
al. 2016; Li et al. 2006; Liu et al. 2016; Xu et al. 2006; Zhou et al. 2008). They are also involved
in abiotic stress-induced gene expression. In Arabidopsis, with the either heat or salt treatments,
the expressions of At(WRKY?25 and AtWRKY33 are transformed apparently (Jiang & Deyholos
2009). Furthermore, the expression of TcWRKY 53 that belonged to alpine penny grass (Thlaspi
caerulescens) is affected by salt, cold, and polyethylene glycol treatments (Wei et al. 2008). In
rice, a total of 54 OsWRKY genes showed noticeable differences in their transcript abundance
under the abiotic stress such as cold, drought, and salinity (Ramamoorthy et al. 2008). There is
also accumulating evidence that WRKY genes are involved in regulating developmental
processes, such as embryo morphogenesis (Lagace & Matton 2004), senescence (Robatzek &

Somssich 2002), trichome initiation (Johnson 2002), and some signal transduction processes
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mediated by plant hormones including gibberellic acid (Zhang et al. 2004), abscisic acid (Zou et
al. 2004), or salicylic acid (Du & Chen 2008).

The number of WRKY genes in different species varies tremendously. For instance, there are 72
members in Arabidopsis thaliana, at least 45 in barley, 57 in cucumber, 58 in physic nut
(Jatropha curcas), 59 in grapevine, 104 in poplar, 105 in foxtail millet (Setaria italica), 112 in
Gossypium raimondii and more than 109 in rice (Ding et al. 2015; Eulgem 2000; Guo et al. 2014;
He et al. 2012; Ling et al. 2011; Mangelsen et al. 2008; Muthamilarasan et al. 2015; Wu 2005;
Xiong et al. 2013). Zhang et al. also identified the most basal WRKY genes in the lineage of non-
plant eukaryotes and green alga (Zhang & Wang 2005). Interestingly, the WRKY genes in
eukaryotic unicellular chlamydomonas, protoctist (Giardia lambliad), bryophyte (Physcomitrella
patens) and fern (Ceratopteris richardii) all belonged to group I (Di-Qiu et al. 2006; Ulker &
Somssich 2004; Zhang & Wang 2005). For example, the study in bryophyte (Physcomitrella
patens) found at least 12 WRKY genes, and all the genes belonged to group I (Ulker & Somssich
2004). Additionally, the study in gymnosperm (Cycas revolute) identified at least 21 WRKY
genes (Di-Qiu et al. 2006), and they were divided into two groups, 15 WRKY genes therein
belonged to group I and the other 6 WRKY genes belonged to group II. Further study suggested
that the core WRKY domains of group II and III were similar to the C-terminal domain of group
I, therefore, the group II WRKY genes might emerge from the breakage of the C-terminal domain
in group I and the group III probably evolve from group II (Ulker & Somssich 2004). Above of
all indicated that the group I WRKY genes might be the oldest type, which evolved from the
origin of eucaryon, and group II and III might generate after the origin of bryophyte (Xie et al.
2005; Zhang & Wang 2005). In the evolution of WRKY genes, gene duplication events played
prominent roles. As a matter of fact, gene duplication events can lead to the generation of new
genes. For example, there are approximately 80% of OsWRKY (rice) genes located in duplicated
regions (Wu 2005), as well as 83% of Pt(WRKY (poplar) genes (He et al. 2012). However, no

gene duplication events have occurred in cucumber (Ling et al. 2011).
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In the last few years, the increasing consumption of fossil fuels induced in a substantial increase
of CO, concentration, which has adverse impacts on global climate changes(Pleguezuelo et al.
2014). Therefore, an ever-increasing demand for energy from renewable sources has provided a
new impetus to cultivate woody plants for bioenergy production. Due to its ease of propagation,
rapid growth and high yield on short rotation systems, some willow species have been used as
renewable resources since the 1970s. Additionally, with its essential physiological characteristics,
willow becomes prominent parts of the basket production, environmental restoration, analgesic
extraction, phytoremediation, both riparian and upland erosion control and biomass production
(Kuzovkina & Quigley 2005). WRKY proteins participate in diverse physiological and
developmental processes in plants. With these various important factors and the recent released
Salix suchowensis genome sequence, which covers about 96% of the expressed gene loci (Dai et
al. 2014), we have the opportunity to analyze the willow WRKY gene family. The
characterization of WRKY genes in willow can provide interesting gene pools to be investigated

for breeding and genetic engineering purposes in woody plants.

Materials and Methods

Datasets and sequence retrieval

The sequence of a shrub willow Salix suchowensis (S. suchowensis), which flowers within two
years, was conducted with a combined approach using Roche/454 and Illumina/HiSeq-2000
sequencing technologies (Dai et al. 2014). The latest v5.2 S. suchowensis genome annotation
information (version5_2.gff3) and protein sequences (Willow.gene.pep) were downloaded from
our laboratory website (http://bio.njfu.edu.cn/ss_wrky/). Sequences of 72 Arabidopsis WRKY

proteins were obtained from TAIR (release 10, http://www.arabidopsis.org/), and 104 poplar
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WRKY proteins were obtained from the Supplementary material 3 of poplar (Eulgem 2000; He et
al. 2012).

Identification and distribution of WRKY genes in willow

The procedure performed to identify putative WRKY proteins in willow was similar to the
method described in other species (Guo et al. 2014; He et al. 2012; Wu 2005). The Hidden
Markov Model (HMM) profile for the WRKY transcription factor was downloaded from the
Pfam database (http://pfam.sanger.ac.uk/) with the keyword 'PF03106' (Punta et al. 2012). The
HMM profile was applied as a query to search against the all willow protein sequences
(Willow.gene.pep) using BLASTP program (E-value cutoff = 1e”*) (Camacho et al. 2009).
Another procedure was performed to validate the putative accuracy. An alignment of WRKY
seed sequences in Stockholm format from Pfam database was used by HMMER program
(hmmbuild) to build a HMM model, and then the model was used to search the willow protein
sequences by another HMMER program (hmmsearch) with default parameters (Eddy 1998).
Finally, we employed the SMART program (http://smart.embl-heidelberg.de/) to confirm the
candidates from the two procedures correlated with the WRKY structure features (Letunic et al.
2015).

Additionally, we calculated the length, MW (molecular weight), PI (isoelectric point) of these
putative WRKY proteins by ExPasy site (http://au.expasy.org/tools/pi_tool.html). Every WRKY
genes were mapped onto chromosomes (http://bio.njfu.edu.cn/ss_wrky/version5_2.fa) with an in-
house Perl script (http://bio.njfu.edu.cn/willow_chromosome/BuildGff3_Chr.pl), and then
renamed based on their orderly given chromosomal distribution. The distribution graph of every

WRKY gene was drawn by MaplInspect software (http://mapinspect.software.informer.com/).
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Sequence alignments, phylogenetic analysis and classification of willow

WRKY genes

Using the online tool SMART, we obtained the conserved WRKY core domains of predicted
SsWRKY genes, and then multiple sequence alignment based on these domains was performed
using ClustalX (version 2.1) (Larkin et al. 2007). After alignment, we used Boxshade
(http://www.ch.embnet.org/software/BOX_form.html) to color the alignment result online. To
gain better classification of these SSWRKY genes, a further multiple sequence alignment
including 103 SSWRKY domains and 82 WRKY domains from Arabidopsis (AtWRKY) was
performed using ClustalW (Larkin et al. 2007), and a phylogenetic tree based on this alignment
was built by MEGA 6.0 with the Neighbor-joining (NJ) method (Tamura et al. 2013). Bootstrap
values have been calculated from 1000 iterations in the pairwise gap deletion mode, which is
conducive to the topology of the NJ tree by divergent sequences. Based on the phylogenetic tree
constructed by SSWRKY and AtWRKY domains, these SSWRKY genes were classified into
different groups and subgroups. In order to get a better comparison of WRKY family in
Salicaceae, a phylogenetic tree including all SSWRKY domains and 126 WRKY domains from
poplar (PtWRKY) was constructed with the similar method to Arabidopsis. Additionally, a
phylogenetic tree based on full-length SSWRKY genes was also constructed to get a better
classification. The ortholog of each SSWRKY gene in Arabidopsis and poplar was based on the
phylogenetic trees of their respective WRKY domains, and the members of group I WRKY genes
were considered as orthologs unless the same phylogenetic relationship can be detected between
N-termini and C-termini in the tree. Another method described by Zou et al., BLAST-based
method (Bi-direction best hit), was used to verify the putative orthologous genes (E-value cutoff

= 1e-20) (Chen et al. 2007; Zou et al. 2016).
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Evolutionary analysis of WRKY III genes in willow

The group of WRKY III genes, only found in flowering plants, is considered as the evolutionary
youngest groups, and plays crucial roles in the process of plant growth (He et al. 2012; Wu
2005). As described by Wang et al., the WRKY III genes also have a prominent impact on
disease and drought resistance (Wang et al. 2015). Previous study of Zhang et al. held the opinion
that duplications and diversifications were plentiful in WRKY III genes, and they appeared to
have confronted different selection challenges (Zhang & Wang 2005). Phylogenetic analysis of
WRKY III genes was performed using MEGA®6.0 with 65 WRKY III genes from Arabidopsis
(AtWRKY), Populus (PtWRKY), grape (VVWRKY), willow (SsSWRKY) and rice (OsWRKY). A
NJ tree was constructed with the same method described before. Additionally, we estimated the
non-synonymous (Ka) and synonymous (Ks) substitution ratio of SSWRKY III genes to verify
whether selection pressure participated in the expansion of SSWRKY III genes. Each pair of these
WRKY III protein sequences was first aligned using ClustalW. The alignments generated by
ClustalW and the corresponding cDNA sequences were submitted to the online program
PAL2NAL (http://www.bork.embl.de/pal2nal/) (Suyama et al. 2006), which automatically

calculates Ks and Ka by the codeml program in PAML (Yang 2007).

Analysis of exon-intron structure, gene clusters, gene duplication events and

conserved motif distribution of willow WRKY genes

The exon-intron structures of the willow WRKY genes were obtained based on the protein
annotation files assembled ourselves (http://bio.njfu.edu.cn/ss_wrky/version5_2.gff3), and the
diagrams were obtained from the online website Gene Structure Display Server (GSDS:

http://gsds.cbi.pku.edu.cn/) (Hu et al. 2015).
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Gene clusters, defined as a single chromosome containing two or more genes within 200 kb (He
et al. 2012; Holub 2001), are very important for predicting co-expression genes or potential
function of clustered genes in angiosperms (Overbeek et al. 1999).

Gene duplication events were always considered as the vital sources of biological evolution.
Two or more adjacent homologous genes located on a single chromosome were considered as
tandem duplication events (TDs), while homologous gene pairs between different chromosomes
were defined as segmental duplication events (SDs) (Liu & Ekramoddoullah 2009). BLASTP (E-
value cutoff = 1e-20) was performed to identify the gene duplication events in SSWRKY genes
with the following definition (Gu et al. 2002; He et al. 2012): (1) the coverage of the aligned
sequence 280% of the longer gene; and (2) the similarity of the aligned regions =70%. In this
study, we set the cutoff of the similarity of the aligned regions as 65%, because the similarity of
the unaligned regions may reduce the value in different species.

To better exhibit the structural features of SSWRKY proteins, the online tool MEME (Multiple
Expectation Maximization for Motif Elicitation) was used to identify the conserved motifs in the
encoded SSWRKY proteins (Bailey et al. 2006). The optimized parameters were employed as the
following: any number of repetitions, maximum number of motifs = 20, and the optimum width
of each motif was constrained to between 6 to 50 residues. The online program 2ZIP
(http://2zip.molgen.mpg.de/) was used to verify the existence of the conserved Leu zipper motif
(Bornberg-Bauer 1998), whereas some other important conserved motifs, HARF, LXXLL (X,

any amino acid) and LXLXLX, were identified manually.

Expression analyses of willow WRKY genes

The sequenced S. suchowensis RNA-HiSeq reads from five tissues including tender roots, young
leaves, vegetative buds, non-lignified stems and barks generated in our previous study were

separately mapped back onto the SSWRKY gene sequences using BWA (mismatch < 2bp, other
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parameters as default) (Li & Durbin 2009), and the number of mapped reads for each WRKY
gene was counted. Normalization of the mapped reads was done using RPKM (reads per kilo
base per million reads) method (Wagner et al. 2012). The heat map for tissue-specific expression
profiling was generated based on the log,RPKM values for each gene in all the tissue samples

using R package (Gentleman et al. 2004).

Results

Identification and characterization of 85 WRKY genes in willow (Salix

suchowensis)

In this study, we obtained 92 putative WRKY genes by using HMMER to search the Hidden
Markov Model profile of WRKY DNA-binding domain against willow protein sequences, and
validated the accuracy of the consequence by BLASTP. After submitting the 92 putative WRKY
genes to the online program SMART, seven genes without a complete WRKY domain were
removed, while the other 85 WRKY genes were selected as possible members of the WRKY
superfamily.

WRKY genes contain one or two WRKY domains, comprising a conserved WRKYGQK
heptapeptide at the N-termini and a novel zinc finger motif (C-X,7-C-X5,,3H-X-H/C) at the C-
termini (Eulgem 2000). The variations of WRKY core domain or zinc finger motif may lead to
the binding specificities of WRKY genes, but this remains to be largely demonstrated (Brand et
al. 2013; Rinerson et al. 2015; Yamasaki et al. 2005). In order to identify the variations in WRKY
core domains, a multiple sequence alignment of 85 SSWRKY core domains was conducted, and
the result was shown in Fig. 1. Among the selected 85 WRKY genes, 81 (95.3%) were identified

to have highly conserved sequence WRKYGQK, whereas the other four WRKY genes
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(SsWRKY 14, SSWRKY23, SSWRKY38 and SSWRKY78) had a single mismatched amino acid
in their core WRKY domains (Fig. 1). In SSWRKY 14 and SsSWRKY38, the WRKY domain has
the sequence WRKYGKK, while SSWRKY23 contains a WKKYGQK sequence, and
SsWRKY78 contains WRKYGRK sequence. Eulgem et al. previously described that the zinc
finger motif (C-Xy5-X23-H-X-H or C-X7-C-X,;-H-X-C) is another vital feature of the WRKY
family (Eulgem 2000). As illustrated in Fig. 1, four WRKY domains (SSWRKY76C,
SsWRKY64, SsSWRKY 12 and SSWRKY28) do not contain any distinct zinc finger motif, but
they were still reserved in the succeeding analyses, as performed in barley and poplar (He et al.
2012; Mangelsen et al. 2008). Additionally, some zinc-finger-like motifs, including C-X,-C-X5;-
H-X,-H in SsWRKY23 and C-X;5-C-X,o-H-X;-H in SsSWRKY73 and SsSWRKY 17, were
identified in willow WRKY genes. Both the two zinc-finger-like motifs were also found in poplar
(PtWRKY309, 57, 42 and 53).

Detailed characteristics of SSWRKY genes are listed in Table 1, including the WRKY gene
specific group numbers, chromosomal distribution, Arabidopsis and poplar orthologs. The
molecular weight (MW), isoelectric point (PI) and the length of each WRKY protein sequence
are also shown in Table 1. According to the particularization (Table 1), the average length of
these protein sequences is 407 residues, and the lengths ranged from 109 residues (SSWRKY23)
to 1,593 residues (SSWRKY78). Additionally, the isoelectric point (PI) ranged from 5.03
(SsWRKY38, SSWRKY60) to 10.27 (SsSWRKY28), and the molecular weight (MW) ranged from

12.9 (SsWRKY23) to 179.0 kDa (SsSWRKY78).

Locations and gene clusters of willow WRKY genes

84 of the 85 putative SSWRKY genes could be mapped onto 19 willow chromosomes and then
renamed from SSWRKY1 to SSWRKY 84 based on their specific distributions on chromosomes.

Only one SSWRKY gene (willow_GLEAN_10002834), renamed as SSWRKY 85, could not be
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conclusively mapped onto any chromosome. As shown in Fig. 2, Chromosome (Chr) 2 possessed
the largest number of SSWRKY genes (11 genes), followed by Chrl14 (10 genes). Eight SSWRKY
genes were found on Chr6, six on Chrl and Chrl16, and five on Chr5. Additionally, four
chromosomes (Chr4, Chr11, Chr17, Chr18) had four SSWRKY genes, as well as three SSWRKY
genes were found on Chr8, Chr13 and Chr19. Chr10 and Chr15 had two SSWRKY genes, and
only one SSWRKY gene was identified on Chr7, Chr9 and Chr12. The distribution of each
SsWRKY genes was extremely irregular, indicating the reduction of the tandem duplication
events in willow WRKY genes.

As described by Holub et al. (He et al. 2012; Holub 2001), a single chromosome region
containing two or more genes within 200 kb was defined as gene clusters, which are very
important for predicting co-expression genes or potential function of clustered genes in
angiosperms (Overbeek et al. 1999). According to this description, a total of 23 SSWRKY genes
were clustered into 11 clusters in willow (Fig. 2). The chromosomal distribution of gene cluster
was irregular, and only seven chromosomes were identified to have gene clusters. Three clusters,
including seven SsSWRKY genes, were found on Chr2, and two clusters were found on both Chr6
and Chr14. Only one cluster was distributed on each of Chr3, Chr8, Chr10 and Chr18, whereas
none was identified on other eleven chromosomes. Further analysis of SSWRKY chromosomal
distribution showed that a high WRKY gene density region in only 2.23 Mb regions on Chr2,

which had also been observed in rice and poplar (He et al. 2012; Wu 2005).

Phylogenetic analysis and classification of WRKY genes in willow

In order to get a better separation of different groups and subgroups in SSWRKY genes, a total of
185 WRKY domains, including 82 AtWRKY domains and 103 SSWRKY domains, were used to
construct the NJ phylogenetic tree. On the basis of the phylogenetic tree and structural features of

WRKY domains, all 85 SSWRKY genes were clustered into three main groups (Fig. 3). Nineteen
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members containing two WRKY domains and C,H,-type zinc finger motifs were categorized into
group I, except SSWRKY78, which contains only one WRKY domain and two zinc finger motifs.
Domain acquisition and loss events appear to have shaped the WRKY family (Ross et al. 2007;
Rossberg et al. 2001). Thus, SSWRKY78 may have evolved from a two-domain WRKY gene but
lost one WRKY domain during evolution. Additionally, as shown in Fig. 3, SSWRKY78 shows
high similarities to SSWRKY40N, implying a common origin of their domains. The similar
phenomenon was also found in PtWRKY90 of poplar (He et al. 2012).

The largest number of SSWRKY genes, comprising a single WRKY domain and C,H, zinc
finger motif, were categorized into group II. SSWRKY genes of group II could be further divided
into five subgroups: Ila, IIb, Ilc, IId and Ile. As shown in Fig. 3, subgroup Ila (4 members) and
IIb (8 members) were clustered into one clade, as well as subgroup IId (13 members) and Ile (11
members). Strikingly, SSWRKY genes in subgroup Ilc (21 members) and group IC are classified
into one clade, suggesting that group II genes are not monophyletic and the group Illc WRKY
genes may evolve from the group I genes by the loss of the WRKY domain in N-terminal. As
shown in Fig. 3 and Fig. S1, SSWRKY23, SsSWRKY34 and their orthologous genes
(AtWRKY49, PtWRKY39, PtWRKYS57, PtWRKY34 and PtWRKY32) seem to form a new
subgroup closer to the group III. However, SSWRKY23 and SsWRKY 34 exhibit the zinc finger
motif C-X,-C-X;,-H-X-H and C-X4-C-X,3-H-X-H as observed in the subgroup Ilc and group IC.
Thereby, they were classified into subgroup Ilc in this study.

Different from the C,H, zinc finger pattern in group I and II, group IIT WRKY genes (7
members), broadly considered as playing vital roles in plant evolution process and adaptability,
contained one WRKY domain and a C-X;-C-X»5-H-X-C zinc finger motif. However, in rice and
barley, a new CX,;CX,HX,C (n>24) zinc finger motif was identified in group III (Mangelsen et
al. 2008; Wu 2005), which was never found in poplar, grape, Arabidopsis and willow, suggesting

that this feature perhaps only belong to monocotyledonous species.
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In order to obtain a better study in woody plant species, a phylogenetic tree based on the WRKY
domains between willow and poplar was constructed (Fig. S1). The tree showed that most of the
WRKY domains from willow and poplar were clustered into sister pairs, suggesting that gene
duplication events played prominent roles in the evolution and expansion of WRKY gene family.
Furthermore, a total of twenty SSWRKY domains show extremely the same domains (similarity:
100%) to poplar, i.e., SSWRKY39 and PtWRKY9, SSWRKY39 and PP(WRKY9, SSWRKY39 and
PtWRKY9, SsWRKY39 and PtWRKYY, and so on. Further functional analyses of these genes in

willow or poplar will provide a useful reference for another one.

The ortholog of SSWRKY genes in Arabidopsis and poplar

The clustering of orthologous genes emphasizes the conservation and divergence of gene
families, and they may contain the same functions (Ling et al. 2011). In this study, a phylogeny-
based method was used to identify the putative orthologous SSWRKY genes in Arabidopsis and
poplar (Fig. 3 and Fig. S1), and BLAST-based method (Bi-direction best hit) was used to confirm
the true orthologs. The WRKY genes of group I contained two WRKY domains, and both of
them were used to construct the phylogenetic trees. To avoid the mistakes of orthologous genes
in group I, the members of group I WRKY genes were considered as orthologous genes unless
the same phylogenetic relationship can be detected between N-termini and C-termini in the
phylogenetic tree. For example, SSWRKY37 and AtWRKY44 were considered as an orthologous
gene pair because they clustered into a clade of their N-termini and C-termini (Fig. 3), while
SsWRKY80 and PtWRKY30 were excluded from orthologous gene pairs due to their different
clusters of N-termini and C-termini (Fig. S1). Totally, 75 orthologous gene pairs were found
between willow and Arabidopsis, less than 82 orthologous gene pairs between willow and poplar

(Table 1), which was congruent with the evolutionary relationship among the three plant species.
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Evolutionary analysis of WRKY III genes in willow

The WRKY III genes were considered as the evolutionary youngest groups, and played crucial
roles in the process of plant growth and resistance. In order to further probe the duplication and
diversification of WRKY III genes after the divergence of the monocots and dicots, a
phylogenetic tree was constructed using 65 WRKY III genes from Arabidopsis (13), rice (29),
poplar (10), willow (7) and grape (6). As shown in Fig. S2, willow SSWRKY III genes were
closer to the eurosids I group (poplar and grape) than eurosids II group (Arabidopsis) and
monocots (rice). Meanwhile, most Arabidopsis and rice WRKY III genes formed the relatively
independent clades, suggesting that two gene duplication events, including tandem and segmental
duplication, perhaps were the main factors in the expansion of WRKY III genes in Arabidopsis
and rice. The results also indicated that WRKY III genes might arise after the divergence of the
Arabidopsis (eurosids I) and eurosids II (poplar, willow and grape). The study by Ling et al. in
cucumber (Ling et al. 2011) showed the similar results and hence proved the validity.
Additionally, we found that seven rice WRKY III genes (OsWRKYS55, 84, 18, 52, 46, 114 and
97) contained the variant domain WRKYGEK, which was not found in other four dicots
(Arabidopsis, poplar, grape and willow), implying that this may be a feature of WRKY III genes
in monocots and these OsWRKY genes may respond to different environmental signals.
According to the comparison of the number of WRKY III genes in the five observed plants, the
number is smaller in eurosids I (poplar, grape and willow) than Arabidopsis (eurosids 1I) and rice
(monocots), which may be caused by different patterns of duplication events. Genes generated by
duplication events are not stable, and can be retained or lost due to different selection pressure
and evolution (Zhang 2003). In order to determine which selection pressure played prominent
roles in the expansion of willow WRKY III genes, we estimated the Ka/Ks ratios for all pairs (21

pairs) of willow WRKY III genes. As shown in Table S1, all the Ka/Ks ratios were less than 0.5,
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suggesting willow WRKY III genes had mainly been subjected to strong purifying selection and

they were slowing evolving at the protein level.

Exon—intron structures of SSWRKY genes

The exon-intron structures of multiple gene families play crucial roles during plant evolution. As
shown in Fig. 4, the SSWRKY gene phylogenetic tree and the corresponding exon-intron
structures are shown in A and B, respectively. Exon-intron structures of each group were shown
in Fig. 4B, a large number of WRKY genes had two to five introns (94%, 80 of 85), including 8
WRKY genes contained one intron; 39 contained two introns; 13 contained three introns; 15
contained four introns and 5 contained five introns. The number of exons in remaining WRKY
genes was quite different: SSWRKY49, SsSWRKY76 and SsSWRKY78 had six, eleven and ten
introns, respectively; SSWRKY 17 had the largest number of introns (seventeen introns), while no
intron was found in SSWRKY 12. The intron acquisition or loss occurred during the evolution of
WRKY gene family, while WRKY genes in the same group shared the similar number of introns
(Guo et al. 2014). In our study, most of WRKY genes in group I had three to six introns, expect
SsWRKY76 and SSWRKY78, which might acquire some introns during evolution. The number
of introns of WRKY genes in group II was extremely different, ranging from one to five introns,
except SSWRKY 17 with 17 introns and SSWRKY 12 with zero intron might obtain or loss some
introns during evolution. Strikingly, WRKY genes in group III had the most stable number of
introns with all of seven WRKY III genes had two introns, suggesting that WRKY III genes may
be the most stable genes in the environmental stress. The stable number of introns in SSWRKY
IIT genes was consistent with the results of Ka/Ks analysis, which reflected that purifying
selection pressure played vital roles in willow WRKY III genes.

A great deal of studies in WRKY genes proved that nearly all of the WRKY genes contained an

intron in their WRKY core domains (Eulgem 2000; Guo et al. 2014; He et al. 2012; Huang et al.
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2012; Ling et al. 2011; Zou et al. 2004). According to the further analysis of SSWRKY genes,
two major types of splicing introns, R-type and V-type, introns were observed in numerous
SsWRKY domains. The R-type intron was spliced exactly at the R residue, about five amino
acids before the first Cys residue in the C,H, zinc finger motif. The V-type intron was localized
before the V residue, six amino acids after the second Cys residue in the C,H, zinc finger motif.
As shown in Fig. 4B, the R-type introns could be observed in more groups, including group IC,
subgroup Ilc, IId, ITe and group III, while V-type introns were only observed in subgroup Ila and
IIb. However, there was no intron found in group IN. The similar results were also observed in
Arabidopsis, poplar and rice, suggesting that the special distribution of introns in WRKY

domains was a feature of WRKY family (Eulgem 2000; He et al. 2012; Wu 2005).

Identification of gene duplication events and conserved motifs in willow

Gene duplication events were always considered as the vital sources of biological evolution
(Chothia et al. 2003; Ohno et al. 2009). TDs were defined as two or more adjacent homologous
genes located on a single chromosome, while homologous gene pairs between different
chromosomes were defined as SDs (Liu & Ekramoddoullah 2009). In our study, a total of 33
homologous gene pairs, including 66 SSWRKY genes, were identified to participate in gene
duplication events (Table S3). The composition of gene duplication events in each group in
ascending order was group I: 73.7% (14 of 19), group II: 78% (46 of 59) and group III: 85.7% (6
of 7). Among the 33 homologous gene pairs, none of them appeared to have undergone TDs, on
the contrary, all of the 66 genes (77.6% of all SSWRKY genes) participated in SDs, implying that
segmental duplication events played major roles in the expansion of willow WRKY genes.
WRKY genes shared more functional and homologies in their conserved WRKY core domains
(about 60 residues), while the rest sequences of WRKY genes shared a little (Eulgem 2000). In

order to get a more comprehensive understanding of the structural feature in WRKY domains, the
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conserved motifs of SSWRKY genes were predicted using the online program MEME (Fig. S3
and Table S2). Among the 20 putative motifs, motifs 1, 2, 3 and 5, broadly distributed across
SsWRKY genes, were characterized as the WRKY conserved domains. The motif 6 was
characterized as nuclear localization signals (NLS), which mainly distributed in subgroup II d
and Ile and group III. Some other motifs with poorly defined recently were also predicted by
MEME: the motif 4 was only found in group IC and subgroup Ilc; motifs 7 and 9 were limited to
subgroup Ila and IIb; the motif 8 was found in group I and a few genes of subgroup Ilc; motifs
10, 13, 15 and 17 were unique in subgroup Ild; the motif 12 was only observed in subgroup IIb;
the motif 16 was mainly found in group II; the motif 18 was found in subgroup Ilc; motifs 19 and
20 were only observed in subgroup I. The distinct conserved motifs of different groups could be
an important foundation for future structural and functional study in WRKY gene family.

Some other important motifs, including Leu zipper motif, HARF, LXXLL and LXLXLX, could
be also identified in WRKY genes. Using the online program 2ZIP, the conserved Leu zipper
motif, described as a common hypothetical structure to DNA binding proteins (Mclnerney et al.
1998), was identified in only two SSWRKY genes (SsSWRKY61 and SsSWRKY39). With manual
inspection, the conserved HARF (RTGHARFRR[A/G]P) motifs, whose putative functions were
not distinguished clearly, were only observed in seven WRKY genes of subgroup IId, including
SsWRKYS82, 33, 45, 81, 9, 30 and 56. In the meantime, the conserved LXXLL and LXLXLX (L:
Leucine; X: any amino acid) motifs, which respectively defined as the co-activator and active
repressor motifs, were also found in SSWRKY genes. A total of seven SSWRKY genes
(SsWRKY19, 45, 72, 61, 76, 30 and 59) contained the helical motif LXXLL, whereas eight genes
(SsWRKY66, 26, 35, 81, 83, 75, 73 and 3) shared the LXLXLX motif. The plenty of conserved
motifs in WRKY genes with different lengths and variant functions, suggesting that the WRKY

genes might play more vital roles in gene regulatory network.
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Distinct expression profiles of SSWRKY genes in various tissues

In order to gain more information about the roles of WRKY genes in willow, RNA-seq data from
the sequenced genotype were used to quantify the expression level of WRKY genes in five
tissues of Salix suchowensis. As illustrated in Fig. 5, the expression of all 85 SSWRKY genes
were detected in at least one of the five examined tissues, such as 84 genes in roots, 80 in stems,
84 in barks, all in buds and 73 in leaves. Meanwhile, the cluster analysis of the expression pattern
in five tissues showed that SSWRKY genes shared more similarities between stem and leaf, as
well as bark and bud, and root was more similar to the clade formed by bark and bud. The results
detected here were consistent with their biological characteristics. SSWRKY 38, not detected in
roots and leaves, was also lowly expressed in other tissues. Similarly, SSWRKY74, not detected
in stems, barks and leaves, was only expressed in roots and buds with extremely low levels.
Among the five genes not expressed in stems, SSWRKY66, 74 and 79 were also not detected in
leaves. The largest number of expressed or unexpressed SSWRKY genes (12 genes) was found in
buds or leaves, respectively, suggesting that WRKY genes might play more roles in buds than
leaves.

According to the expression annotation of 85 SSWRKY genes by RPKM method in Fig. 5 and
Table S4, the total transcript abundance of SSWRKY genes in tender root (RPKM = 1181.21),
bark (RPKM = 1363.01) and vegetative bud (RPKM = 928.58) was relatively larger than that in
other two tissues, including non-lignified stem (RPKM = 537.88) and young leaf (RPKM =
349.84). As shown in Table S4, SSWRKY81 (RPKM = 97.75), the most expressed SSWRKY
genes in roots, was also expressed in other four tissues, though the expression levels were
relatively low; SSWRKYS56 (RPKM = 32.54), the most expressed SSWRKY genes in stem, was
also highly expressed in other examined tissues. Similarly, SSWRKY67, the most expressed
SsWRKY genes in barks (RPKM = 188.16), was also detected in vegetative buds (RPKM

=82.07) and young leaves (RPKM = 26.11) with high expression levels. Similarly, SSWRKY6
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(RPKM = 26.31), the most expressed genes in leaves, was also highly detected in other tissues. A
few genes, 1.e., SSWRKY52, SSWRKY2 and SSWRKY?35, were expressed highly in barks, but
lowly in other four tissues. The results mentioned above may be an important foundation for the

specific expression analysis of each WRKY gene in willow.

Discussion

The WRKY transcription factor gene family can specifically interact with the W-box to regulate
the expressions of downstream target genes. They also play prominent roles in diverse
physiological and growing processes, especially in various abiotic and biotic stress responses in
plants. Previous studies about the features and functions of WRKY family have been conducted
in many model plants, including Arabidopsis for annual herbaceous dicots (Eulgem 2000), grape
for perennial dicots (Guo et al. 2014), poplar for woody plants and rice for monocots (He et al.
2012; Wu 2005), but there is no large-scale study of WRKY genes in willow. Here, the
comprehensive analysis of WRKY family in willow (Salix suchowensis) would facilitate a better
understanding of WRKY gene superfamily and provide interesting gene pools to be investigated
for breeding and genetic engineering purposes in woody plants.

As described in many previous studies, the presence of highly conserved WRKY domains in
WRKY proteins is the most prominent characteristic of the WRKY gene family (Ding et al.
2015; Eulgem 2000; He et al. 2012; Huang et al. 2012; Wu 2005). In our study, through
comparing the two phylogenetic trees based on the conserved WRKY domains (Fig. 3) and
proteins (Fig. 4A), we obtained the nearly same classification of all SSWRKY genes, suggesting
that the conserved WRKY domain is an indispensable unit in WRKY genes. The variation of the
WRKYGQK heptapeptide may influence the proper DNA-binging ability of WRKY genes (Duan
et al. 2007; Maeo et al. 2001). A recent binding study by Brand et al. disclosed that a reciprocal

Q/K change of the WRKYGQK heptapeptide might result in different DNA-binding specificities
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of the respective WRKY genes (Brand et al. 2013). For instance, the soybean WRKY genes,
GmWRKY6 and GmWRKY21, which contains the WRKYGKK variant, can’t bind normally to
the W-box(Zhou et al. 2008). NtWRKY 12 gene in tobacco with the WRKYGKK variant
recognizes another binding sequence "TTTTCCAC' instead of normal W-box (van Verk et al.
2008). In our study, four WRKY genes (SsSWRKY 14, SSWRKY?23, SSWRKY38 and
SsWRKY78) had a single mismatched amino acid in their conserved WRKYGQK heptapeptide
(Fig. 1). The variants detected in willow were extremely congruent with that in another
salicaceous plant, poplar, which also contains the same three variants in seven PE(WRKY genes
(He et al. 2012). Previous studies have disclosed that the binding specificities of variable
WRKYGQK heptapeptide vary tremendously (Brand et al. 2013), however, few studies were
shown about the effect of variable zinc finger motif. In this study, four WRKY domains
(SsWRKY76C, SSWRKY64, SSWRKY 12 and SSWRKY28) without complete zinc finger motif
may lack the ability of interacting with W-box, as well as PPWRKY83, 40, 95 and 10 in poplar
(He et al. 2012). Thereby, it is still indispensable to further investigate the function or the
expression patterns of the regulated gene targets in the variant sequences of the WRKY domains
(both WRKYGQK heptapeptide and complete zinc finger motif).

Different classification methods may lead to different numbers of WRKY genes in each group.
The classification method in our study was categorized as described in Arabidopsis, grape,
cucumber, castor bean and many other plant species (Eulgem 2000; Guo et al. 2014; Ling et al.
2011; Zou et al. 2016). According to this method, the willow WRKY genes were classified into
three main groups (I, II and III), with five subgroups in group II (IIa, IIb, IIc, IId and Ile).
However, the strategy described in rice and poplar was a little different (He et al. 2012; Wu
2005). They classified the subgroup Ilc categorized above into a new subgroup Ib based on the
fact that the C-termini of group I and the domains of the above subgroup Ilc shared more similar
consensus structures. At the meantime, subgroup IId and Ile categorized above were reclassified

into subgroup Ilc and IId, respectively. With the same classification method as described in
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Arabidopsis and many other plants, the numbers of different groups in poplar and rice are
illustrated in Table S5. WRKY genes of subgroup Ila, the smallest number of members, appear to
play crucial roles in regulating biotic and abiotic stress responses (Rushton et al. 2010). As shown
in Table S5, the willow WRKY genes of subgroup Ila and IIb are extremely similar to that of
other plant species, suggesting that all SSWRKY genes of these subgroups have been identified.
In addition, the numbers of WRKY III in eurosids I group, such as cucumber (6), poplar (10),
grape (6) and willow (7) are less than that of eurosids II (Arabidopsis: 14) and monocots (rice:
36), suggesting that different duplication events or selection pressures occurred in WRKY III
genes after the divergence of eurosids I and eurosids II group. A previous study in Arabidopsis
showed that nearly all WRKY III members respond to diverse biotic stresses, indicating that this
group probably evolved with the increasing biological requirements (Wang et al. 2015). The
different numbers of WRKY III genes in willow, poplar, cacumber, Arabidopsis and rice are
probably due to their different biotic stresses during evolution, and seven SSWRKY III genes
may be sufficient for the biological requirements in willow.

WRKY transcription factors play important roles in the regulation of developmental processes
and response to biotic and abiotic stress (Brand et al. 2013). The evolutionary relationship of
WRKY gene family promises to obtain significant insights into how biotic and abiotic stress
responses from single cellular aquatic algae to multicellular flowering plants (Rinerson et al.
2015). Previous studies hypothesized that group I WRKY genes were generated by domain
duplication of a proto-WRKY gene with a single WRKY domain, group Il WRKY genes evolved
through the subsequent loss of N-terminal WRKY domain, and group III genes evolved from the
replacement of conserved His residue with a Cys residue in zinc motif (Wu 2005). However,
recent study proposed two alternative hypotheses of WRKY gene evolution (Rinerson et al.
2015): the "Group I Hypothesis" and the "Ila + b Separate Hypothesis". Additionally, another
recent study by Brand et al. concluded that subgroup Ilc WRKY genes evolved directly from Ilc-

like ancestral WRKY domains, and group I genes evolved independently due to a duplication of
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the Ilc-like ancestral WRKY domains (Brand et al. 2013). Phylogenetic analysis in our study
shows that subgroup Ilc and group IC are evolutionarily close, as well as subgroups Ila and IIb,
subgroups IId and Ile, and this result is consistent with the conclusion drew by Brand et al.
(Brand et al. 2013). Additionally, the V-type introns of SSWRKY genes are only found in
subgroup Ila and IIb, while R-type introns are found in other groups except group IN. The results
are congruent with the "Ila + b Separate Hypothesis". Our results shown here provide important
reference for the further analyses on the accurate evolutionary relationship of WRKY gene
family.

Gene duplication events played prominent roles in a succession of genomic rearrangements and
expansions, and it is also the main motivation of plants evolution (Vision et al. 2000). The gene
family expansion occurs via three mechanisms: TDs, SDs and transposition events (Maher et al.
2006), and we only focused on the TDs and SDs in this study. In willow, a total of 66 SSWRKY
genes were identified to participate in gene duplication events, and all of these genes appeared to
have undergone SDs. Similarly, in poplar, only one homologous gene pair participated in TDs,
while 29 of 42 (69%) homologous gene pairs were determined to participate in SDs. The similar
WRKY gene expansion patterns in willow and poplar showed that SDs were the main factors in
the expansion of WRKY genes in woody plants. However, in cucumber, no gene duplication
events have occurred in CsWRKY gene evolution, probably because there were no recent whole-
genome duplication and tandem duplication in cucumber genome (Huang et al. 2009). In rice and
Arabidopsis, many WRKY genes were generated by TDs, which was incongruent with the
duplication events in willow, poplar and cucumber. The different WRKY gene expansion
patterns of the above plant species could be due to their different life habits and selection
pressures in a large scale, and it is still indispensable to be further investigated.

The WRKY gene family plays crucial roles in response to biotic and abiotic stresses, as well as
diverse physiological and developmental processes in plant species. Because of the lack of

researches on the function of willow WRKY genes, our study provided putative functions of
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SsWRKY genes by comparing the orthologous genes between willow and Arabidopsis. The
details of the functions or regulations of AtWRKY genes can be obtained from TAIR
(http://www.arabidopsis.org/). For example, At(WRKY?2, the ortholog to SSWRKY6, which
highly expressed in the five examined tissues, plays important roles in seed germination and post
germination growth (Jiang & Yu 2009). AtWRKY?33, the ortholog to SSWRKY, 35, 55 and 84,
influences the tolerance to NaCl, inc sensitivity to oxidative stress and abscisic acid (Jiang &
Deyholos 2009). A large number of AtWRKY genes, i.e. AtWRKY3, 4, 18, 53, 41, work in the
resistance to Pseudomonas syringae (Chen & Chen 2002; Higashi et al. 2008; Lai et al. 2008;
Murray et al. 2007), so do their orthologs in willow (SsSWRKY42, 47, 39, 79, 20 and 70). Based
on the comparison of willow WRKY genes with their Arabidopsis orthologs, we could speculate
that the functional divergence of SSWRKY genes has played prominent roles in the responses to

various stresses.

Conclusions

Based on the recent released willow genome sequence and RNA-seq data, in this study, we
identified 85 SSWRKY proteins using bioinformatics approach. According to the phylogenetic
relationships and structural features of WRKY domains, all 85 SSWRKY genes were assigned to
the group I, group II (subgroup a-e) and group III. Three variations of the WRKYGQK
heptapeptide and the normal zinc finger motif in willow WRKY genes might execute some new
biological functions. Evolutionary analysis of SSWRKY III genes will be helpful for
understanding the evolution of WRKY III genes in plant. With the comparison of willow WRKY
genes with their Arabidopsis orthologs, breeding willow varieties with increased tolerance to
many adverse environments could be achieved using transgenic technology. Our results will be

not only beneficial to complete the functional and annotation information of WRKY genes family
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in woody plants, but also provide interesting gene pools to be investigated for breeding and

genetic engineering purposes in woody plants.
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Figure 1

Comparison of the WRKY domain sequences from 85 SsSWRKY genes.

The WRKY gene with the suffix -N and -C indicates the N-terminal and C-terminal WRKY
domain of group | members, respectively. "-" has been inserted for the optimal alignment.
Red indicates the highly conserved WRKYGQK heptapeptide, and the zinc finger motifs are

highlighted in green. The position of a conserved intron is indicated by an arrowhead.
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Figure 2

Chromosomal location of SSWRKY genes.

Red indicates group I, blue indicates group Il and green indicates group Ill. The chromosome
numbers are given at the top of each chromosome and the left side of each chromosome is
related to the approximate physical location of each WRKY gene. Only one unmapped

SsWRKY gene is shown on ChrN.
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Figure 3

Phylogenetic tree of WRKY domains from willow and Arabidopsis.

he phylogenetic tree was constructed using the neighbor-joining method in MEGA 6.0. The
WRKY genes with the suffix 'N' and 'C' indicate the N-terminal and the C-terminal WRKY
domains of group I, respectively. The different colors indicate different groups (I, Il and Ill) or
subgroups (lla, b, ¢, d and e) of WRKY domains. Circles indicate WRKY genes from willow, and
diamonds represent genes from Arabidopsis. The purple trapezoid region indicate a new

subgroup belonging to lic.
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Figure 4

Genomic organization of SSWRKY genes.

A) The phylogenetic tree built on the basis of full-length SSWRKY genes was depicted using
the neighbor-joining method in MEGA 6.0. The short black lines indicate the existence of
duplicated gene pairs; B) The graphic exon-intron structure of SSWRKY genes is displayed
using GSDS. Green indicates exons, and gray indicates introns. The introns phases 0, 1 and 2

are indicated by numbers 0, 1 and 2, respectively.

Peer] reviewing PDF | (2016:06:11494:1:0:NEW 3 Aug 2016)



100

100
—

ls

8|

100——

100
81

100

100

100

100
100

100
100

96

ls

&1

4

100

100
100

100

100

9
100

100

100
100

3

5|

b

2

100
100

100

100

T4

4 SsWRKYE0
# SsWRKY11
+ SsWRKYT0
# SSWRKY20
& SsWRKY2T
4 SsWRKY36
+ SsWRKYS3
# SsSWRKY48
& SsWRKY24
# SsWRKYB4
# SsWRKY17
# SSWRKYE1
& SsWRKYTS
& SsWRKY66
# SSWRKYT3
& SsWRKYTS
& SsWRKY39
# SsWRKY22
& SsWRKY6S
@ SSWRKY58
# SSWRKY13
@ SSWRKYTT
& SsWRKYT1
# SSWRKY19
# SSWRKYS0
# SSWRKYS

# SSWRKY25
4 SSWRKYES

# SsWRKY15
# SsWRKYS2
@ SsWRKY44
# SsWRKY3

& SsWRKYS

# SSWRKY31
# SSWRKY43
& SsWRKY46
@ SSWRKY12
# SsWRKYS59
¥ SSWRKYGT
# SSWRKY52
# SSWRKYE9
# SsSWRKY21
# SSWRKYT4
# SSWRKY2

# SSWRKY38
# SSWRKY29
# SSWRKY41
# SSWRKY10
# SSWRKYS57
# SSWRKYB4
# SSWRKYS5
# SSWRKY35
# SsWRKY1

# SaWRKYS4
# SsWRKYE

# SsWRKY51
& SSWRKY26
* SIWRKYTE
& SsWRKY42
# SSWRKY4T
# SsWRKY37
& SsWRKY40
& SsWRKYTS
& SsWRKY80
@ SSWRKY16
# SSWRKYES
@ SsWRKY49

I

IIb

Ila

IMe

Ird

Ilc

Manuscript to be reviewed

SSWRKY17

SIWRKY4S
SSWRKYa!

SWRKYss  @l——all +2
SYWRKYT3
SSWRKYTS

SSWREYZ

SSWRKYH o 2

)

SSWRKY13 -
SWRKYl4 st —
1

SIWRKYS = L

SAWRKYS

=

SIWRKYSS

SSWRKYS1

SSWRKYTI
SSWRKYTT

STWRKYSS

i

SSWRKY1S

i
§

SSWRKYH)
SIWRKYS2
SSWREYH
SSWREY4S
SAWTKYSL
SSWRKYS
SSWRKYT

SSWRKYTY
SSWRKYSI
SSWRKYS!
SSWRKYS

I

F

I

M

B
§

B
B
e.

SSWRKYI0
SSWRKYI2
SSWRKYIS
SSWREYY

SSWRKY21
SYWRKY?H
SWRKY29
SWRKY: & = =

¥

B
B

SSWRKY3H
SSWRKYH
SSWREYE
SSWREY41
SYWRKY43
SSWRKY4H
SSWRKY4S
SSWREYS?
SSWRKYST
SSWRKY$3
SSWRKYS?
SSWRKYST
SSWRKYH
SSWRKYTH
SSWREYS

SIWRKYI
SYWRKY16
SSWRKY2S

SSWRKYIT
SIWRKY4

SSWRKY4D
SIWRKY42
SAWRKYAT
SSWRKY4S
SIWRKYSI
SIWRKYSH
SIWRKYSS
SWRKYs el -l g
SYWRKYSS

[

r

[ e T A N Y

SSWRKYTS

SIWRKYTE - 2
SYWRKYSD
SIWRKYS4

Legend:

Peer] reviewing PDF | (2016:06:11494:1:0:NEW 3 Aug 2016)

= Infon 01 2 intron phase

B
L



Peer]

Figure 5

Expression profiles of the 85 SSWRKY genes in root, stem, bark, bud and leaf.

Color scale represents RPKM normalized log2 transformed counts and red indicates high

expression, blue indicates low expression and white indicates the gene is not expressed in

this tissue.
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Table 1(on next page)

The detailed characteristics of WRKY genes identified in willow.
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1 Table 1. The detailed characteristics of WRKY genes identified in willow.

Gene SequencelD Chr Group  Ortholog Deduced polypeptide Introns
AtWRKY  PtWRKY Length(aa) PI MW(kDa)

SsWRKY1 willow_GLEAN_10011238 1 I 33 17 583 7.14 64.7 4
SsWRKY?2 willow_GLEAN_10019192 1 Oc 45 43 162 9.47 18.6 1
SsWRKY3 willow_GLEAN_10017208 1 Oc 28,71 29 584 9.42 65.6 4
SsWRKY4 willow_GLEAN_10017139 1 I 20 44 560 6.99 60.9 5
SsWRKY'S willow_GLEAN_10007860 1 De 35 45 445 5.92 48.4 2
SsWRKY6 willow_GLEAN_10003806 1 I 2 37,101,102 733 5.69 78.8 4
SsWRKY7 willow_GLEAN_ 10022392 2 Id 21 46,63 453 9.53 49.9 4
SsWRKY8 willow GLEAN 10022273 2 Ic 71 47 328 6.89 37.0 2
SsWRKY9 willow_GLEAN_10009329 2 od 15 14,94 339 9.77 37.5 2
SsWRKY10 willow_GLEAN_ 10009231 2 Ic 12 48 204 7.64 23.6 3
SsWRKY11 willow GLEAN_ 10016913 2 m 30 6,51 351 6.27 39.2 2
SsWRKY12 willow_GLEAN_10016886 2 Oc - 19,50 129 6.75 14.6 0
SsWRKY13 willow_GLEAN_10016883 2 Oe 22 23,49,78 352 5.81 383 2
SsWRKY14 willow_GLEAN_10019911 2 De - 3 247 5.58 28.1 2
SsWRKY15 willow_GLEAN_10019925 2 Oc 23 13,33 319 6.46 35.6 2
SsWRKY16 willow_GLEAN_10019982 2 I 1 54 472 6.88 522 3
SsWRKY17 willow_GLEAN_10020022 2 ob 47 53 1081 5.25 116.8 17
SsWRKY18 willow GLEAN_ 10025583 3 Iod - 55 142 9.60 16.5 2
SsWRKY19 willow_GLEAN_10025423 3 Ie 29 41 335 5.54 37.9 2
SsWRKY20 willow_GLEAN_10025378 3 m 41/53 21 342 5.25 38.4 2
SsWRKY21 willow_GLEAN_10008020 3 Ic 45 18 157 9.41 17.8 1
SsWRKY22 willow_GLEAN_10006448 3 Ma 40 88 320 8.38 35.4 3
SsWRKY23 willow_GLEAN_ 10013342 3 Ic - 39 109 8.03 12.9 1
SsWRKY24 willow_GLEAN_10009960 4 ob 42 28,79 604 6.93 65.3 5
SsWRKY25 willow_GLEAN_10017267 4 Oe 65 8,58 267 5.43 29.7 2
SsWRKY26 willow_GLEAN_10018559 4 I 58 60 537 8.72 58.9 3
SsWRKY27 willow_GLEAN_10004854 4 m 54 85 323 5.70 36.3 2
SsWRKY28 willow_GLEAN_10008312 5 Id - - 490 10.27 540 2
SsWRKY29 willow_GLEAN_10009112 5 Oc 13 68 235 8.70 26.7 2
SsWRKY30 willow_GLEAN_10003565 5 Id 15 20 310 9.48 343 2
SsWRKY31 willow_GLEAN_10016009 5 Ic 28,71 62 322 6.67 36.2 2
SsWRKY32 willow GLEAN_ 10018195 5 Id 21 46,63 349 9.69 38.8 2
SsWRKY33 willow_GLEAN_10026833 6 od 7 91 339 9.89 36.8 3
SsWRKY34 willow_GLEAN 10026721 6 Ic 49 34 287 5.25 32.1 2
SsWRKY35 willow_GLEAN_ 10026591 6 I 33 64 572 6.41 62.7 4
SsWRKY36 willow_GLEAN_10026566 6 m 54 85 329 6.13 36.7 2
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SsWRKY37
SsWRKY38
SsWRKY39
SsWRKY40
SsWRKY41
SsWRKY42
SsWRKY43
SsWRKY44
SsWRKY45
SsWRKY46
SsWRKY47
SsWRKY48
SsWRKY49
SsWRKY50
SsWRKY51
SsWRKY52
SsWRKY53
SsWRKY54
SsWRKY55
SsWRKY56
SsWRKY57
SsWRKY58
SsWRKY59
SsWRKY60
SsWRKY61
SsWRKY62
SsWRKY63
SsWRKY 64
SsWRKY65
SsWRKY66
SsWRKY67
SsWRKY68
SsWRKY69
SsWRKY70
SsWRKY71
SsWRKY72
SsWRKY73
SsWRKY74
SsWRKY75
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willow GLEAN_10020588
willow GLEAN_10026166
willow GLEAN_10026455
willow GLEAN 10026458
willow GLEAN_10008192
willow GLEAN_10025108
willow GLEAN 10025123
willow GLEAN 10015641
willow GLEAN_10008155
willow GLEAN 10013562
willow GLEAN 10013586
willow GLEAN_10004012
willow GLEAN_10006060
willow GLEAN_10007614
willow GLEAN_10007542
willow GLEAN_10013801
willow GLEAN_10012158
willow GLEAN_10004417
willow GLEAN_10007732
willow GLEAN_10009039
willow GLEAN 10016668
willow GLEAN 10016177
willow GLEAN 10016180
willow GLEAN 10016220
willow GLEAN_10018940
willow GLEAN 10018891
willow GLEAN_10018881
willow GLEAN_10020302
willow GLEAN_10020380
willow GLEAN_10011119
willow GLEAN_10016438
willow GLEAN 10023347
willow GLEAN 10023447
willow GLEAN 10023687
willow GLEAN 10023735
willow GLEAN 10014752
willow GLEAN_10009602
willow GLEAN_10010473
willow GLEAN 10015128

10
10
11

Ic
Ia

Ic

Oc
Oc
Iod
Oc

Ib

Ie

Ic
Iod

Iod
Oc
Oe
Oc

Ib
Ic
Ie
Ib

Ib
IOc
Ia
Oc

Ie
Iod
ob
Ic
ob

44
51
18/60
32

3/4
57
48

57
3/4
42
20
35

2
43
30
4
23

36

40
45
41/53
29

45

93
67

15

68

69

71

70
20,26
71

72
100
44
74
37

75

25

35

1
14,94
48
23,49,78
19,50
6
28,79
13,33
80

99
82
88
18
21
41
55
42
43
86

478
233
327
413
236
460
295
357
331
289
490
585
607
481
734
178
356
697
602
362
180
354
193
368
467
318
263
460
481
618
178
320
178
336
325
338
509
182
544

9.25
5.03
9.02
8.26
9.21

6.32
6.11
9.57
6.26
8.60
6.48
7.09
5.39
6.10
9.08
9.66
6.52
7.65
9.39
8.47
6.35
9.47
5.03
8.78
5.71
5.05
6.28
5.98
6.55
9.35

5.54
9.24
5.51
9.92
6.01

79.7
20.5
40.0
76.1
66.0
40.0
20.7
38.8
21.7
413
50.0

29.7
50.0
52.8
66.2
20.5

20.1
37.2
36.6
37.9
55.3
20.9
59.0
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SsWRKY76 willow_GLEAN_10015184 17 1 58 87 1044 8.94 116.1 11
SsWRKY77 willow_GLEAN_10005468 17 De 27 96 411 5.96 45.7 2
SsWRKY78 willow_GLEAN_10006860 18 I - 90 1593 8.67 179.0 10
SsWRKY79 willow_GLEAN_10006862 18 Ia 18/60 9 320 8.57 35.6 4
SsWRKY80 willow_GLEAN_10011608 18 I 32 - 528 5.74 57.8 4
SsWRKY81 willow_GLEAN_10004546 18 Iod 7 791 300 9.80 32.8 2
SsWRKY82 willow_GLEAN_10003422 19 Id 11/17 24 339 9.58 37.1 2
SsWRKY83 willow_GLEAN_10011321 19 m 55 36,76 358 5.63 38.7 2
SsWRKY84 willow_GLEAN_10005288 19 I 33 4 597 6.69 65.6 4
SsWRKY85 willow_GLEAN_10002834 N/A e 65 58 268 5.83 30.2 2

Chr, chromosome numbers.
N/A, not available.

nn

, not detected.

(O I S NEVS I \S)

Peer] reviewing PDF | (2016:06:11494:1:0:NEW 3 Aug 2016)



