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ABSTRACT
Inferring growth for aquatic species is dependent upon accurate descriptions of

age-length relationships, which may be degraded by measurement error in observed

ages. Ageing error arises from biased and/or imprecise age determinations as a

consequence of misinterpretation by readers or inability of ageing structures to

accurately reflect true age. A Bayesian errors-in-variables (EIV) approach (i.e.,

measurement-error modeling) can account for ageing uncertainty during nonlinear

growth curve estimation by allowing observed ages to be parametrically modeled as

random deviates. Information on the latent age composition then comes from the

specified prior distribution, which represents the true age structure of the sampled

fish population. In this study, weakfish growth was modeled by means of traditional

and measurement-error von Bertalanffy growth curves using otolith- or scale-

estimated ages. Age determinations were assumed to be log-normally distributed,

thereby incorporating multiplicative error with respect to ageing uncertainty. The

prior distribution for true age was assumed to be uniformly distributed between

±4 of the observed age (yr) for each individual. Measurement-error growth models

described weakfish that reached larger sizes but at slower rates, with median length-

at-age being overestimated by traditional growth curves for the observed age range.

In addition, measurement-error models produced slightly narrower credible

intervals for parameters of the von Bertalanffy growth function, which may be an

artifact of the specified prior distributions. Subjectivity is always apparent in the

ageing of fishes and it is recommended that measurement-error growth models

be used in conjunction with otolith-estimated ages to accurately capture the

age-length relationship that is subsequently used in fisheries stock assessment and

management.
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INTRODUCTION
Effects of measurement error in solving nonlinear models have been well documented

(Carroll et al., 2006), causing bias in parameter estimates (Solow, 1998; Jiao, Reid & Nudds,

2006; Biggs, Carpenter & Brock, 2009; Heery & Berkson, 2009), confounding relationships

among covariates (Walters & Ludwig, 1981; Gustafson, 2003), and exaggerating model
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selection uncertainty (Punt et al., 2008; Biggs, Carpenter & Brock, 2009). Of particular

concern is the role observation error plays in nonlinear growth curve estimation, as

age-length relationships play a key role in eliciting biological reference points from

age-structured stock assessment models. While several methods have been constructed to

account for gear selectivity and variable length-at-age in fitting nonlinear growth curves

(Sainsbury, 1980; Pilling, Kirkwood & Walker, 2002; Taylor, Walters & Martell, 2005;

He & Bence, 2007; Alós et al., 2010; Jiao et al., 2010), relatively few approaches have

been developed to incorporate ageing error when inferring growth for aquatic species

(Kimura, 2000; Cope & Punt, 2007; Schwarz & Runge, 2009).

Ageing error is largely determined through multiple age reads of the same individual,

with relative bias and imprecision being evaluated graphically through age-bias plots

and/or various age-discrimination statistics (Chang, 1982; Campana, Annand &

McMillan, 1995; Campana, 2001). If age validation data are available, then known biases

can be corrected for during the model fitting process by calibrating observed ages to reflect

true age estimates (Schwarz & Runge, 2009). Unfortunately, the majority of age-length

data sets used in fisheries stock assessment comprise a single age and length measurement

per individual with true age being unknown (Cope & Punt, 2007; Punt et al., 2008).

A single age read per individual complicates the parameter estimation procedure, as

traditional methods for correcting age misclassification require an estimate of the ageing

error variance, necessitating multiple age reads per individual and/or that observed

ages are randomly distributed around the latent variable of true age (Cook & Stefanski,

1994; Cope & Punt, 2007; Punt et al., 2008). As a consequence, most growth investigations

assume ageing error is negligible or relatively non-influential, with respect to process

noise, in describing the age-length relationship (Pondella et al., 2001; Harris et al., 2007).

Ignoring ageing error may be an unreasonable approach, as conventional methods tend to

underestimate the uncertainty in parameter values, with respect to error in both the

dependent and independent variables, leading to overconfidence in the description of

growth and subsequent management decisions derived from growth curve analyses

(Clark, 1991).

Fisheries scientists have long recognized that most independent variables necessary

for stock assessments are measured with non-negligible uncertainty, although most

attention has been spent on estimating the degree of bias in parameter estimates instead

of attenuating error through increased model complexity (Hilborn & Walters, 1992).

Recent advances in computational techniques have led to increased utilization of

measurement-error models that allow for uncertainty in both the dependent and

independent variables (Clark, 2005; Jiao, Reid & Nudds, 2006), although it is still necessary

to understand the tradeoffs between model articulation and descriptive accuracy

(Costanza & Sklar, 1985; Clark, 2005; Biggs, Carpenter & Brock, 2009). A Bayesian

approach can allow for stochasticity at multiple levels within a hierarchically structured

framework for nonlinear regression (as can a frequentist approach), with presumed

understanding of the independent variable’s distribution (i.e., true age) coming from

the specified prior (Clark, 2007). Hence, Bayesian errors-in-variables (EIV) (i.e.,

measurement-error) models allow for the fitting of nonlinear growth curves when the
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ageing error distribution is unknown or inestimable using contemporary methods

(i.e., one age read per individual).

Variability in age estimates for individual fish could be a consequence of

misinterpretation by readers of ageing structures (e.g., scales and otoliths) or inability of

ageing structures to accurately record growth sequence information (Neilson, 1992;

Campana, 2001). While most calcified structures have the potential to provide accurate

estimates of age (Campana, 2001), subjectivity is always apparent in the production

ageing process undertaken for fisheries stock assessments (Kimura & Lyons, 1991; Heifetz

et al., 1998; Morison, Robertson & Smith, 1998; Buckmeier, 2002). Two of the most

commonly used hard parts in the assignment of age to individual fish include otoliths and

scales (Hilborn & Walters, 1992), with the general understanding that otoliths provide

more accurate and precise age estimates compared to scale-estimated ages (Lowerre-

Barbieri, Chittenden & Barbieri, 1995; Maceina et al., 2007). However, various sources of

error still confound the assignment of age to individual fish for otolith-estimated ages

(Neilson, 1992; Pepin, Dower & Benoı̂t, 2001) and incorporation of measurement error

into nonlinear growth curve analysis is still prudent.

Weakfish Cynoscion regalis are a marine finfish found along the eastern coast of the

United States (US), ranging from Massachusetts to Florida (Shepherd & Grimes, 1983).

Historically, weakfish have supported important commercial and recreational fisheries

along the US Northwest Atlantic (Nye, Targett & Helser, 2008), with relatively low

landings in recent years as a result of management measures and low stock abundance

(Northeast Fisheries Science Center, 2009). While several studies have investigated the age

and growth of weakfish at various spatial and temporal scales (Seagraves, 1981; Shepherd

& Grimes, 1983; Hawkins, 1988; Villoso, 1989; Lowerre-Barbieri, Chittenden & Barbieri,

1995), the effects of ageing error on describing the age-length relationship are largely

unknown (Northeast Fisheries Science Center, 2009). The goal of this study was

to evaluate and compare traditional and measurement-error growth models for

weakfish Cynoscion regalis using otolith- or scale-estimated ages incorporating unbiased

ageing error.

MATERIALS AND METHODS
Data
Age-length data for weakfish Cynoscion regalis were obtained from Wenner & Gregory

(2000), with age for the same individual being estimated from sagittal otolith and scale

readings. The otolith-scale age comparison database comprised 2,318 weakfish caught

intermittently from five states (i.e., New York, Delaware, Maryland, Virginia, and North

Carolina) for years 1989, 1992, 1995, and 1996 (Table 1). Individuals were pooled

across states and years to fit von Bertalanffy and measurement-error von Bertalanffy

growth curves using otolith- or scale-estimated ages. An age-bias plot (Fig. 1A) indicated

ageing uncertainty for weakfish, with scale readings tending toward younger age

estimates compared to otolith-estimated ages. Also, percent agreement between ageing

structures declined with age, suggesting error in the ability of readers to consistently

discern age for older fish (i.e., multiplicative ageing uncertainty) (Fig. 1B).
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Nonlinear growth models
The von Bertalanffy growth function has a long history in fisheries science and has been

used extensively to describe fish growth (i.e., length and weight) as a function of age

(Haddon, 2001). Despite criticisms (Roff, 1980), the von Bertalanffy growth curve has been

advocated as an appropriate growth model because of its ability to capture observed

trends between length and age for a variety of fish species (Chen, Jackson & Harvey, 1992).

A recent stock assessment modeled weakfish growth using a von Bertalanffy growth

function (Northeast Fisheries Science Center, 2009) that can be written as:

Li ¼ L1 1� e �k t 0i�toð Þð Þ
� �

� e"i (1)

where Li is the length-at-age for the ith individual, L∞ is the asymptotic length, k is the

Brody growth coefficient, to is the hypothetical length at age 0, and t 0i is the observed age

Table 1 Summary of weakfish Cynoscion regalis age-length data used in constructing traditional and

measurement-error von Bertalanffy growth models (Wenner & Gregory, 2000).

1989 1992 1995 1996 Total

New York 0 0 114 0 114

Delaware 0 0 1,139 150 1,289

Maryland 0 0 0 95 95

Virginia 83 74 0 0 157

North Carolina 0 0 142 521 663

Total 83 74 1,395 766 2,318
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Figure 1 (A) age-bias plot for weakfish Cynosicon regalis using otolith-estimated and scale-estimated

ages obtained fromWenner & Gregory (2000). Numbers correspond to sample size. Dotted line indicates

1:1 agreement between ototlith- and scale-estimated age. (B) percent agreement between otolith- and

scale-estimated ages as a function of otolith-estimated age for weakfish Cynoscion regalis. Only ages 0–5

were used for comparison due to limited sample size of older individuals. Solid line indicates general

trend.
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for the ith individual. Error "i is assumed to be independent and normally distributed

with mean 0 and variance �2
L.

Extending the von Bertalanffy growth model to incorporate measurement error is

relatively straight forward, and can be written as:

Li ¼ L1 1� e �k ti�toð Þð Þ
� �

� e"i

t 0i ¼ ti � e"i
(2)

where ti is the true age for the ith individual. The logarithm of observed age loge t 0ið Þ is
assumed to be independent and normally distributed with mean loge(ti) and variance �2

A.

In order to facilitate the use of a log-normal distribution for observed ages, a small

constant (i.e., 10E-05) was added to age-0 individuals during model fitting.

Statistical estimator
A Bayesian estimator was used to construct the joint posterior probability distribution

for parameters in the von Bertalanffy and measurement-error von Bertalanffy growth

curves. The full conditional distribution for the traditional von Bertalanffy growth

model is:

p L1; k; to; �
2
Lj L

� � / Yn
i¼1

L Li j L1; k; to; �
2
L

� �� � �2
L

� �
� L1ð Þ� kð Þ� toð Þ (3)

While the full conditional distribution for the measurement-error von Bertalanffy

growth model is:

p L1; k; to; �
2
L; �

2
A ; tj L

� � /
Yn
i¼1

L Li j L1; k; to; �
2
L; ti

� �L t 0i j ti; �2A
� �� � �2

L

� �
� �2

A

� �
� L1ð Þ� kð Þ� toð Þ� tið Þ

(4)

where p(·) denotes the posterior probability, L �ð Þ denotes the likelihood function, and

� �ð Þ denotes the prior distribution.
As shown in Eq. (4), observed lengths (Li) are conditionally independent of observed

ages (t 0i ), with the majority of information about true age (ti) coming from the prior.

Observed length will also inform the estimation of true age through feedback of the

likelihoods on the joint posterior distribution, with length often assumed to be a loose

proxy for age (e.g., age-length keys). Essentially, measurement-error growth models work

to pull observations closer to the median length-at-age, suggesting the need for an

informative prior on true age when multiple age determinations are unavailable.

If an informative prior on true age is unjustifiable, then multiple age determinations will

be necessary to estimate the ageing-error variance(s) or a reference collection will be

required, in which true age for a set of individuals is known, so that validation data

can help calibrate the model during estimation.

Prior distributions were constructed around historic estimates of weakfish growth,

thereby encompassing biological relevancy (Seagraves, 1981; Shepherd & Grimes, 1983;

Hawkins, 1988; Villoso, 1989; Lowerre-Barbieri, Chittenden & Barbieri, 1995). Age
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validation data were unavailable and consequently the latent variable of true age was

assumed to follow a uniform distribution, with the lower and upper bound being defined

by ±4 of the observed age for each individual, as the largest difference between otolith-

and scale-estimated ages was three years (Fig. 1A). The weakfish age-length dataset was

characterized by a lack of older, larger-sized individuals compared to the most recent

investigation of age and growth (Lowerre-Barbieri, Chittenden & Barbieri, 1995). Changes

in weakfish age- and size-structure are most likely a culmination of several factors,

including: residual effects of excessive fishing mortality (Northeast Fisheries Science Center,

2009), gear selectivity, and seasonal variation in spatial distribution as a result of

differential migration by size (Lowerre-Barbieri, Chittenden & Barbieri, 1995). In order to

avoid inflated estimates of asymptotic length (L∞) and consequent underestimation of the

Brody growth coefficient (k), posterior values for L∞ were bounded by the specified prior

distribution. A summary of prior distributions can be found in Table 2.

All models were run with three Markov chains for 100,000 simulations per chain using

the software packages WinBUGS version 1.4.3 and R version 2.13.1. Convergence of

the Markov chains to the stationary distribution was determined by monitoring trace

plots and computing Gelman and Rubin diagnostics. The first 50,000 iterations from each

chain were discarded to allow for adequate burn-in and a thinning interval of five was

used to reduce autocorrelation among iterative samples and improve computational

efficiency. A total number of 30,000 iterations were used to summarize the posterior

distribution for each model.

Model selection criteria
Growth is a vital component in discerning the population dynamics of fishes and

modeling age-length relationships requires the ability to effectively compare and

discriminate among alternative hypotheses that represent biological realism. In this study,

model checking and discrimination were conducted using posterior predictive p-values

and deviance information criterion (DIC), respectively. While DIC has the potential to

identify correct model structure for catch-at-age analyses (Wilberg & Bence, 2008), its

Table 2 Parameter estimates from traditional von Bertalanffy (VBGF) and measurement-error (MEVB)

von Bertalanffy growth models using otolith-estimated and scale-estimated ages (i.e., M1–M4, see

Table 3), including posterior mean, standard deviation (S.D.), and gelman and rubin diagnostic (R2).

Model Parameters Prior Otolith Scale

Mean SD R2 Mean SD R2

VBGF L∞ U(300,1200) 1,177.780 21.982 1.02 1,179.558 19.132 1.00

k U(0,1) 0.068 0.002 1.03 0.076 0.002 1.00

to U(-3,1) -2.347 0.054 1.00 -2.116 0.045 1.00

�L U(0.0001,10) 0.190 0.003 1.00 0.180 0.003 1.00

MEVB L∞ U(300,1200) 1,187.649 11.840 1.00 1,187.139 12.671 1.00

k U(0,1) 0.062 0.001 1.00 0.068 0.001 1.00

to U(-3,1) -2.596 0.053 1.00 -2.359 0.047 1.00

�L U(0.0001,10) 0.153 0.004 1.00 0.142 0.003 1.00

�A U(0.0001,10) 0.275 0.010 1.00 0.281 0.010 1.00

Hatch and Jiao (2016), PeerJ, DOI 10.7717/peerj.2431 6/18

http://dx.doi.org/10.7717/peerj.2431
https://peerj.com/


ability to select preferred models in an EIV context is less clear (Spiegelhalter et al., 2002;

Celeux et al., 2006). To circumvent this issue, posterior predictive model checks and model

discrimination statistics were used in an effort to corroborate anecdotal beliefs regarding

the applicability of measurement-error models during nonlinear growth curve analyses.

Posterior predictive p-values

Posterior predictive p-values were used to conduct posterior predictive model checks in

evaluating the ability of posited models to replicate data similar to that observed.

Generally, a discrepancy statistic is used to assess model goodness-of-fit based on

observed data and the posterior predictive distribution, where the posterior predictive

distribution is defined as:

p yrepjyð Þ ¼
Z

p yrepj�ð Þpð�jyÞd� (5)

where p(yrep|�) is the data distribution for the replicated observations yrep and p(�|y) is the

posterior distribution for the unknown parameter vector � given the observed data y.

The discrepancy measure utilized in this study was the Bayesian residual sum of squares

(Gelman, Meng & Stern, 1996), which can be written as:

�2 y; �ð Þ ¼
Xn
i¼1

yi � E yij�ð Þð Þ2
Var yij�ð Þ (6)

where E(·) is the expectation, Var(·) is the variance, and yi is the ith observation of the

data y or simulated data yrep. The posterior predictive p-value, then, is simply the

proportion of times �2(yrep; �) � �2(y; �). The closer the posterior predictive p-value is

to 0.50, the more adequate the model is at replicating data similar to that observed.

Deviance information criterion

DIC was used to compare model goodness-of-fit, as measurement-error models are

hierarchically structured and the number of parameters is difficult to enumerate

(Spiegelhalter et al., 2002; Ward, 2008; Wilberg & Bence, 2008). Like other information-

theoretic approaches, DIC penalizes overparamaterization and descriptive accuracy in

order to select effective models with high explanatory power. DIC can be written as:

DIC ¼ �D þ pD

pD ¼ �D þ D ��
� �

D �ð Þ ¼ �2log L yj�ð Þð Þ
(7)

where D(·) is the deviance defined as -2 times the log-likelihood of the data y given the

unknown parameter vector �, �D is the posterior mean of the deviance, D ��
� �

is the

deviance evaluated at the posterior mean of �, and pD is the effective number of

parameters in the Bayesian model as formulated by Spiegelhalter et al. (2002). While

Celeux et al. (2006) recommend alternatives to this definition of DIC for missing-data

models, of which EIV regression is a subset; our approach is to use the most commonly

encountered form within fisheries science.
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Simulation study
To explore the advantages of accounting for ageing error during nonlinear growth curve

analyses, we ran simulations that emulated weakfish growth fitting both VBGF and

MEVB models to simulated datasets using 1 or 2 age reads. In order to avoid modeling

artifacts, we subsetted the original data to only include records collected in 1995 by the

state of Delaware, when size truncation was less pronounced. The MEVB model was

then fitted to the subsetted dataset using otolith-estimated ages, with the posterior

averages of the estimated parameters (i.e., t, L∞, k, t0, �A, and �L) then serving as the true,

known values for the simulation. A workflow for the simulation is presented in Fig. 2.

Accuracy of the two models was then investigated using the mean absolute error (MAE)

and root mean square error (RMSE) statistics,

MAE ¼ 1

n

X
i

b�i � �
��� ��� (8)

Figure 2 A flowchart for the simulation study to evaluate the performance of the traditional (VBGF) and measurement error (MEVB) von

Bertalanffy growth models using 1 or 2 age reads. An example of the simulated datasets generated during the simulation is also presented. The

example dataset shown in the upper, right-hand corner displays an age-bias plot where numbers correspond to sample size and the dotted line

indicates 1:1 agreement between the true and observed age.
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RMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

n

X
i

b�i � �
� �2

s
(9)

where n is the number of simulations (n = 500), b�i is the estimated parameter at the ith

simulation, and � is the true, known value used to generate the simulated datasets.

RESULTS
Model discrimination
According to the DIC statistic, traditional von Bertalanffy growth curves outperformed

measurement-error growth models for both otolith- and scale-estimated ages (Table 3).

Alternatively, posterior predictive p-values for measurement-error growth curves were

substantially closer to 0.50 (Table 3; Fig. 3), suggesting improved adequacy of EIV

models to reflect observed trends in the age-length relationship for weakfish. All growth

curves considered in this study, however, had posterior predictive p-values < 0.50,

possibly suggesting underparameterization in the ability of formulated models to

partition the overall variance to its respective sources (i.e., variability in age or length).

It is also apparent that inclusion of measurement error resulted in correlation between

the observed and predicted lengths (Fig. 3), as estimation of true age is being informed,

in part, by observed length. Nonetheless, predictive approaches to model comparison

may be beneficial for EIV regression, as the utility of information-theoretic-based

methods for measurement-error model selection are still circumstantial (Jiao, Reid &

Smith, 2009).

von Bertalanffy growth curve parameters
Growth models considering ageing error resulted in higher posterior mean values for

L∞ and to (Table 2; Fig. 4), while producing lower posterior mean values for k and �L
(Table 2; Fig. 4). The posterior mean value for �A was higher for scale-estimated ages,

although there was substantial overlap between marginal posterior distributions (Fig. 4).

Truncation of the joint posterior distribution for L∞ and k was expected, as specified priors

were used to constrain posterior draws to biologically reasonable values. The age-length

data for weakfish fail to accurately capture the asymptotic length, leading to unrealistic

estimates that are based on extrapolation of the age-length trend (Knight, 1968). As a

consequence, measurement-error models demonstrated growth patterns where weakfish

grew to reach larger sizes but at slower rates, with traditional von Bertalanffy growth

curves overestimating median length-at-age for the observed age range (Fig. 5).

Table 3 Model comparison of traditional (VBGF) and measurement-error (MEVB) von Bertalanffy

growth models using posterior predictive p-values and deviance information criterion (DIC).

Scenario Data Model p-value �D pD DIC

M1 Otolith VBGF 0.05 25,662 3 25,665

M3 MEVB 0.31 24,813 2,112 26,935

M2 Scale VBGF 0.04 25,419 3 25,421

M4 MEVB 0.43 24,145 2,136 26,281
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In addition, 95% prediction intervals were wider for traditional von Bertalanffy growth

models, compared to their measurement-error analogs (Fig. 5). This is not surprising

given that measurement-error models produced lower estimates for variability in

predicted lengths (i.e., �L), as some of the total variance gets partitioned out for ageing

error. Generally, measurement-error growth models produced slightly narrower credible

intervals for parameters of the von Bertalanffy growth function, with less difference

between posterior mean values for biologically relevant parameter estimates using the

different ageing structures (Table 2; Fig. 4).

Simulations
The MAE and RMSE statistics were similar, with only the RMSE being reported for

brevity (see Table 4). Results from the simulation study found that the estimated

posterior means of the parameters from the MEVB growth models were closer to the

“true” values, on average, when ageing error was present (Table 4). This suggests DIC
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may be inadequate at recommending growth models within EIV contexts, and

researchers should pursue other model discrimination statistics when trying to confirm

the utility of incorporating ageing uncertainty into growth curve analyses. The

simulations also confirmed the intuition gained by using posterior predictive p-values,

in that measurement-error models are more adequate at describing growth patterns for

weakfish by lessening the degrading effects of ageing error. It is also apparent that

multiple age reads can improve estimation of the ageing uncertainty, with simulations

also showing that estimated variability in predicted lengths was more biased when

ageing error was not considered (Table 4).

DISCUSSION
Conceptually, the EIV approach is trying to correct the misallocation of younger,

smaller-sized individuals to older age classes and older, larger-sized individuals to
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von Bertalanffy growth curve parameters.
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younger age classes, resulting in higher estimates for L∞ and lower estimates for k.

While the biological association between maximum size and the Brody growth coefficient

may be plausible for weakfish, it is most likely a consequence of the von Bertalanffy growth

equation imposing a negative correlation between L∞ and k (Hesler & Lai, 2004). Similarly,

slightly narrower credible intervals for measurement-error models were most likely an

artifact of prior constraints on posterior values, so as to coerce biologically meaningful

patterns for weakfish growth. Typically, Bayesian EIV regression can better approximate

uncertainty in parameter estimates with respect to variation in both the response

(i.e., length) and predictor (i.e., age). In this instance, credible intervals for posterior

estimates of L∞ and k were lessened, as estimators consistently proposed values for L∞ near

the upper boundary of the prior, reflecting perceived increases in asymptotic size as a

consequence of incorporating ageing error during nonlinear growth curve analysis.
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Figure 5 von Bertalanffy growth curves using otolith-estimated and scale-estimated ages. Solid lines

correspond to median values of length-at-age from traditional (VBGF) and measurement-error (MEVB)

von Bertalanffy growth models. The light-shaded regions correspond to 95% prediction intervals. Circles

denote the observed data.
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Measurement-error growth models can account for variability in age determinations,

thereby resulting in lower estimates for variability in predicted lengths. Consequently,

variance in predicted lengths appears to be overestimated if ageing error is not considered

when fitting nonlinear growth curves (Table 4; Fig. 4), as the model is using discrepancies

associated with age to amplify variability in predicted lengths (Fig. 4). If age reads are

in any way biased or correlated, measurement-error growth curves will be unable to

attenuate ageing error without validation data (i.e., reference collection), in which age for

a subset of individuals is known (Punt et al., 2008). As such, it is recommended that

otolith-estimated ages be used in conjunction with measurement-error growth models, as

scales tend to negatively bias age estimates (Lowerre-Barbieri, Chittenden & Jones, 1994)

and otolith-estimated ages tend to be more precise (Fig. 4).

The Bayesian EIV approach avoids several issues associated with previous methods

to account for measurement error in age estimates during nonlinear growth curve

estimation. First, it avoids uncertainty in the specification of an error variance ratio

necessary for EIV functional regression as proposed by Kimura (2000). Second, the

Bayesian EIV approach allows for greater flexibility in modeling ageing uncertainty and

can alleviate issues with calculating a coefficient of variation for ageing error when

age-length data only constitute a single age read per individual (Cope & Punt, 2007).

Finally, estimation of growth curve parameters, while simultaneously considering

measurement error, may improve model goodness-of-fit compared to the external,

prior adjustment of observed ages before estimating regression coefficients (Spielgelhalter

et al., 1996; Schwarz & Runge, 2009).

In this particular example, there is little practical difference between traditional and

measurement-error von Bertalanffy growth curves (Fig. 5). In assessments of fish growth,

however, we are often interested in unbiased parameter estimates that describe the

Table 4 Root mean squared error (RMSE) for parameters of the traditional (VBGF) and measurement

error (MEVB) von Bertalanffy growth models using 1 or 2 age reads in the simulation study.

Model Age reads Parameters True values RMSE

VBGF 1 L∞ 496.983 113.960

k 0.185 0.183

to -2.507 0.701

sL 0.121 0.016

MEVB 1 L∞ 496.983 96.570

k 0.185 0.103

to -2.507 0.338

sL 0.121 0.005

sA 0.261 0.108

MEVB 2 L∞ 496.983 77.461

k 0.185 0.082

to -2.507 0.315

sL 0.121 0.004

sA 0.261 0.096
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underlying age-length relationship. Measurement-error models allow for more accurate

estimation of parameter values (Table 4), and in this case produced estimates that are

more precise (Table 2; Fig. 4). In addition, measurement-error growth models allow for

estimation of the ageing error variance when multiple age determinations are unavailable,

although estimation of ageing uncertainty can be improved upon when multiple age reads

are available (Table 4). Estimates of the ageing uncertainty can then be used to correct for

age misclassification in age-structured stock assessment models. Future research should

focus on simulations that investigate the merits of using measurement-error growth

models under various life histories and ageing error scenarios, as well as performance of

model selection criteria in EIV contexts.

Adjustment for measurement error during model fitting is imperative, as growth models

are often used to assess the relative effects of environmental factors on size (Jiao et al., 2010).

By using a Bayesian EIV approach, the correlation between growth and environmental

stochasticity can be discerned by removing the degrading effects of ageing error on the

underlying age-length relationship. This becomes increasingly pertinent as more and more

management agencies take a holistic approach to the conservation of commercial and

recreational fisheries, with need to determine driving factors behind spatiotemporal trends

in fish growth and productivity. Similarly, per-recruit models and the biological reference

points derived from these methods are highly susceptible to variations in growth caused by

ageing error (Tyler, Beamish & McFarlane, 1989), which could potentially cause

overexploitation of commercially viable fish stocks and eventually lead to fishery collapse.

Bayesian EIV models, then, provide a comprehensive and flexible framework upon which

measurement error in observed ages can be quantified and adjusted for duringmodel fitting,

so that more accurate descriptions of growth can be used in fisheries stock assessements.
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