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ABSTRACT
Like all organisms on the planet, environmental microbes are subject to the forces
of molecular evolution. Metagenomic sequencing provides a means to access the
DNA sequence of uncultured microbes. By combining DNA sequencing of microbial
communities with evolutionary modeling and phylogenetic analysis we might obtain
new insights into microbiology and also provide a basis for practical tools such as
forensic pathogen detection.

In this work we present an approach to leverage phylogenetic analysis of metage-
nomic sequence data to conduct several types of analysis. First, we present a method
to conduct phylogeny-driven Bayesian hypothesis tests for the presence of an organ-
ism in a sample. Second, we present a means to compare community structure across
a collection of many samples and develop direct associations between the abundance
of certain organisms and sample metadata. Third, we apply new tools to analyze the
phylogenetic diversity of microbial communities and again demonstrate how this can
be associated to sample metadata.

These analyses are implemented in an open source software pipeline called Phy-
loSift. As a pipeline, PhyloSift incorporates several other programs including LAST,
HMMER, and pplacer to automate phylogenetic analysis of protein coding and RNA
sequences in metagenomic datasets generated by modern sequencing platforms (e.g.,
Illumina, 454).

Subjects Bioinformatics, Computational Biology, Evolutionary Studies, Genomics, Microbiology
Keywords Metagenomics, Phylogenetics, Forensics, Bayes factor, Microbial diversity, Community
structure, Microbial ecology, Edge PCA, Phylogenetic diversity, Microbial evolution

INTRODUCTION
Metagenomics – the sequencing of DNA isolated directly from the environment – has

become a routinely used tool with wide applications (Thomas, Gilbert & Meyer, 2012).

Used primarily in the study of microorganisms, metagenome sequencing has now been

carried out on a variety of environments where one finds microbes — from plants

and animals to every kind of natural and man-made environment around the globe.
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Metagenomic sequencing has provided fundamental insight into the diversity of microbes

and their function and roles in ecosystems. Initially, metagenomics was used largely as a

way of simply obtaining some genomic information about organisms for which culturing

technique was unknown (Béjà et al., 2000). However, due to decreases in the cost and

the difficulty of sequencing, metagenomics has become a tool for studying any microbial

community, regardless of cultivability.

One strength of metagenomic approaches arises from the ability to sample the genomes

of organisms in a particular environment approximately uniformly at random. This effect

is achieved with the random “shotgun” sequencing methods originally applied for de

novo genome sequencing of individual organisms (Venter et al., 2004; Tyson et al., 2004).

From random shotgun sequence data of DNA isolated from environmental samples,

one can make inferences about what organisms are present in a sample (i.e., who is

there?) as well as their functional potential (i.e., what are they doing?). In addition, by

comparing shotgun metagenomic data across samples one can study larger scale issues

such as ecology and biogeography and also attempt to correlate particular organisms or

functions with “metadata” about samples (e.g., health status, nutrient cycling rates, etc

Tringe et al., 2005). Furthermore, by sampling a community directly one can avoid certain

problems inherent in culturing such as contamination, population bottlenecking, and

taxonomic bias (Eisen, 2007). In this sense metagenomics can be considered an extension

of “culture-independent” ribosomal RNA gene surveys (Hugenholtz, Goebel & Pace, 1998).

The great potential for novel insight into microbial communities has led researchers

in fields as diverse as medicine and agriculture, law enforcement, biodefense, ecology,

evolution, and industry to apply metagenomic methods.

Athough great potential exists for metagenomics to yield insight into the hidden

world of microbes, many challenges remain before this potential can be realized.

Perhaps the biggest challenges lie in analysis of the data (Chen & Pachter, 2005). First,

metagenomic samples reflect entire communities of organisms, unlike “traditional”

genome sequencing of individual organisms or clones (i.e., from cultures of a single

isolate where genetic diversity has undergone a bottleneck). The large number of

microbial taxa in environmental samples can be a challenge for some types of analysis.

Within-species genomic polymorphism presents an even greater challenge (Kunin

et al., 2008). This challenge arises largely because shotgun metagenomic sequencing

protocols destroy some of the most valuable information present in a sample: genetic

linkage. Loss of linkage information occurs in two ways: during sample extraction and

fragmentation of DNA for sequencing. In nearly all metagenomic sample processing

methods, cells from the microbial community are lysed together to obtain a common

pool of DNA. This practice causes DNA from many different cells to mix together, so that

the cellular compartmentalization of individual genotypes is destroyed. Subsequently,

long chromosome-scale DNA fragments are typically broken by mechanical or enzymatic

means into fragments small enough for processing with current sequencing protocols.

The resulting sequenced fragments are usually less than 1 kbp in length. Although it is

possible to generate data for larger fragments via cloning (Béjà et al., 2000) or using Pacific
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Biosciences sequencing, most metagenomic data is currently being generated with short

read/short insert sequencing chemistry such as that offered by Illumina. Though short

read methods are quicker, easier, and lower cost per base and per read than large fragment

approaches, there is a tradeoff in information quality. The shearing results in further loss

of genetic linkage information, since we no longer have direct information on how short

DNA fragments are arranged into chromosome-scale molecules.

The lack of linkage information limits the ability to use metagenomic data for phylo-

genetic and population genetic analysis, since most current methods assume complete

linkage information is available. In practice, improved sample processing methods

could potentially retain the genetic linkage information of a microbial community

throughout the sequencing process. High throughput single-cell genomics (e.g., applied

to hundreds or thousands of cells) offers an alternative to the standard metagenomics

workflow that preserves information about the compartmentalization of genetic material

into cells (Woyke et al., 2010; Lasken, 2012; Rinke et al., 2013). However, single cell

approaches are still limited in their utility by a number of technical issues including

contamination, expensive and extensive equipment needs, missing data, and the creation

of chimeras (Blainey, 2013); they will always be more limited in throughput than their

standard metagenomics counterparts.

Thus the research community is left with developing and using computational methods

to sift through and make sense of short read, random shotgun metagenomic data.

Though there are many important steps in analyzing metagenomic data, we believe

that a critical component is phylogenetic analysis of the sequences. Among the uses of

phylogenetic analysis in metagenomics are: improved classification of sequences using

phylogenetic methods, functional prediction for genes, alternative metrics of alpha and

beta diversity, improved identification of operational taxonomic units (OTUs), and

sequence binning (Meyer et al., 2008; Matsen, Kodner & Armbrust, 2010; Evans & Matsen,

2012; Kembel et al., 2011; Matsen & Evans, 2013; Stark et al., 2010; Wu & Scott, 2012; Brady

& Salzberg, 2009; Brady & Salzberg, 2011; Sharpton et al., 2011; Jolley et al., 2012; Sunagawa

et al., 2013; Eisen, 2012).

In the present manuscript, we introduce PhyloSift, a new method for phylogenetic

analysis of metagenomic samples and for comparison of community structure among

multiple related samples. The new method leverages phylogenetic models of molecular

evolution to provide high resolution detection of organisms in a metagenome. Our

approach is based on well known statistical phylogenetic models, is amenable to Bayesian

hypothesis testing, and uses name-independent and OTU-free analyses to provide

higher resolution about microbial community assemblages (versus methods that rely

on taxonomy or OTUs). These methods can be applied to any single phylogeny at a time,

and expand on our previous experience building AMPHORA (Wu & Eisen, 2008). We

additionally propose a set of 37 “elite” marker gene families that have largely congruent

phylogenetic histories, thus improving the limit of detection for rare organisms in

microbial communities. We contribute an open-source implementation of the method

that has been engineered for ease-of-use on 64-bit Linux and Mac platforms. Finally, we
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compare the features of PhyloSift to some related methods to provide readers with insight

into when use of our approach is and is not appropriate.

Previous work
Estimating community composition from amplicon data
High throughput sequencing of marker gene amplicons (homologous loci such as 16S/18S

rRNA) has emerged as a powerful and straightforward means to analyze microbial

community structure. In contrast to shotgun metagenomics, amplicon approaches

currently make the detection of rare taxa easier and require less starting genomic material

than some metagenomic approaches, although transposon-catalyzed libraries have been

generated from as little as 30 pg total material (Adey et al., 2010). By design rRNA surveys

offer a “standardized” snapshot of microbial communities with reads from a single or small

number of genes, considerably simplifying the tasks of alignment and analysis. Amplicon

studies generally focus on characterizing and comparing microbial community structure

without much analysis of functional gene repertoire.

A variety of software pipelines can be used to process and analyze rRNA amplicon

data (Bik et al., 2012). Inferring microbial assemblages typically relies on clustering of

Operational Taxonomic Units (e.g., at a 97% sequence identity cutoff, using either de novo

or reference-based clustering), where taxonomy is assigned to representative sequences

using either BLAST searches or the RDP classifier (a Naive Bayesian Classifier Wang et al.,

2007). Users can subsequently carry out a suite of downstream ecological and diversity

analyses, including rarefaction (e.g., analyses for Chao1 estimation, OTU richness, or

phylogenetic diversity as implemented in QIIME Caporaso et al., 2010), and Principal

Component Analysis and Jackknife cluster analysis (e.g., using phylogeny-derived UniFrac

distances Lozupone & Knight, 2005).

Amplicon approaches are now relatively cheap and easy to carry out. However

some computational bottlenecks hinder fine-scale analysis of amplicon data. Analysis

pipelines cannot readily distinguish rare members of a microbial community from

noise in data caused by sequencing errors or chimeric reads (Bik et al., 2012). The RDP

classifier (Wang et al., 2007) provides a statistical method for assessing confidence in

taxonomic classifications. Any of these methods are limited relative to phylogenetic

methods, in that they can only distinguish named groups of organisms and are limited

to the resolution of the taxonomy.

Community composition from metagenomes
Methods have also been developed to estimate and analyze community composition from

metagenomic data sets. These methods typically focus on a small subset of widely con-

served marker genes mined from metagenomic sequence reads, usually representing 1%

of any given shotgun dataset. Marker genes include well-characterized protein coding

genes (e.g., ribosomal proteins or elongation factor genes) or conserved noncoding

regions (e.g., rRNA). A variety of computational approaches are now available to

investigate the community composition of metagenome datasets, including: AMPHORA

(bacterial protein markers and tree insertion via parsimony) (Wu & Eisen, 2008) and
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AMPHORA2 (bacterial/archael protein and DNA markers and tree insertion via likelihood

or parsimony) (Wu & Scott, 2012), MLTreeMap (reference gene families with taxonomic

and functional information and tree insertion via maximum likelihood) (Stark et al.,

2010), MetaPhyler (taxonomic classifiers for each of the reference marker genes published

in the AMPHORA set) (Liu et al., 2010), EMIRGE (an expectation-maximization method

to reconstruct rRNA genes from metagenome data and estimate taxon abundance) (Miller

et al., 2011), and PhylOTU (phylogenetic methods to mine rRNA and define OTUs from

metagenome data) (Sharpton et al., 2011).

An interesting alternative approach is employed by the software MetaPHlan (Segata

et al., 2012), which instead of using universally conserved genes, employs a database of

clade-specific genes to estimate abundance of known taxonomic groups. This approach

may work well in environments where the genomic diversity is very well characterized.

Community composition analysis from metagenomes has some potential advantages

over amplicon studies. For example, metagenome sequencing might avoid bias introduced

by preferential binding of PCR primers to DNA from some organisms in amplicon studies

and can also capture genomes from organisms which lack amplicon target genes, such

as viruses. Whole-metagenome surveys also have the potential to provide insight into

enzymatic and other functional processes in microbial communities, and so a single

dataset can provide both community composition and functional information. One

major limiting factor is that reference genome databases have narrow phylogenetic breadth

relative to marker genes (e.g., rRNA) (Wu et al., 2009).

Taxonomic classification of metagenome sequences
Current methods for taxonomic classification of metagenomic sequences generally

leverage one or two information sources: sequence composition and/or sequence identity

to reference databases. Some existing composition classifiers include TACOA (supervised

classification using k-nearest neighbors) (Diaz et al., 2009), PhyloPythia (McHardy

et al., 2006) and PhyloPythiaS (multiclass support vector machine classifier using

oligonucleotide frequencies) (Patil et al., 2011), NBC (Naive Bayesian Classifier) (Rosen,

Reichenberger & Rosenfeld, 2011), and Eu-Detect (oligonucleotide binning to separate

eukaryote sequences in feature vector space) (Mohammed et al., 2011), although this is

not an exhaustive list. Related methods such as Self-Organizing Maps (e.g., eSOMS (Dick

et al., 2009)) can be applied to tetranucleotide frequencies in combination with other

information sources such as contig coverage/abundance information to produce visual

“maps” displaying different bins, although this does not result in taxonomic assignment.

Identity-based classification methods compare metagenome sequences against reference

databases to identify putative homologs. Examples of current identity-based classification

tools include MEGAN (a Lowest Common Ancestor algorithm that summarizes BLAST

outputs to assign taxonomy) (Huson et al., 2007), SORT-Items (reciprocal BLAST

approach to detect significant orthology) (Haque et al., 2009), MTR (a variation on Lowest

Common Ancestor approaches that uses multiple taxonomic ranks) (Gori et al., 2011),

and ProViDE (analysis of alignment parameter thresholds, specifically customized for

classifying viral sequences) (Ghosh et al., 2011). Some approaches are able to combine both
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Figure 1 PhyloSift client workflow. This workflow is applied to the user’s sequence data. DNA input
sequences are processed via both the rRNA and protein parts of the workflow.

sequence identity and composition when classifying (Brady & Salzberg, 2009; Brady &

Salzberg, 2011). Again, this is not an exhaustive list.

As the focus of our current work is on phylogenetic analysis rather than taxonomic

classification, we do not discuss the relative merits of each approach to taxonomic

classification in detail, nor do we provide benchmarks of taxonomic classification

methods.

METHODS
PhyloSift implements a method for analyzing microbial community structure directly

from metagenome sequence data. Figure 1 gives an overview of the analysis workflow as

executed when analyzing a metagenomic sample. The analysis can be decomposed into

four stages: 1. searching input sequences for identity to a database of known reference

gene families; 2. adding input sequences to a multiple alignment with reference genes; 3.

placement of input sequences onto a phylogeny of reference genes; and 4. generation of

taxonomic summaries. We now describe the details of each step along with our design

decisions and rationale.

Reference gene families used by PhyloSift
The standard PhyloSift database includes a set of 37 “elite” gene families previously

identified as nearly universal and present in single-copy. These 37 gene families are a

subset of the 40 previously reported (Wu, Jospin & Eisen, 2013), with three families

excluded because they frequently have partial length homologs in some lineages. These

“elite” families represent about 1% of an average bacterial genome, as estimated from

current genome databases. In other work we have demonstrated that phylogenetic trees

reconstructed on individual genes in this set are generally congruent with each other (Lang,

Darling & Eisen, 2013; Rinke et al., 2013), suggesting that concatenating alignments of
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these families will yield a valid and more powerful estimate of their phylogenetic history.

Other groups have also demonstrated that trees inferred from concatenate alignments

demonstrate the least conflict with trees inferred separately from other microbial amino

acid sequences (Abby et al., 2012). During the database update process (described below),

these gene families are automatically extended to include putative homologs from eukarya

and some viruses with large genomes such as the Mimivirus. Most small viral genomes lack

homologs of these gene families.

In addition to the elite 37 families, the PhyloSift database also includes four additional

sets of gene families:

• 16S and 18S ribosomal RNA genes

• mitochondrial gene families

• Eukaryote-specific gene families

• Viral gene families

Combined, this yields a set of approximately 800 gene families in the standard PhyloSift

database, most of which are viral.

Detailed PhyloSift client workflow
Sequence identity search
This first step in a PhyloSift analysis aims to identify regions of the input sequences that

may be homologous to gene families in the reference database. Input sequences to this

step can be of any length ranging from short 30nt next-generation sequence reads to fully

assembled genomes or metagenomes. Recognized input formats include FastA and FastQ

(paired, unpaired, phred33, phred64, and/or interleaved pairing), and these can optionally

be supplied as bzip2 or gzip compressed data files. Sequence input can be streamed via

stdin or unix named pipes. Amino acid input sequences can also be processed.

PhyloSift uses LAST (Kiełbasa et al., 2011) for sequence similarity search against the

reference databases. We evaluated many possible search algorithms and implementations

before finally selecting LAST. Other options we evaluated were BLAST (Altschul et al.,

1997) v2.2.23, BLAST+ (Camacho et al., 2009) v2.2.28+, and RAPsearch2 (Zhao, Tang

& Ye, 2011) v2.04, and bowtie2 (Langmead et al., 2009) v2.0.0-beta5. Given the large

volume of sequence data that must be processed, a key evaluation criterion was algorithm

efficiency both in CPU time and memory requirements. A second criterion is the ability

to perform six-frame translated searches of DNA sequence against an amino acid database

with the possibility to tolerate frame-shift errors in the sequence. Among the evaluated

methods, BLAST and BLAST+ were slowest (data not shown) and frameshift detection was

non-functional in the version of BLAST+ we obtained from NCBI. We excluded these from

further consideration. RAPsearch2 was much more computationally efficient than either

BLAST or BLAST+, but the version we obtained could not process sequences > 1 kbp and

did not support frameshift detection. In our testing, LAST was able to process sequence

data as quickly as RAPsearch2 (e.g., orders of magnitude more quickly than BLAST) and

supports both frameshift detection and input sequences of arbitrary length. LAST also

Darling et al. (2014), PeerJ, DOI 10.7717/peerj.243 7/28

https://peerj.com
http://dx.doi.org/10.7717/peerj.243


supports all three of the primary search types we require: DNA vs. DNA, DNA vs. AA,

and AA vs. AA. We also evaluated bowtie2, a program typically used for mapping reads

to a reference genome, for the purpose of screening reads against a database of noncoding

RNA sequences (currently 16S and 18S). bowtie2 does not offer translated amino-acid

searches. Relative to LAST, bowtie2 is able to identify similarity to the RNA database

sequences more quickly. However, even though the speedup over LAST was substantial

(data not shown), the compute time saved is small relative to the total time consumed in

the complete PhyloSift client workflow. Therefore we decided to use only LAST since using

only a single local alignment search tool simplifies the code. One shortcoming of LAST

is that current versions do not support multithreaded parallelism. PhyloSift implements

optional process-level parallelism by spawning multiple LAST searches against the protein

database.

One feature of reference gene family sequences being searched at this stage bears

special mention. During database construction (described elsewhere) a representative

subset of all available sequences are selected from each gene family to be searched in the

search stage. These representatives are chosen to span the phylogenetic diversity of the

gene family without including closely related sequences (see Section “PhyloSift database

update workflow”). This is important because it reduces the volume of sequence to search

and because part of LAST’s fast heuristic to identify candidate regions to align involves

eliminating redundant and repetitive k-mers from the search space (Kiełbasa et al., 2011).

Thus, a database constructed with all sequences (and not just divergent representatives)

could in principle reduce sensitivity in aligning reads to those database sequences.

The search stage identifies a set of candidate amino acid sequences from the input data

that are similar to reference gene families. If DNA was provided as input the corresponding

DNA sequences are also reported.

Alignment to reference multiple alignment
Prior to the alignment stage all input sequence regions with putative homology to reference

gene families have been identified and extracted. In this stage, each candidate sequence is

added to an amino acid or RNA multiple sequence alignment of the reference gene family.

If the input sequences were DNA, a codon multiple sequence alignment congruent to the

amino acid alignment is also generated.

PhyloSift applies the hmmalign program from the HMMER 3.0 software package (Eddy,

2011) to add the candidate sequences to reference multiple sequence alignments. During

construction of the PhyloSift reference database (described in section “Custom gene

families”) a profile-HMM is generated from a multiple alignment of the gene family

reference sequences. When processing candidate sequences, PhyloSift then uses the profile-

HMM to map the input sequence to the reference multiple alignment. Application of a

profile-HMM to align highly divergent sequences suffers some documented shortcomings,

in particular that alignment accuracy decreases with divergence of source sequences used

to construct the profile-HMM (Löytynoja, Vilella & Goldman, 2012). This is one avenue for

future improvement of PhyloSift and protein evolution models in general.
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Finally, PhyloSift concatenates the alignments of the 37 elite markers to a single multiple

sequence alignment. When a single input sequence aligns to multiple genes, the aligned

sequence becomes a single row in the concatenated alignment. All other sequences are

represented in separate alignment rows.

PhyloSift treats input sequences with similarity to non-coding RNAs differently

than protein genes. Sequences longer than 600nt are aligned using Infernal’s cmalign

program with the global alignment option. Short sequences are aligned with hmmalign

to a profile-HMM of the non-coding RNA molecule. Although the profile-HMM does

not capture secondary structure, the alignment computation is significantly faster with

currently available versions of Infernal and HMMER. In our experience a banding

threshold (a parameter that determines the size of the search space and hence amount

of computational effort) of 1× 10−20 is required to obtain accurate local alignments with

Infernal for short sequences, but this requires several minutes of CPU time per aligned

sequence, which is not practical when aligning millions of amplicon sequences.

Placement on a phylogenetic reference tree
At this stage, aligned input sequences are placed onto a phylogenetic tree of the reference

sequences. PhyloSift employs pplacer (Matsen, Kodner & Armbrust, 2010) for this task.

pplacer can be run in either maximum likelihood (ML, the default) or Bayesian mode.

When run in ML mode, pplacer identifies and reports a set of most likely attachment

points for each aligned sequence to the reference phylogeny, as well as a “likelihood weight

ratio” representing the relative likelihood for the chosen attachment point over other

possible attachment points.

When run in Bayesian mode, pplacer calculates the posterior probability that the query

sequence diverged from particular branches of the reference tree via direct integration. In

contrast to ML placement which selects a single most likely attachment point, the branch

posterior probability integrates over all possible attachment points for the query sequence

on the branch. The posterior probability is used when calculating Bayes factors for lineage

tests, described below.

Taxonomic summary of read placements
At this final stage of analysis, PhyloSift summarizes the phylogenetic placements in

a human-friendly format. For each gene family, the PhyloSift database contains a

gene-tree/taxonomy reconciliation encoding a pre-computed mapping of edges in the

gene family phylogeny to edges in the NCBI taxonomy. The method used to calculate these

reconciliations is described in the database update workflow section, below.

Input to this stage of analysis is one or more “jplace” format (Matsen et al., 2012) files

containing an edge-labeled reference tree for a gene family along with a collection of one

or more sequence placements onto that tree. Information about each sequence’s placement

consists of the log-likelihood of placement at several (usually up to 7, a configurable

limit) of the highest likelihood edges on the reference tree, along with the probability

mass that the sequence belongs at that position of the tree, and finally the weight of the

sequence. When analyzing unassembled reads the sequence weights are typically always 1,
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when analyzing assembled contigs the weights may be set to a value based on estimated

depth-of-coverage for that contig.

PhyloSift parses each of the jplace files and uses the gene-tree/taxonomy reconciliation

to convert probability mass over read placements into a probability mass over the

taxonomy, summing these masses over all reads and gene families. Any particular edge in

the gene tree may be mapped to many equally optimal locations in the taxonomy. PhyloSift

distributes the placed sequence’s mass equally among all optimal locations.

Finally, PhyloSift reports the summarized taxonomy probability mass distribution in a

variety of formats.

Visual presentation of taxonomic summary
For easy visualization and exploratory data analysis, PhyloSift produces Krona plots

(Ondov, Bergman & Phillippy, 2011) showing taxonomic probability mass in the 37 elite

gene families, and a separate Krona plot showing taxonomic probability mass distribution

summed across the elite families and all other families.

Figure 5 provides an example of PhyloSift’s Krona reports.

Parallelism and stream computing
PhyloSift supports streaming input of sequences, this permits analysis to proceed as

sequences arrive over a network connection, for example.

Comparison among samples
One of the unique aspects of PhyloSift relative to other methods for comparative

metagenomics is that the phylogenetic approach we have implemented enables direct

comparison of the phylogenetic structure and relative abundance of metagenome samples

without resorting to taxonomic relative abundance estimates. Perhaps the most powerful

exploratory data analysis tool for comparing community structures among samples is

Edge Principal Component Analysis, or edge PCA (Matsen & Evans, 2013). Edge PCA

applies the standard dimensionality-reduction tool of PCA to a matrix where columns

correspond to edges in the reference phylogeny, rows correspond to each sample, and each

entry is the difference in placed sequence probability masses on either side of that edge.

When applied in this manner, the eigenvalues of each eigenvector that results from PCA

correspond to weights indicating how important each edge in the reference phylogeny is

for explaining the variation among samples in that dimension. These eigenvectors can be

naturally visualized as thickened branches along the reference phylogeny (Matsen & Evans,

2013).

PhyloSift includes the guppy program from pplacer, which in addition to edge PCA

also provides means for hierarchical clustering of multiple samples using an algorithm

specialized to the case of masses on a tree, calculation of Kantorovich-Rubenstein distances

among samples (Evans & Matsen, 2012), and other tools for calculating sample summary

statistics such as weighted phylogenetic diversities.
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PhyloSift database update workflow
An integral component of PhyloSift is an automated means to update the gene family

database with newly sequenced genomes. Genome databases continue to grow quickly,

with, on average, dozens of new genome sequences becoming available every week. The

quality of these genomes can be highly variable, ranging from low-quality drafts to nearly

finished sequence. PhyloSift’s database update mechanism incorporates some basic quality

control measures.

Acquiring new genome data
The PhyloSift database update module maintains a local repository of all known and

processed genomes. Upon initiating a new update, the database update module identifies

any new genomes available in the NCBI finished, NCBI draft, NCBI WGS, and EBI viral,

organelle, bacterial, archaeal, and eukaryal databases. Any new genomes are fetched and

stored in the local repository.

Gene family search and alignment workflow on each genome
In this stage, the search and alignment stages of the previously described PhyloSift client

workflow are run for each new genome. After this stage, the regions from each new genome

that are highly similar to gene families in the database are identified, extracted, and aligned

using the family’s profile-HMM. A complete multiple alignment for each family is then

created by adding the aligned regions from each genome to a single multiple alignment file.

Because each region has been aligned to the same profile-HMM (or covarion model for

noncoding genes) and non-aligning sites in the query genome removed, generation of a

new multiple alignment is a simple matter of concatenating the individual alignments.

PhyloSift also generates codon alignments for each protein-coding gene family at this

stage by replacing amino acids with their codons and replacing each gap with a gap triplet.

We note that profile-HMMs are not recomputed during the database update, thereby

avoiding problems with model drift.

The PhyloSift reference database is available independently of the software at the follow-

ing location: http://edhar.genomecenter.ucdavis.edu/∼koadman/phylosift markers.

Phylogenetic inference and pruning
The next step of database update involves constructing a phylogenetic tree for each gene

family. Currently PhyloSift employs FastTree 2.1 (Price, Dehal & Arkin, 2010) to generate

approximate maximum likelihood trees for this task. PhyloSift also infers separate trees for

the codon and amino acid alignments of each gene family.

Reference databases frequently contain genomes for a multitude of closely related

strains. In many gene families, the gene sequences present in genomes of closely related

strains may be identical to each another. Identical gene sequences would create uncertainty

in the placement of reads in a strain group. In order to reduce compute time and memory

requirements, closely related sequences are pruned from the PhyloSift reference database.

Pruning is done with an algorithm that maximizes phylogenetic diversity of the sequence

set without including any sequence pairs separated by fewer than X amino acid (or nu-

cleotide) substitutions per site, where X is a configurable variable with default value 0.01.
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Selection of representatives for similarity search
The PhyloSift client workflow uses LAST to search for similarity between input sequences

and reference sequences. During the database update the set of reference sequences is

updated to include representatives of any newly sequenced genomes. As above, we select a

subset of sequences that maximize phylogenetic diversity while requiring sequence pairs to

be separated by at least X amino acid substitutions per site. In this case, X defaults to 0.1.

Taxonomic reconciliation
Many of the data sources for new genomes provide a taxonomic identifier for the genome

that places it in the NCBI taxonomy. Throughout the database update process, the

associations between taxon ID and individual sequences are maintained. The tips of

reconstructed phylogenies can therefore have some or all nodes annotated with the taxon

ID associated with that tip. Given this information, PhyloSift generates a mapping of edges

(e.g., the edge above each node) in the gene tree phylogeny to edges in the taxonomic

tree. To do so, we first compute the split (bipartition) encoding of the gene tree and the

taxonomic tree. A tree’s split encoding is simply the set of splits encoded by each edge in

the tree, where the split for edge i is a binary vector Si = {si,1...si,n},si,j ∈ {0,1}. Here n

is the number of leaf nodes shared by the two trees. For convenience, we denote the split

encoding for the gene tree as S(G) and use S(T) for the taxonomic tree. Then for each edge i

in the gene tree, we compute its mapping Mi to taxonomic tree edges as:

Mi = argmin
Sj∈S(T)

H(S(G)
i ,Sj)

where H(·,·) is defined as the Hamming distance among equal-length binary vectors.

We note that there may be many possible edges in S(T) with equally minimal Hamming

distance to an edge i in S(G). In this case Mi includes all of these edges, and so Mi ⊆ S(T)

and |Mi| ≥ 1. In the client workflow when assigning placement probability mass to

names, the placement mass on edge S(G)
i is divided equally among the taxonomic groups

associated with Mi. Finally, we discard highly ambiguous mappings where |Mi| > y. Here

y is an ad-hoc threshold with a default value of 30. These gene tree edges are labeled

“Unclassifiable” due to their extreme topological discordance with the NCBI taxonomy.

Custom gene families
PhyloSift also supports the addition of custom gene families to its database. To add a

gene family to the database, a multiple sequence alignment must be provided. Optionally,

a table mapping each sequence identifier in the alignment and its NCBI taxon ID may

also be provided. Given these inputs, PhyloSift will construct a phylogenetic tree, create a

pruned set of representative sequences for similarity searching, construct a profile-HMM

for alignment, and if taxon information was provided will also compute a reconciliation

between the gene tree and taxonomy. The tree-building and reconciliation steps follow the

approach outlined above in the PhyloSift database update workflow, with the exception

that codon alignments are not generated. The resulting data is called a “package,” and is
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copied into the user’s PhyloSift database. The new package will be automatically included

in any future runs of the PhyloSift client workflow.

RESULTS
Bayesian hypothesis testing for the presence of phylogenetic
lineages
For various applications (e.g., microbial forensics) a practitioner might want to test for

the presence of a particular lineage of interest in a metagenomic sample. Phylogenetic

analysis of metagenomic reads has the potential to offer resolution beyond what would be

available from taxonomic methods for metagenomics. Whereas taxonomic methods can

provide resolution at specific levels in the taxonomic hierarchy, such as species, genus, etc.,

phylogenetic methods might be able to distinguish different subtypes of named species

or novel lineages at higher taxonomic levels. Phylogenetic methods are limited only by

the resolution of the reference genome phylogeny and not by the resolution of manually

curated taxonomies. Phylogenetic inference has the further advantage that it is based on

a statistical model of sequence change where the marginal likelihood of the data given the

model P(D|M) is well defined, making it possible to conduct model-based hypothesis tests

using phylogenies. Taxonomic analysis methods for metagenomics are frequently based

on machine learning classification methods which do not always lend themselves to such

hypothesis testing.

PhyloSift provides a means to conduct Bayesian hypothesis testing for the presence of

one or more query sequences belonging to organisms that have diverged along specific

branches of the reference phylogeny. In order to describe the Bayesian hypothesis test

we introduce the following notation: assume we are given a reference phylogenetic tree

T consisting of n > 1 branches {t1 ...tn}. Further assume we are given a collection S of

sequences s1 ...sm which are homologous to and aligned to the sequences at the leaf nodes

of the reference phylogeny. We denote the marginal likelihood that a particular sequence sj

diverged along branch ti of the reference phylogeny as P(sj | ti). Calculation of this marginal

likelihood is implemented in the pplacer software and described elsewhere (Matsen,

Kodner & Armbrust, 2010).

The null hypothesis we wish to test is that there are no sequences diverging from a set of

one or more lineages of interest Tx ⊆ T. We can express the marginal likelihood of the null

hypothesis M0 as:

P(D|M0)=
∏
sj∈S

[
1−

∑
ti∈Tx

P(sj|ti)

]
(1)

which can be interpreted as the product over all sequences of the probability that the

sequence does not derive from a lineage of interest in Tx. The marginal likelihood of the

alternative hypothesis, e.g., that one or more reads derive from a lineage in Tx, can simply

be expressed as:

P(D|M1)= 1− P(D|M0) (2)
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Using these marginal likelihoods we can construct a Bayes factor:

K =
P(D|M0)

P(D|M1)
(3)

The Bayes factor K can then be interpreted with respect to how strongly the null hypothesis

is rejected by the data.

The current version of PhyloSift supports application of Bayesian hypothesis tests to

a concatenated alignment of the 37 elite gene families or any other single marker gene,

and can be applied to phylogenies inferred either from amino acid or codon-aligned DNA

sequences.

Community structure comparison: application to human micro-
biome data
In addition to hypothesis testing for lineages, PhyloSift also provides a platform to conduct

comparative analysis of microbial community structure directly from metagenomic data.

To understand how community structure analysis with PhyloSift compares to similar

analysis based on 16S rRNA amplicon sequencing we study a recently published human

microbiome dataset where samples were sequenced both by a 16S amplicon and a shotgun

metagenome approach (Yatsunenko et al., 2012). In that study, fecal material was collected

from infants and adults at diverse geographical locations and subjected to sequencing.

Over 600 samples were sequenced using the 16S amplicon protocol. Of those 106 were also

subjected to metagenomic shotgun sequencing using 454 pyrosequencing chemistry. Here

we apply PhyloSift to the 106 metagenomic samples and conduct a community structure

comparison among the samples, and replicate the Yatsunenko et al. QIIME analyses on this

subset of data.

All QIIME analyses were carried out using release 1.5.0 of the QIIME software toolkit,

using the workflow and parameters reported by Yatsunenko et al. The Greengenes refer-

ence database (collapsed at 97% identity) was used to carry out a closed-reference OTU

picking protocol at 97% sequence identity with uclust. All reads which matched database

sequences at this level were retained for downstream processing, while non-matching

sequences were excluded from further analyses. Parameters for the pick otus.py script

were as follows: –max accepts 1 –max rejects 8 –stepwords 8 –word length 8. Taxonomic

assignments for OTUs were given by the Greengenes database. Rarefaction and PCoA

analyses were carried out using the alpha diversity.py and beta diversity through plots.py

workflows. A full list of these QIIME commands and output files have been publicly

deposited in figshare (http://dx.doi.org/10.6084/m9.figshare.650869).

PhyloSift processed each of the 106 samples, requiring an average of 2.5 h per sample

on a single 2.27 GHz Intel Xeon E5520 core (circa 2009 model). The majority of CPU

time is spent in phylogenetic placement of reads. These samples have 154,485 non-human

sequence reads on average, for an average of 52 Mbp of sequence data per sample.

We then conducted Edge Principal Components Analysis (PCA) using the reads

placed onto the phylogeny of elite gene families. Edge PCA identifies the combination

of phylogenetic lineages that explain the greatest extent of variation in the microbial
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Figure 2 Comparison of QIIME PCA and edge PCA analysis of human fecal samples. Samples from
106 individuals were analyzed by PCA to evaluate trends in community composition with respect to host
age. 16S rDNA amplicon data and metagenomic data from the same samples was processed using QIIME
and PhyloSift. QIIME analyzed the amplicon data (top left) and 16S rDNA reads extracted from the
metagenomic data (top right) using a reference-based OTU picking strategy. PhyloSift analyzed the same
metagenomic 16S rDNA reads (bottom left) and reads matching the 37 elite gene families (bottom right).
Each PCA approach gives qualitatively similar results, differences as quantified by Procrustes analysis are
given in Table 1.

communities in each sample. The resulting PCA plot is shown in Fig. 2, with each sample

colored according to the age of the human host at the time of sampling. The PCA reveals a

strong association between age and microbial community structure. This relationship was

also identified by Yastunenko et al. using 16S rRNA analysis on a set of >600 samples which

included the 106 studied here. In order to quantify the degree of similarity between the

PhyloSift Edge PCA and QIIME PCoA results, we calculated Procrustes distances among

each pair of analyses, the results are given in Table 1. In general we find that QIIME’s PCoA

analysis of metagenomic 16S reads produces results that are very different to all other

methods, whereas results produced by QIIME PCoA analysis of 16S amplicon data are

more similar to results produced by PhyloSift on metagenomic data.

The nature of edge PCA lends itself to an intuitive inspection of the phylogenetic

lineages explaining the difference in community structures. PhyloSift, by using pplacer’s

guppy program and the Archaeopteryx tree viewer, can produce a visualization of the

lineages most strongly associated with each principal component. Figure 3 shows this

visualization for the edge PCA analysis of 106 fecal metagenome communities. In
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Figure 3 Lineages contributing variation in human fecal sample community structure. 106 metage-
nomic samples were processed using PhyloSift and their community composition compared using Edge
PCA (Matsen & Evans, 2013). Lineages that decrease in abundance along the principal component axis
are shown in turquoise color, those increasing in abundance are shown in red. Edge width is proportional
to the change in abundance. Remaining lineages in the phylogeny of bacteria, archaea, eukarya, and some
viruses are shown in light gray. PC1 shown at left, PC2 at right.
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Table 1 Procrustes distances between microbial community analysis methods. Analysis of 16S am-
plicon sequences with QIIME (QIIME 16S Amp) produces results more similar to PhyloSift analyzing
either 16S or elite protein sequences from metagenomic data than to QIIME analysis of 16S sequences
from metagenomic data. PhyloSift results for 16S and elite proteins are more similar to each other than
to either QIIME method, possibly due to differences between Edge PCA and the QIIME-generated PCoA
on UniFrac distances.

QIIME 16S Meta PhyloSift 16S Meta PhyloSift Elite Meta

QIIME 16S Amp 0.5134279 0.3873677 0.3762175

QIIME 16S Meta - 0.5376786 0.6351224

PhyloSift 16S Meta - - 0.2450837

that figure, lineages are thickened proportionally to their contribution to the principal

component, and are colored according to whether they increase (red) or decrease

(turqoise) in abundance along the principal component axis. As we can see from Fig. 3 left,

the first principal component is defined by an increase in Ruminococcacae, Clostridiales,

and Bacteroides, with a decrease in Bifidobacteria. The association with age suggests that

as communities develop in aging children, the Bifidobacteria become less abundant and

members of those other lineages grow in abundance. The analysis of Yatsunenko et al. on

16S rRNA data also identified age-associated increases in Ruminococcacae and Bacteroides

and a decrease in Bifidobacteria.

Whereas the first principal component agrees strongly with the analysis reported

by Yastunenko et al., the second principal component appears to identify a previously

unreported aspect of variation in these samples. Extreme samples on the 2nd principal

component (PC2) are very young infants whose fecal microbiota appear to be dominated

not by Bifidobacteria, but instead by members of the genus Enterobacter and family

Lactobacillales (see Fig. 3, right). One possible explanation for this observation may be

an association with breast-feeding status of the infants. However, inspection of publicly

available metadata did not reveal any clear association of PC2 with breastfeeding status

or other recorded metadata. Another possible explanation is mode of birth, vaginal or

caesarian, however no information on mode of birth is available for this dataset (J Gordon,

pers. comm., 2013). We note that members of the Lactobacillales are abundant in the

human vaginal tract, suggesting that newborns high on the 2nd principal component axis

may be vaginally delivered if the two groups of newborns do indeed reflect differences

in mode of delivery. Interestingly, the dimensions of community structure variation

identified in the current set of 106 samples differ from those identified by Yatsunenko

et al. in the larger set of 600 samples for which amplicon data are available. Geography

and age were associated with most variation in their analysis of >600 samples, and

the 106 metagenome samples are primarily from infants and do not equally represent

that variation. It seems that age-related variation in the microbiome dominates the 106

metagenome samples.

We also investigated the diversity of microbes in the fecal samples. Classic measures

of species diversity such as alpha and beta diversity have been applied to microbial
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communities by collapsing sequences to operational taxonomic units (OTUs). More

recently, phylogenetic diversity (PD) (Faith, 1992) has been applied to metagenomic

data, yielding a diversity metric that does not require defining OTUs (Kembel et al.,

2011). In the present work we compute phylogenetic diversity on the placed reads,

using the attachment points of reads to the reference tree as the basis for the diversity

calculation. Figure 4 shows the phylogenetic diversity present in the fecal samples as a

function of age. We observe a general trend where phylogenetic diversity grows quickly

with age, presumably due to colonization of the infant gut, then continues to grow slowly

throughout adult life. There is a significant log-linear relationship of phylogenetic diversity

with age (Pearson’s product-moment correlation, p < 10−15). We also plot a variant of

the PD metric called balance-weighted phylogenetic diversity (McCoy, Matsen & Frederick,

2013), where diversity contributed by each lineage is weighted by its relative abundance.

Balance-weighted PD exhibits a similar growth in early life, but values for individual

samples shift relative to population median values. Notably, balance-weighted PD declines

in old age, suggesting that a smaller number of divergent lineages may come to dominate

the adult human gut. The maximum balance-weighted PD value observed among any

sample in the dataset was at the 7th month of life. When samples from before and after

the 7th month of life are tested separately, balance-weighted PD exhibits significant

age-associated growth before the 7th month (p = 0.009, Spearman’s rank correlation)

and age-associated decline after the 7th month (p < 10−5, Spearman’s rank correlation). It

is not clear what drives the reduction in balance-weighted PD after the 7th month of life,

though we note that solid food is commonly introduced to the infant’s diet around this

time.

PhyloSift provides a means to visualize the relative abundance of taxonomic groups

present in a sample. Figure 5 shows two such plots for samples from a 1 month old

breastfeeding infant and a 45 year old mother from the Yatsunenko et al. data (Yatsunenko

et al., 2012).

Computational efficiency
When processing large metagenomic datasets, computational efficiency and resources can

become a logistical challenge. For Illumina data, PhyloSift can process sequence reads

on a single CPU core at least as quickly as they can be generated by current instruments.

Figure 6 gives memory and running time requirements for some test Illumina datasets.

The majority of PhyloSift’s running time is spent in phylogenetic read placement (data

not shown). Most stages of the workflow implemented by PhyloSift are amenable to both

fine and coarse-grain parallelism, thus parallel implementations of the workflow could be

created should future data volumes demand it. Finally, the peak memory usage recorded

during each run remains roughly constant at 6–9 GB across all data set sizes. As such,

PhyloSift is memory-efficient enough to process metagenomic datasets on modern laptop

hardware, wherein configurations with 8 GB RAM are readily available.
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Figure 4 Relationship between fecal community phylogenetic diversity and host age. 106 metage-
nomic samples were processed using PhyloSift and their phylogenetic diversity analyzed using two
metrics. Unweighted phylogenetic diversity (PD) simply measures the total branch length of the reference
tree covered by placed reads from a sample. Balance-weighted phylogenetic diversity adjusts these values
by the abundance of each lineage in the sample. In unweighted PD, a log-linear relationship between
host age and fecal community phylogenetic diversity can be observed. Balance weighted PD, on the other
hand, shows rapid growth in early life followed by slow decline after the first year, consistent with a small
number of divergent lineages becoming dominant in the fecal ecosystem.

DISCUSSION
We have presented a new approach for phylogenetic analysis of genomes and uncultured

microbial communities. The software implementation of our method, called PhyloSift,

also provides a platform for comparison of community structure among many samples.

Phylogenetic analysis (placement of short sequences onto reference phylogenies) offers a

number of conceptual advantages over OTU-based or taxonomic analysis (interpreting

sequence data on the basis of hierarchal classification information) for metagenomic data.

Without applying phylogenetic analysis, taxonomic analysis can produce results that are

difficult to interpret, particularly when an unknown environmental sequence contains

many high scoring hits to reference database sequences as is common in BLAST-based

approaches. Alternatively, taxonomic information can be misleading for sequences

from species lacking close relatives in public sequence databases; these sequences may

recover no match at all, or be assigned taxonomic annotations which do not accurately

reflect phylogenetic relationships (e.g., the closest match is still a distant relative, as

reflected by low BLAST scores) (Eisen, 1998). Phylogenetic analysis avoids both of these
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Figure 5 Taxonomic visualization of two human gut samples. Taxonomic plot at left shows an infant, plot at right shows a 45 year old mother.
Data analyzed by PhyloSift, visualized by Krona.

Figure 6 PhyloSift performance and scaling behavior. PhyloSift v1.0 was used to process Illumina
sequence data from a human gut microbiome dataset subsampled to varying numbers of reads. The
program was run single-threaded on an Intel Xeon E5520 CPU core (circa 2009 model).

problems, relying instead on evolutionary models to accurately place unknown sequences

within a known topology. In many cases, phylogenies will also offer a higher resolution

representation of genetic ancestry than taxonomies. For these reasons, we focus on

types of phylogenetic analysis enabled by PhyloSift and forgo a discussion of previous

taxonomy-based metagenome analysis methods.

Phylogenetic analysis of metagenome sequence data could in principle offer several

advantages in the area of microbial forensics. First, by studying an uncultured community,

some potential pitfalls of culture bias and sample contamination can be avoided entirely.

Second, the environmental shotgun sequencing approach can avoid problems related to
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PCR primer bias, though issues related to DNA extraction bias remain a problem (Morgan,

Darling & Eisen, 2010) and might be especially relevant for sporulating organisms such as

the Bacilli and their relatives. Third, the metagenomic approach can be applied without

prior knowledge of which genes to target in the sample, and permits interrogation of both

slow-evolving genes such as 16S rRNA and fast evolving genes that might offer greater

resolution among closely related organisms. Finally, phylogenetics can be applied to

any gene of interest regardless of whether its evolutionary history is concordant with a

taxonomic hierarchy.

Here we have introduced a means to statistically test for lineages of interest directly

from an uncultured DNA sample. The test calculates a Bayes factor for the two competing

hypotheses: zero sequences derive from the target lineage, versus one or more sequences

in the sample derive from the target lineage. This method can be applied to any

protein-coding or noncoding gene family of interest. Certain gene families will yield more

sensitive tests than others, for example the 16S rRNA gene is slow-evolving and can not

usually distinguish within-species relationships where some protein-coding genes might

have greater resolution. We emphasize that the Bayes factor is not a test of homology –

homology tests exist as e-value and related score statistics in aligners such as BLAST, LAST,

and HMMER. Given sequences homologous to a gene family, the Bayes factor tests from

which lineage they diverged. The limit of detection for this method will depend on how

deeply a sample has been sequenced. This value will depend on several factors specific to

the sequencing chemistry and currently must be calculated independently by the user.

The 37 elite gene families were selected because they are universally present and

almost always in single copy, but there are some exceptions. When partial homologs exist

interpretation of the lineage test can become complicated by paralogs or ancient lateral

gene transfer events. Thus one must exercise appropriate caution when interpreting the

results of the lineage test. It is a test of whether the sample is void of DNA predicted to

have derived from a particular lineage in the phylogeny. For applications like medical

diagnostics a more elaborate Bayesian hypothesis test might be appropriate. Such a test

might check for a collection of genes that are diagnostic of the organism rather than

seeking a single gene, based on prior knowledge that most of the 37 genes are present in

most lineages. Such an approach would be less sensitive to sporadic lateral gene transfer

events in any single gene family and represents a direction for future work.

Although we do not provide examples, it is possible to test the hypothesis that two

microbial communities have equal composition using the phylogenetic Kantorovich-

Rubenstein distance (Evans & Matsen, 2012). In a bioforensics context this approach

could be applied to test whether two uncultured communities of interest “match” each

other. The implementation of the method employs an efficient approximation to calculate

p-values for the null hypothesis of equal community composition and has been described

elsewhere (Evans & Matsen, 2012). This test can be applied directly to any individual gene

family processed by PhyloSift or to the concatenated alignment of elite families at either the

amino acid or DNA sequence level. One limitation of this test is that it does not currently

provide a means to account for variability in apparent community structure introduced by
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normal sample handling procedures. Future work might develop tests that employ many

technical replicates of samples to account for such variation in the hypothesis test.

PhyloSift can also be applied to explore the variation in community structure present

in a collection metagenomic samples. In recent years it has become standard practice to

explore microbial community structure variation using amplicon sequencing of highly

conserved genes such as 16S rRNA, 18S rRNA and ITS regions followed by analysis

with a pipeline such as QIIME (Caporaso et al., 2010), VAMPS (http://vamps.mbl.edu),

or mothur (Schloss et al., 2009). Analysis of community structure using metagenome

sequence has some potential advantages, such as avoiding issues related to PCR primer

bias and distinguishing between erroneous PCR chimeras and sequences representing

the “rare biosphere” (Bik et al., 2012). However, there are also shortcomings, such as the

relatively sparse phylogenetic diversity of available reference genomes relative to amplicon

databases. The reference-based approach taken by PhyloSift will suffer this database

resolution limitation when processing metagenomic data, although not when processing

amplicon data. Efforts to increase the phylogenetic diversity of available genome sequences

are ongoing (Wu et al., 2009; Rinke et al., 2013; Shih et al., 2013)

Advances in the preparation of high throughput samples will make comparative

metagenomics more tractable. The analysis we describe of human fecal microbial

communities was possible with a median of only 50 Mbp sequence data per sample.

Current Illumina HiSeq 2000 instruments generate up to 40 Gbp per lane, suggesting that

up to 800 samples could be processed in a single Illumina lane and yield similar findings.

Based on current Illumina sequencing service provider costs this suggests large-scale

gut metagenome surveys could be conducted for as little as to $2.50 to $5 per sample in

sequencing costs. Library preparation would dominate the overall cost of such studies, as

current kits from Illumina require about $37 per sample.

Although we focus on phylogenetic analysis in this work, PhyloSift also provides a basic

mechanism to attach taxonomic labels to branches of the phylogenetic trees. Our approach

for taxonomic labeling of the phylogeny does not enforce a strict 1:1 mapping between

taxonomic labels and branches in the phylogeny. Rather, each branch in the phylogeny

is labeled with the entire set of most topologically consistent taxonomic labels. In cases

where gene trees may be discordant with the taxonomic tree, this approach allows PhyloSift

to represent some of this ambiguity in its results. A systematic study investigating the

relationship between rates and patterns of LGT and the effectiveness of our approach for

taxonomic labeling remains as future work, as does extension of the taxonomic labeling

method to gene families for which duplication and loss is prevalent.

One major limitation of the current approach is that all phylogenetic analysis is

conducted independently on each gene. However, genes do not evolve in isolation but

rather co-evolve with each other in genomes. Recent studies have demonstrated that large

parts of the phylogenetic history in different microbial genes are congruent even though

they have undergone lateral gene transfer, duplication, and loss (Szãllåsi et al., 2012;

Boussau et al., 2012). Large-scale statistical inference of phylogenetic networks (e.g., on

>1000 microbial genomes) that account for duplication, transfer, and loss histories have
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not yet been described in the literature, however if such a network could be constructed

it might provide a means to co-analyze all genes and yield a corresponding increase in

sensitivity and power for statistical tests.

AVAILABILITY
Software for Linux and Mac OS X, along with source code is freely available from

http://github.com/gjospin/PhyloSift. Extensive user documentation is available at

http://phylosift.wordpress.com. The source code has been licensed under the GNU Public

License (GPL) v3.0.
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