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ABSTRACT
Environmental heterogeneity affects not only the distribution of a species but also
its local abundance. High heterogeneity due to habitat alteration and fragmentation
can influence the realized niche of a species, lowering habitat suitability as well
as reducing local abundance. We investigate whether a relationship exists between
habitat suitability and abundance and whether both are affected by fragmentation.
Our aim was to assess the predictive power of such a relationship to derive advice for
environmental management. As a model species we used a forest specialist, the short-
toed treecreeper (Family: Certhiidae; Certhia brachydactyla Brehm, 1820), and sampled
it in central Italy. Species distribution was modelled as a function of forest structure,
productivity and fragmentation, while abundance was directly estimated in two
central Italian forest stands. Different algorithms were implemented to model species
distribution, employing 170 occurrence points provided mostly by the MITO2000
database: an artificial neural network, classification tree analysis, flexible discriminant
analysis, generalized boosting models, generalized linear models, multivariate additive
regression splines, maximum entropy and random forests. Abundance was estimated
also considering detectability, through N-mixture models. Differences between forest
stands in both abundance and habitat suitability were assessed as well as the existence
of a relationship. Simpler algorithms resulted in higher goodness of fit than complex
ones. Fragmentation was highly influential in determining potential distribution. Local
abundance and habitat suitability differed significantly between the two forest stands,
which were also significantly different in the degree of fragmentation. Regression
showed that suitability has a weak significant effect in explaining increasing value of
abundance. In particular, local abundances varied both at low and high suitability
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values. The study lends support to the concept that the degree of fragmentation can
contribute to alter not only the suitability of an area for a species, but also its abundance.
Even if the relationship between suitability and abundance can be used as an early
warning of habitat deterioration, its weak predictive power needs further research.
However, we define relationships between a species and some landscape features (i.e.,
fragmentation, extensive rejuvenation of forests and tree plantations) which could be
easily controlled by appropriate forestmanagement planning to enhance environmental
suitability, at least in an area possessing high conservation and biodiversity values.

Subjects Biodiversity, Conservation Biology, Ecology
Keywords SDM, Quantile regression, Fragmentation, Management, Heterogeneity

INTRODUCTION
In recent years, considerable research effort has been involved in studying the influence of
landscape patterns on biodiversity, triggered by the wide availability of biological data, as
well as by the development of sophisticated species distribution models (SDMs), capable
of predicting the presence of a species as a function of environmental variables (Elith &
Leathwick, 2009). The reliability of SDMs is based on the quality of occurrence data and the
use of environmental predictors linked to species occurrence (Austin, 2007). For instance,
presence data collected through nationwide standardised monitoring programmes provide
enormous advantages in using SDMs, due to the creation of large databases (Elith &
Leathwick, 2009), hosting large amounts of occurrences and covering a wide, biologically
significant area. Appropriate environmental predictors are those supposed to best describe
the set of abiotic and biotic conditions affecting species occurrence, i.e., those characterising
the species ecological niche (sensu Hutchinson; Hutchinson, 1957; Holt, 2009). Indeed,
large-scale species distribution modelling can be useful for addressing species-habitat
relationships atmultiple spatial scales in order to understand the spatial variability in habitat
selection (Farashi, Kaboli & Karami, 2013; Chefaoui et al., 2015; Morand et al., 2015). Also,
considering the spatial heterogeneity in the environment has become essential in many
studies regarding reproduction, meta-population dynamics, gene flow, dispersal and
connectivity (Bender, Tischendorf & Fahrig, 2003; Wang et al., 2008; Ryberg et al., 2013).
Recent studies have addressed this issue to propose alternative conservation strategies
(Nixon et al., 2014), to monitor landscape change (Darvishi, Fakheran & Soffianian, 2015)
and to give insight into the distribution of native and non-native species (Kumar, Stohlgren
& Chong, 2006).Moreover, spatial patterns are consideredmajor drivers ofmany ecosystem
processes (Uuemaa, Mander & Marja, 2013).

Although landscape heterogeneity may promote biodiversity due to the increase in
habitat types (i.e., spatial heterogeneity) (Wiens, 1976; Loehle et al., 2005; Schindler et al.,
2013), a highly diverse landscape arising from anthropogenic fragmentation may result in
the loss of natural habitats and specialist species, which frequently require large patches of
relatively unaltered habitat (e.g., extensive areas of well-preserved forests) (Marvier, Kareiva
& Neubert, 2004). Therefore, fragmentation can sometimes produce a simplification of
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the biological community, or biotic homogenisation across the landscape (McKinney &
Lockwood, 1999). Such a consequence derives from the loss of unique habitats, which are
not replaceable in the short term (Fahrig, 2003).

Species abundance is also influenced by spatial variability, being affected by spatial gradi-
ents in the environmental parameters that form the environmental niche (Martínez-Meyer
et al., 2013). Optimal conditions can be found where the environmental parameters are
close to the centroid of the Hutchinsonian niche (Hutchinson, 1957). Hence, environmental
variability can influence both the presence and abundance of a species. Indeed, the decrease
in abundance could warn about a species decline in population and/or range extent earlier
than a decrease in environmental suitability. In fact, abundance could also be low in
highly suitable regions, in response to local limiting factors (VanDerWal et al., 2009).

The aim of our study was to investigate the relationship between environmental
suitability and abundance of a species, in response to fragmentation. However, true envi-
ronmental suitability can be expressed only by the whole set of environmental predictors
and the local conditions that can influence movements and interaction (Grinnell, 1917)
and the persistence of those conditions itself (Jackson & Overpeck, 2000). Such an approach
may be unfeasible, as in our case. Therefore, we refer to a restricted set of factors influencing
local or regional environmental suitability, i.e., some environmental predictors, which are
supposed to be related to the probability of occurrence, and concern habitat suitability (HS)
(Franklin, 2009). Among those habitats that can be highly modified by human activities,
our research focused on forests, where unsustainable timber harvest can result in a patchy
landscape and alter the habitat, adversely affecting forest biodiversity (Donald et al., 1998;
Penman, Mahony & Lemckert, 2005; Craig, 2007; Bearer et al., 2008; Shifley et al., 2008;
Czeszczewik et al., 2014; Calladine et al., 2015; Escobar et al., 2015). Woody plants are key
elements in shaping the distribution of several bird species such as birds (MacArthur,
Recher & Cody, 1966; Cody, 1985). Landscape structures and the spatial arrangement of
habitat patches can affect both the abundance and distribution of birds, acting as structural
bio-modifiers (Uuemaa, Mander & Marja, 2013).

Therefore, we selected as a model species a forest specialist bird, the short-toed
treecreeper (Family: Certhiidae; Certhia brachydactyla Brehm, 1820), and used landscape
metrics as well as forest variables to characterise the forest landscape and weight habitat
suitability. The short-toed treecreeper is considered a forest-dwelling passerine, and hence
a forest specialist, being a secondary cavity nester (Newton, 1994). It is usually found in
oak or mixed-deciduous forests (with prevalence of oak), where it nests inside small holes
excavated by woodpeckers or left by dead branches (Cramp, 1988). It is a resident species,
with very limited movements, usually restricted to post-juvenile dispersal (Cramp, 1988).
Home range and territory size can also be very limited, sometimes less than 1 ha (Cramp,
1988). The global range extends through most of central/southern Europe, up to Turkey
and the Caucasus, overlapping with C. familiaris in central Europe (BirdLife International,
2016). Thus, we assessed whether there was a relationship between local abundance and
HS. We hypothesise that the realized niche can be altered by fragmentation, resulting in
lower HS and abundance. If such a relationship emerges, we aim to estimate its predictive
power and usefulness in forest management and in conservation policies. In addition, we
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modelled HS with several algorithms and compared results, to assess whether different
species distribution models (SDMs) follow the same pattern of response.

METHODS
One of the main advantages offered by SDMs relies on the use of occurrence data collected
with different methods (Tsoar et al., 2007). Therefore we used occurrence records from
multiple sources, that spanned from year 2000 to 2013. We relied mainly on theMITO2000
database (Monitoraggio Italiano Ornitologico, Italian Ornithological Monitoring), an
ongoing project which started in 2000 and operates at a country-wide level (Fornasari
et al., 2010). The project uses point counts with unlimited radius (Blondel, Ferry & Frochot,
1981), sampling points being randomly selected within a 1 km2 grid square in the region
of interest. Point counts were carried out during a short time frame, from mid-May to
mid-June. Occurrences of C. brachydactyla were also extracted from the databases of the
National Forest Service (Ufficio Territoriale della Biodiversità, Castel di Sangro, AQ), and
the LIFE+ManFor C.BD project, which employed a sampling design similar toMITO2000,
albeit at a smaller spatial scale (∼200–500 m). The spatial coverage of the occurrences was
limited to the administrative boundaries of the regions of Lazio, Abruzzo and Molise,
comprising 32,523 km2, of which over one-third (12,309 km2) had forest cover (Fig. 1).
The whole database was filtered from all the pseudo-replicated points that fell into the
same 1 km2 grid. The database was further cleared of all the occurrences that were located
in unrealistic locations (i.e., non-forested areas), except for those <300 m away from
the nearest forest patch, which were relocated to the nearest patch. Every occurrence was
georeferenced with GPS. Hence, for our purposes, the error in location was assumed to be
the same across the three datasets. The final database consisted of 170 occurrence points
of C. brachydactyla (Table 1), of which 119 were supplied by the MITO2000 database,
exceeding the recommended minimum sample size (Wisz et al., 2008).

Species distribution models
The SDMs were implemented using five environmental predictors, correlated with forest
structure, productivity and the degree of fragmentation, at a spatial resolution of 30 m.
First, a habitat type map, consisting of 12 classes, was created from the regional forest
maps (Marchetti, Chiavetta & Santopuoli, 2009; Garfí & Marchetti, 2011; Open Data Lazio,
2012), aggregating all of the non-forest habitat and distinguishing 11 forest types (Table
1). Three landscape metrics were then calculated from the habitat map, using FRAGSTATS
v. 4 software (McGarigal, Cushman & Ene, 2012): (1) Diversity (H’), a measure of patch
type diversity within the landscape (Shannon & Wiener, 1949); (2) edge density (ED) which
expresses the density (mha−1) of boundaries; (3) the aggregation index (AI) whichmeasures
the degree of aggregation between forest patches (He, Dezonia & Mladenoff, 2000). The
first two metrics were implemented using a moving window of 1,000 m, as they can
show little variability among different spatial scales and we were interested in landscape
features, avoiding the influence of small patches (Uuemaa, Roosaare & Mander, 2005). By
contrast, for AI a 300 m moving window was used, as we were interested, in this case, in
controlling how small patches aggregate across the landscape, according also to the home
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Figure 1 Treecreeper’s occurrences used to build the distributionmodels. The study area is located in
central-southern Italy, within Abruzzo, Lazio and Molise regions.

Table 1 Surface of the habitat types included in the analysis within the study area (Abruzzo, Lazione
andMolise regions, central Italy) and number of short-toed treecreeper’s occurrences.

Forests and tree plantations habitat types Area (km2) N◦ of treecreeper’s occurrences

Holm oak (Quercus ilex) 511.9 8
Downy oak (Q. pubescens) 1986.3 13
Turkey oak (Q. cerris) 2412.3 51
Orno-ostryetum (mixed deciduous woodland with
prevailing Fraxinus ornus and Ostrya carpinifolia)

1342.4 20

Chestnut (Castanea sativa) 628.1 10
Tilio-Acerion 0.12 0
Beech (Fagus sylvatica) 2360.4 40
Salix sp. and Populus sp. riparian woodlands
and poplar plantations

536.5 12

Tree plantations and bushes 649.7 8
Conifer (both natural and reforestation) 545 4
Shrubland and maquis 1313.1 4
Non forest 20129.3 0

range and territory size of the short-toed treecreeper (Cramp, 1988). Accordingly, we chose
to use the normalized difference vegetation index (NDVI) as a proxy of forest cover and
structure, integrating it into the modelling framework. The NDVI is highly correlated with
the leaf area index and the net primary productivity (Myneni et al., 1995; Pettorelli et al.,
2005; Lee et al., 2006) and was calculated from Landsat 8 multispectral images, with 30 m
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spatial resolution. NDVI was computed over a mosaic of five images with cloud cover
<10%, collected between July and August 2013, which had undergone the atmospheric
correction procedure. Finally, altitude was integrated through a digital elevation model
(DEM) provided by the National Institute for Environmental Protection and Research
(ISPRA), available at http://www.sinanet.isprambiente.it/it.

Spatial autocorrelations of the environmental predictors within occurrence points
were tested through a Mantel test in order to detect any spatial autocorrelations among
occurrences (Fig. S1). Analyses were carried out with the R package ‘ecospat ’ (Broennimann,
Di Cola & Guisan, 2016).

Among the eight selected algorithms, the maximum entropy (ME) used presence-
only points in combination with background samples, using only quadratic and hinge
features to avoid overfitting (Phillips, Anderson & Schapire, 2006; Elith et al., 2011). The
other algorithms, which were supplied with pseudo-absences and true absences, were: an
artificial neural network (ANN; Segurado & Araujo, 2004), classification tree analyses (CTA;
Breiman et al., 1984; De’ath, 2002), flexible discriminant analyses (FDA; Hastie, Tibshirani
& Buja, 1994), generalized boosting model (GBM; Friedman, 2001), generalized linear
model (GLM; McCullagh & Nelder, 1989), multivariate additive regression spline (MARS;
Moisen & Frescino, 2002) and random forest (RF; Breiman, 2001) (Table 2). Ten thousand
absence points were sampled in the environmental background (Elith et al., 2006),
comprising 975 points of actual absence derived from the MITO2000 database and 9025
pseudo-absences, randomly selectedwithin the area where the logistic output ofMEwas less
than 0.2 (Chefaoui & Lobo, 2008; Wisz & Guisan, 2009), representing an adequate number
of pseudo-absences (Barbet-Massin et al., 2012). SDMswere trained using 70%of randomly
selected occurrences, while the remaining 30% were used for testing; the procedure was
iterated 30 times (except forMEwith 50 iterations) (further details are provided in Table 2).
The area under the curve (AUC) of the receiving operating characteristic (Hanley & McNeil,
1982) was used to evaluate the predictive power of the SDMs. To improve the readability of
SDMoutputs, sensitivity (i.e., the proportions of correct positive prediction) and specificity
(i.e., the proportion of correct negative prediction) and the true skill statistic (TSS) were
also reported (Allouche, Tsoar & Kadmon, 2006; Lobo, Jiménez-Valverde & Real, 2008). The
importance of each environmental predictor was calculated following Thuiller et al. (2009).
Analyses were carried out with the software MaxEnt (Phillips, Anderson & Schapire, 2006)
and the biomod2 package integrated in R (Thuiller et al., 2009; R Development Core Team,
2015; Thuiller, Georges & Engler, 2015).

Abundance estimation
Abundance was estimated in two forest stands used as test sites of the LIFE+ ManFor
C.BD: Bosco Pennataro Regional Forest and Chiarano-Sparvera Regional Forest. Bosco
Pennataro (BP, 41◦44′N, 14◦11′E, 1,000 m a.s.l.) consists of a multi-layered high forest
stand dominated by turkey oak (Quercus cerris). Chiarano-Sparvera (CS, 41◦51′N, 13◦57′E,
1,700 m a.s.l.) is a pure beech (Fagus sylvatica) forest, in transition from coppice to high
forest. Following a systematic design, 27 and 23 sampling points, 125.5 m (±19.7 sd) away
from one another, were selected in BP and CS, respectively. Surveys were carried out from
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Table 2 Settings used for species distributionmodelling and resulted AUC (area under the curve of the receiving operator characteristic), sen-
sitivity, specificity and TSS (true skills statistic).

Full name Acronym Pseudo-absences Parameters AUC Sensitivity Specificity TSS

Artificial neural
network

ANN 10,000 5-fold cross
validation

0.949 92.045 89.689 0.771

Classification tree
analyses

CTA 10,000 5-fold cross
validation

0.918 85.795 93.839 0.792

Flexible
discriminant
analyses

FDA 10,000 Default with
MARS to increase
predictive power

0.894 82.955 93.849 0.768

Generalized
boosting model

GBM 10,000 5,000 maximum
trees, 5 interaction
and 10-fold cross
validation

0.961 93.75 94.529 0.842

Generalized linear
model

GLM 10,000 AIC-based
stepwise model
selection

0.959 93.182 91.159 0.835

Multivariate
additive regression
splines

MARS 10,000 Spline knots
are determined
automatically

0.913 89.205 89.129 0.782

Maximum
entropy

ME No; 10,000
background points

1,000 bootstrap
iterations

0.929 – – –

Random forest RF 10,000 750 trees, 10-fold
cross validation

1 100 99.98 1

May to June (2012 in CS; 2013 in BP) from sunrise till 11:00 a.m. At every point, each
individual detected by aural/visual cues during a five-minute count was recorded. Each
point was visited two to six times (average = 3.4; total = 177).

Local abundance was estimated with N-mixture models (Royle, 2004b). This approach
considers local abundance (i.e., abundance estimated in each sampling point) as an
independent random point process (Royle, 2004a). Two separate models were built for BP
and CS, respectively: with and without detectability variation among occasions. Model fit
and overdispersion (also called c-hat) was tested through a Pearson χ2 goodness-of-fit test,
with 1,000 bootstrap resampling (MacKenzie & Bailey, 2004). Model selection proceeded
through Akaike’s Information Criterion, which assigns scores both to the likelihood of
the model and the number of parameters included (Burnham & Anderson, 2002). Spatial
dependence of estimates was assessed with the Moran test and index calculation (Moran,
1950). Analyses were carried out using the packages unmarked (Fiske & Chandler, 2011),
AICmodavg (Mazerolle, 2015) and spdep (Bivand & Piras, 2015) implemented in R (R
Development Core Team, 2015).

Statistical analyses
Local abundances (i.e., the abundance at every sampling point) in BP and CS were tested
for differences with an F-test, followed by a t -test. Habitat suitability values, defined as the
SDMoutputs, were then extracted from a discrete area surrounding every abundance point.
Width of the area in question was proportional to local abundance and was derived by
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transforming the estimated population size (i.e., the sum of local abundances) into densities
(ind./ha): the area of interest for density transformation was given by the minimum convex
polygon among the sampling points. The difference between BP and CS environmental
suitability values was tested by an F-test and a t -test. The landscape metric values were also
tested for difference with the same methods.

The relationship between abundance and environmental suitability can form a triangular
envelope, where increasing values of environmental suitability are matched by increasing
values of the maximum abundance, not just the mean abundance (VanDerWal et al., 2009).
Therefore, quantile regression can best provide the opportunity to explore the relation
between environmental suitability and the upper quantiles of the abundance (Cade, Noon &
Flather, 2005). The triangular envelope can predictmaximumabundance, given a suitability
value, due to the increase in the slope of regressions of upper quantiles, while intercepts
remain similar (VanDerWal et al., 2009). However, two factors can mask the results: first,
random variation at every point also due to local limiting factors that are not feasible
to model; secondly, the spatial structure of the data, that can generate autocorrelation.
Therefore, quantile mixed regressions were implemented to model the abundance as
a function of HS values of every SDM, with a null random term and a grouping factor
identifying the two locations. The random effect is estimated through best linear prediction
(Geraci & Bottai, 2013). Model fit was assessed for every quantile through comparison of
AIC scores with the null model of the corresponding quantile (Burnham & Anderson,
2002). Statistical analysis was carried out with the lqmm package (Geraci, 2014) in R (R
Development Core Team, 2015).

RESULTS
Each SDM showed an AUC > 0.9, except for FDA (Table 2). Among them, RF ranked
the highest value (AUC = 1). However, the geographical projections of the SDMs proved
dissimilar (see Fig. S2). The importance of each environmental predictor had the same
pattern for every algorithm, with forest type and NDVI proving the most important (Fig.
2). The importance of the three landscape metrics (H, AI, ED) indicates that the spatial
configuration of landscape structures exerts a major influence on potential distribution.

Abundance models that performed best in both study areas were those in which
detectabilitywas invariant between sessions.Detectabilitywas 0.34 (±0.11 SE) inBoscoPen-
nataro and 0.21 (±0.27 SE) in Chiarano Sparvera. Local abundances significantly differed
between the two areas (F = 0.77, p= 0.53; t =−3.57, p< 0.001), and mean estimates were
1.54 (±0.52 SE) in BP and 0.86 (±1 SE) individuals/point in CS. Both models returned a
good fit, with no overdispersion (BP: χ2

= 64.3, p= 0.997, c-hat = 0.687; CS: χ2
= 52.5,

p= 0.391, c-hat= 1). Estimates did not show spatial autocorrelation in the two forest stands,
obtaining a Moran I of 0.11 (p= 0.14) and −0.26 (p= 0.92) for BP and CS, respectively.

Habitat suitability also proved different between BP and CS, for every SDM (Table
3), and HS was higher in BP. In parallel, the values of landscape metrics significantly
differed between the two forest stands except for edge density (Table 3). Specifically, Bosco
Pennataro landscape structure resulted in larger and less scattered patches (AI = 98),
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Figure 2 Variable importance based on different Species DistributionModels (SDMs).NDVI, Nor-
malized difference vegetation index; H’, Shannon index computed on landscape patch type diversity; Ai,
aggregation index of landscape patches; Ed, patches’ edge density.

equally distributed among types (H’ = 0.93), compared to CS (AI = 92.6; H’ = 0.76).
Hence, landscape metrics showed a more fragmented landscape in CS than in BP, as
expected.

Quantile regression showed a positive relationship between abundance and HS (Fig.
3 and Fig. S3). No differences emerged for the regression slope of each quantile, while
intercept values provedmore variable. Moreover, themajority of slopes were not significant
except for CTA, GBM and GLM (see Table S1), even if AIC comparison indicated that
most of the quantiles performed better than the corresponding null model (Table 4).

DISCUSSION
We examined the abundance and habitat suitability resulting from many algorithms for
species distribution modelling (Elith et al., 2006; Li & Wang, 2013) of a forest-dwelling
passerine in a region with different degrees of fragmentation. Although SDMs showed
high AUCs, geographical projections varied quite substantially among algorithms, even if
their explanatory variables followed the same pattern of importance scoring. Moreover,
AUC computation for ME differs from the other algorithms, which made use of (pseudo)
absences, being not comparable (Yackulic et al., 2013). Several studies that compared SDM
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Table 3 Test for differences of landscape metrics and environmental suitability between Bosco Pen-
nataro and Chiarano-Sparvera, based on Species DistributionModels (SDMs).

F P t p

Metric
H’ 0.065 0.000 3.3342 0.0027
Ed 0.3583 0.0134 −1.5038 0.1392
Ai 0.221 0.000 7.1504 0.000

Model
ANN 0.07 0.000 −36 0.000
CTA 4.901 0.000 −9.93 0.000
FDA 2433.4 0.000 −8.06 0.000
GBM 1.137 0.748 −10.91 0.000
GLM 2.996 0.008 −2.949 0.002
MARS 14648 0.000 −4.893 0.000
ME 46.35 0.000 −4.682 0.000
RF 30.42 0.000 −4.044 0.000

Notes.
H’, Shannon index of patch type diversity; Ed, edge density; Ai, aggregation index; F , Fisher’s test; t , t test; P , p value;
model abbreviation are given in Table 2.

Table 4 DeltaAIC between null model and suitability-dependant model, for the same quantile.

Quantile ANN CTA FDA GBM GLM MARS ME RF

0.5 0 0 0 0 0 0 0 0.50
0.55 0 0 0 0 0 0 0 1.20
0.6 0 0 0 0 0 0 0 1.39
0.65 0 0 0 0 2.88 0 0 1.86
0.7 0 0 0 0 0 0 0.17 0.93
0.75 0 0 0 0 0 0 0 0
0.8 0 0 0 0 4.67 23.93 0 0
0.85 25.74 0 0 0 2.17 7.79 6.29 9.14
0.9 0 31.93 1.15 26.85 0 23.91 2.98 3.07
0.95 44.78 16.49 3.38 0 15.94 6.83 4.35 0
0.975 32.65 0 0 0 0 31.32 0 0
0.99 0 0 0 0 0 0 0 1.69

outputs differed substantially (Segurado & Araujo, 2004; Elith et al., 2006; Moisen et al.,
2006; Meynard & Quinn, 2007). Among those that based their comparison on AUC, ANN
was favoured over CTA and GLM (Segurado & Araujo, 2004) and GBM and ME were
favoured over MARS and GLM (Elith et al., 2006). GBM and GLM were preferred to CTA
also by other authors (Moisen et al., 2006; Meynard & Quinn, 2007). What emerged from
the literature is that complex models usually outperform simple models, especially when
they involve specialist species (Jiménez-Valverde, Lobo & Hortal, 2008; Li & Wang, 2013).
Indeed, our results are not totally concordant with findings elsewhere, simple models like
GLM and GBM having scored higher AUC values. However, the use of AUC has been
criticised by many authors even if there are currently no consensus methods to assess the
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Figure 3 Scatterplot of abundance versus habitat suitability (as predicted by the Generalised Boosting
model, GBM). Regression lines represent the fitted relationship at different quantiles. Quantiles: solid line
= 0.5 quantile, slope= 0.37, p < 0.5; dashed line= 0.75, slope= 0.19, p = n.s.; dotted line= 0.95, slope
= 0.13, p= n.s.

predictability of SDMs (Austin, 2007; Lobo, Jiménez-Valverde & Real, 2008). Specifically,
the AUC does not consider the goodness of fit of a model and it is higher when more
pseudo-absences in unsuitable localities are included in the model (Lobo, Jiménez-Valverde
& Real, 2008). Nevertheless, its use is still widespread (Elith & Graham, 2009;Barbet-Massin
et al., 2012). It should also be pointed out that, even if we used a large number of (pseudo)
absences, we also employed a larger number of presence points than what is usually found
in the literature (e.g., Pearson et al., 2007).

SDM output can usually be considered as a probability of occurrence, somewhat related
to habitat suitability (Franklin, 2009). In the case of ME, this is achieved after logistic
transformation (Phillips & Dudík, 2008). This approach has been criticised because of the
frequent violation of two major assumptions: randomness of the samples and constant
detectability among individuals (Royle et al., 2012;Merow, Smith & Silander, 2013). Indeed,
the logistic output uses a rather subjective intercept of 0.5, which is valid, though its
reliability is not proven (Royle et al., 2012). Use of pseudo-absence also needs caution,
since the background in which sampling takes place has both suitable and unsuitable
locations (Pearce & Boyce, 2006). However, we employed an analytical framework designed
to reduce this source of bias. The randomness of the presence points is due to the use of
occurrences coming from a standardised monitoring programme. For the same reasons, we
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assume that the variability in detectability is reduced to the minimum, demonstrating this
issue also in the two forests where we estimated abundance (i.e., BP and CS). Finally, our
use of the logistic output of ME, as well as of its subjective intercept of 0.5, is based upon
the consideration that 37% of the study area is covered in forest. Therefore, assuming an
intercept of 0.5 does not seem too far from reality scenario. Indeed, ME has been proved
to be one of the most reliable SDMs when only presence data are available (Franklin,
2009; Merow, Smith & Silander, 2013). Our use of ME, moreover, was functional to the
selection of pseudo-absences, which were not selected within the entire region, but only in
a restricted area considered unsuitable by ME. As a consequence, we also assume that our
method of selecting pseudo-absence greatly reduced an eventual bias. At the very end, we
considered SDM outputs as a habitat suitability index, which we could assume to be related
to actual environmental suitability (VanDerWal et al., 2009; Brambilla & Ficetola, 2012).

For reliable modelling, it is necessary to use ecologically relevant environmental
predictors (Austin, 2007), even if it is not possible to include every environmental variable
thought to affect the distribution of a species (Elith & Leathwick, 2009).We based the choice
of environmental variables on both the known species-habitat relationships and on the
possibility of obtaining relevant information to steer management, relying on forest type,
structure, productivity and fragmentation. Forest type and NDVI proved the most impor-
tant variables in predicting the distribution of the short-toed treecreeper. The NDVI is not
only positively correlated to net primary productivity (Myneni et al., 1995; Pettorelli et al.,
2005), but also to the structural complexity of forests (Manes et al., 2010). As a consequence,
among the same forest type, a higher NDVI is related, given that all other variables are
comparable, to more structured, multi-layered forests or to forest patches that are more
productive or that have a higher leaf area index, where specialist birds can find a more
suitable habitat (Newton, 1994; Carrillo-Rubio et al., 2014). Obviously, this conclusion also
depends on the patch size and the degree of fragmentation, which are intertwined with
NDVI and forest type. Indeed, a substantial influence of landscape structure in defining
habitat suitability was clearly apparent when taking into account the three metrics together.
Responses to fragmentation are species-specific and, usually, the more specialist a species,
the more negative its response (Devictor, Julliard & Jiguet, 2008; Rueda et al., 2013). SDM
outputs showed higher HS in localities in less fragmented landscapes, in agreement with
the literature on forest specialist birds (Fahrig, 2003).

We used hierarchical statistical analysis of abundance to obtain unbiased estimates,
corrected for detectability (Royle, 2004a). The significant difference in abundances between
Bosco Pennataro and Chiarano-Sparvera is matched by the difference in the suitability of
the two forests. Therefore, differences in abundance, HS and landscapemetrics matched the
same pattern: in locations with more degraded forest, both HS and abundance scored lower
values, even though abundance showed higher variability, confounding the hypothesised
relationships with HS.

Our results suggest that there is a positive relationship between habitat suitability and
treecreeper abundance, even if the hypothesised triangular envelope (VanDerWal et al.,
2009) did not emerge. However, its predictive power was quite weak, due to high abundance
variability in both low and high HS locations. Extensive research has yielded little evidence
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for the relationship between demographic parameters and HS (Pearce & Ferrier, 2001;
Nielsen et al., 2005; Jiménez-Valverde et al., 2009). Related findings are often discordant
(Jiménez-Valverde et al., 2009; Tôrres et al., 2012) and many concerns are raised on the
controversial and often unconfirmed empirical relationships between ecological processes
and landscape patterns (Turner, Gardner & O’Neill, 2001;Kupfer, 2012). That said, the rela-
tionship can be masked by the many unmodelled environmental variables that can conceal
local suitability (Lobo, Jiménez-Valverde & Real, 2008). For this reason, VanDerWal et
al. (2009) concluded that just the upper limit of abundance, and not its mean value, is
predictable fromHS. However, this relationship has been widely found to be very weak due
to the difficulty to obtain reliable estimates of both abundance and HS (Jiménez-Valverde,
2011;Oliver et al., 2012; Tôrres et al., 2012). Some exceptions are presumably due to the use
of indexes of abundance, instead of actual estimates (De Moraes Weber & Viveiros Grelle,
2012; Gutiérrez et al., 2013). Indeed, our approach was based not only on abundance
estimates but also on HS values from different algorithms and averaged over the likely
home range size. Moreover, our use of landscape features as predictive variables could have
enhanced model performance since other studies (e.g., Tôrres et al., 2012), based mostly
on climatic variables, found positive but weaker relationships between HS and abundance.

This result, though confirming the existence of a relationship, also highlights the limits
of the SDM approach, suggesting that low HS can also occur in areas of high abundance,
probably due to environmental factors that are not considered in modelling which may
increase the actual HS of the area.

CONCLUSION
Birds are considered good biodiversity indicators, especially to monitor habitat alteration
(e.g., fragmentation) (Gregory et al., 2008; Carrillo-Rubio et al., 2014; Czeszczewik et al.,
2014). For instance, in the context of biotic homogenization, one likely effect is the
disappearance of specialist species which are more closely associated to unaltered forests
(McKinney & Lockwood, 1999). Negative effects of habitat alteration can persist over years
(Kendrick et al., 2014). Thus identification of the main species-habitat relationships is
important to prevent the disappearance of more susceptible species (Villard, Trzcinski &
Merriam, 1999;King & DeGraaf, 2000). Further, fragmentation can cause the disappearance
of the specialist component of biodiversity (Fahrig, 2003). Such processes can alter biolog-
ical, ecological and demographic traits like brood survival and growth (Suorsa et al., 2003;
Le Tortorec et al., 2012), occupancy or population size (Schmiegelow, Machtans & Hannon,
1997; Villard, Trzcinski & Merriam, 1999; Cooper & Walters, 2002). Through SDMs,
such results can be transposed into geographic projection and inform conservationists
and practitioners (Ferrier et al., 2007; Maiorano et al., 2015). Therefore, modelling how
fragmentation can affect the distribution of a species and understand the eventual relations
with population decrease, can greatly improve conservation and management plans.

A forest landscape is, in most European cases, a human-modified landscape whose
properties, like patch size, can affect many species (Gil-Tena, Torras & Saura, 2008). Our
approach takes into account such issues in order to provide information-based advice.
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In this way, we define the relationships between a species and some ‘‘directly adjustable’’
landscape features. The Chiarano-Sparvera forest stand is naturally located in a more
fragmented landscape than is Bosco Pennataro. Hence, the abundance response (i.e.,
decrease) of the short-toed treecreeper is matched by habitat choice. Fragmentation,
extensive rejuvenation of forest stands and tree plantations are all factors that can contribute
to alter the suitability of an area. Since habitat alteration can decrease species abundance
sooner than effectively reducing their geographic range (Shoo, Williams & Hero, 2005),
identification of areas of low HS, where impact on abundance is more likely to cause local
extinctions, could act as an early warning for species conservation. In our approach, these
threats can occur on a large scale, can be related to possible changes in abundance and
then used to inform practitioners and managers. Moreover, prediction of future land use
scenarios can be implemented.

However, our results are a case study, limited to a single specialist species, strictly linked
to mature well-preserved forests. This approach could be extended over different kinds
of habitats and species, other than forests. Moreover, the modelling should be refined to
include other potential resources and limiting factors, whether biotic or abiotic, in order
to obtain more robust HS prediction (Guisan & Thuiller, 2005). The magnitude of the
relationship between HS and abundance can then be used as a form of model validation
(Lobo, Jiménez-Valverde & Real, 2008), thus helping to steer sound land use management
and conservation planning.
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