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Across indepedent cancer genomes it has been observed that some sites have been
recurrently hit by single nucleotide variants (SNVs). Such recurrently hit sites might be
either i) drivers of cancer that are postively selected during oncogenesis, ii) due to
mutation rate variation, or iii) due to sequencing and assembly errors. We have
investigated the cause of recurrently hit sites in a dataset of >3 million SNVs from 507
complete cancer genome sequences. We find evidence that many sites have been hit
significantly more often than one would expect by chance, even taking into account the
effect of the adjacent nucleotides on the rate of mutation. We find that the density of
these recurrently hit sites is higher in non-coding than coding DNA and hence conclude
that most of them are unlikely to be drivers. We also find that most of them are found in
parts of the genome that are not uniquely mappable and hence are likly to be due to
mapping errors. In support of the error hypothesis, we find that recurently hit sites are not
randomly distributed across sequences from different laboratories. We fit a model to the
data in which the rate of mutation is constant across sites but the rate of error varies. This
model suggests that ~4% of all SNVs are error in this dataset, but that the rate of error
varies by thousands-of-fold between sites.
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25 Abstract.

26

27 Across indepedent cancer genomes it has been observed that some sites have been recurrently hit 

28 by single nucleotide variants (SNVs). Such recurrently hit sites might be either i) drivers of 

29 cancer that are postively selected during oncogenesis, ii) due to mutation rate variation, or iii) 

30 due to sequencing and assembly errors. We have investigated the cause of recurrently hit sites in 

31 a dataset of >3 million SNVs from 507 complete cancer genome sequences. We find evidence 

32 that many sites have been hit significantly more often than one would expect by chance, even 

33 taking into account the effect of the adjacent nucleotides on the rate of mutation. We find that the 

34 density of these recurrently hit sites is higher in non-coding than coding DNA and hence 

35 conclude that most of them are unlikely to be drivers. We also find that most of them are found 

36 in parts of the genome that are not uniquely mappable and hence are likly to be due to mapping 

37 errors. In support of the error hypothesis, we find that recurently hit sites are not randomly 

38 distributed across sequences from different laboratories. We fit a model to the data in which the 

39 rate of mutation is constant across sites but the rate of error varies. This model suggests that ~4% 

40 of all SNVs are error in this dataset, but that the rate of error varies by thousands-of-fold between 

41 sites.

42

43

44

45

46
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48 Introduction.

49

50 There is currently huge interest in sequencing cancer genomes with a view to identifying the 

51 mutations in somatic tissues that lead to cancer, the so called “driver” mutations. Driver 

52 mutations are expected to cluster in particular genes or genomic regions, or to recur at particular 

53 sites in the genome, because only a limited number of mutations can cause cancer. For example, 

54 the driver mutations in the TERT1 promoter were identified because it had independently 

55 occurred in multiple cancers (Huang et al., 2013). However, there are two other processes that 

56 can potentially lead to the repeated occurrence of an apparent somatic mutation at a site. First, it 

57 is known that the mutation rate varies across the genome at a number of different scales in both 

58 the germ-line and soma (Hodgkinson & Eyre-Walker, 2011; Hodgkinson, Chen & Eyre-Walker, 

59 2012; Michaelson et al., 2012; Francioli et al., 2015). Sites with recurrent SNVs could simply be 

60 a consequence of sites with high rates of mutations. And second there is the potential for 

61 sequencing error. Although, the average rate of sequencing error is thought to be quite low it is 

62 evident that some types of sites, such as those in runs of nucleotides, are difficult to sequence 

63 accurately. Furthermore, since the genome contains many similar sequences it can often be 

64 difficult to map sequencing reads successfully (Treangen & Salzberg, 2013).

65

66 In the germ-line the density of point mutations varies at a number of different scales 

67 (Hodgkinson & Eyre-Walker, 2011). At the mega-base scale the mutation varies by about 2-fold, 

68 and ~50% of this variance can be explained by correlations with factors such as replication time, 

69 recombination rate and distance from telomeres (as reviewed in (Hodgkinson & Eyre-Walker 

70 2011)). However the greatest variance, reportedly up to ~30-fold, has been found at the single 
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71 nucleotide level (Hodgkinson, Chen & Eyre-Walker, 2012; Kong et al., 2012; Michaelson et al., 

72 2012), whereby the nucleotide context, that is the identity of the bases immediately 5’ and 3’ of 

73 the mutated base, are highly influential on the rate of mutation (Gojobori, Li & Graur, 1982; 

74 Bulmer, 1986; Cooper & Krawczak, 1990; Nachman & Crowell, 2000; Hwang & Green, 2004). 

75 The most well known example is that of CpG hyper-mutation (Bird, 1980), which is thought to 

76 account ~20% of all mutations in the human genome (Fryxell & Moon, 2005). However there is 

77 also variation at the single nucleotide level that cannot be ascribed to the effects of neighbouring 

78 nucleotides; this has been termed cryptic variation in the mutation rate and is thought to account 

79 for at least as much variation in the mutation rate as does simple context (Hodgkinson, 

80 Ladoukakis & Eyre-Walker, 2009; Eyre-Walker & Eyre-Walker, 2014, Johnson & Hellman, 

81 2011, Smith et al., 2016).

82

83 The somatic mutation rate is estimated to be at least an order of magnitude greater than that of 

84 the germ line (Lynch, 2010). It has been shown to vary between cancers (Lawrence et al. 2013) 

85 and different cancer types are known to vary in their relative contributions of different mutations 

86 to their overall mutational compositions (Alexandrov et al., 2013). For a review see 

87 (Martinocorena & Campbell, 2015). The aforementioned correlates of variation that are found in 

88 the germ line are also apparent in the soma (Hodgkinson, Chen & Eyre-Walker, 2012; Schuster-

89 Bockler & Lehner, 2012; Lawrence et al., 2013; Liu, De & Michor, 2013), for example 

90 replication time correlates strongly with single nucleotide variant (SNV) density at the 1Mb base 

91 scale and can vary by up to 3-fold along the genome (Hodgkinson & Eyre-Walker, 2011; Woo & 

92 Li, 2012). However, as yet there has been no attempt to quantify the level of cryptic variation in 

93 the mutation rate at the single nucleotide level in the somatic genome. This is an important 
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94 property to understand; for example a site which experiences a recurrence of SNVs across many 

95 cancer genomes would be of interest as a potential driver of cancer (Lawrence et al., 2013), 

96 however, this site might simply be cryptically hypermutable (Hodgkinson, Ladoukakis & Eyre-

97 Walker, 2009; Eyre-Walker & Eyre-Walker, 2014; Smith et al., 2016). Here we examine the 

98 distribution of recurrent SNVs taken from 507 whole genome sequences made publicly available 

99 by Alexandrov et al. (2013) to investigate the level of cryptic variation in the mutation rate for 

100 somatic tissues. We show that there is a large excess of sites that have been hit by recurrent 

101 SNVs. Since the density of these is greater in the non-coding, than the coding fraction of the 

102 genome, we conclude that most of them are unlikely to be drivers. We therefore investigate 

103 whether they are due to mutational heterogeneity or sequencing errors. In particular we 

104 investigate whether there might be cryptic variation in the mutation rate in cancer genomes. 

105 Unfortunately, the available evidence suggests that most sites with recurrent SNVs are likely to 

106 be due to sequencing error or errors in post-sequencing processing. 

107

108

109 Methods.

110

111 Genome and data filtering.

112 The human genome (hg19/GRCh37) was masked to remove  simple sequence repeats (SSR) as 

113 defined by Tandem Repeat Finder (Benson, 1999). The remaining regions were separated into 

114 three genomic fractions, consisting of 1,346,629,686 bp of non-coding transposable element 

115 DNA (TE), defined as LINEs, SINEs, LTRs and DNA transposons as identified by repeat 

116 masker (Smit et al. 1996), 1,322,985,768 bp of non-coding non-transposable element DNA 
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117 (NTE), and 119,806,141 bp of exonic non-transposable element DNA (EX) defined by Ensemble 

118 (Flicek et al., 2011). From the supplementary data of Alexandrov et al. (2013) we collated 

119 3,382,737 single nucleotide variants (SNV), classified as “somatic-for-signature-analysis” (see 

120 (Alexandrov et al., 2013) for SNV filtering methods). These can be downloaded from 

121 ftp://ftp.sanger.ac.uk/pub/cancer/AlexandrovEtAl/. These came from 507 whole genome 

122 sequenced cancers and represent 10 different cancer types and were reduced to 3,299,881 SNVs 

123 when excluding SNVs in SSRs; 1,666,759 in TE and 1,535,069 in NTE and 98053 in EX. 

124

125 Testing for mutation rate heterogeneity.

126 We were interested in whether some sites have more SNVs than expected by chance. Since the 

127 mutation rate is affected by the identity of the neighbouring nucleotides we need to control for 

128 those effects. To do this we separated each SNV into one of 64 categories based upon the triplet 

129 to which it was the central base. This was reduced to 32 triplets when accounting for base 

130 complementarity with the pyrimidine (C/T) taken as the central base. If the total number of 

131 triplets of type i (e.g. CTC in the non-TE fraction) is li and the number SNVs at that triplet is mi 

132 then the expected number of sites hit x times can be calculated using a Poisson distribution:

133

134 (1)

135

136 where  μi = mi/li is the mean number of SNVs per site, The expected number of sites with x SNVs 

137 across all triplets was calculated by summing the values of Pi(x). Whether the observed 

138 distribution deviated from the expected was tested using a chisquare test.

139

Pi (x)  li
eii

x

x!
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140 Model fitting

141 As well as testing whether there was significant hetereogeneity we were also interested in 

142 quantifying the level of variation. We fit two basic models. In the first we allowed the density of 

143 SNVs to follow a gamma distribution. Let the expected density of SNVs at a site be μα where μ 

144 is the mean density of SNVs for a particular triplet and α is the deviation from this mean which is 

145 gamma distributed, parameterised such that the gamma has a mean of one. Under this model the 

146 expected number of sites with x SNVs is 

147

148 (2)

149

150

151 In a second model we imagine that the production of SNVs depends upon two processes, one of 

152 which is constant across sites, and one which varies across sites with the rate drawn from a 

153 gamma distribution. Let the proportion of SNVs due to the first process be ε. Under this model 

154 the expected number of sites with x SNVs is

155

156 (3)

157

158 Given the expected number of sites, the likelihood of observing   sites with x SNVs is itself 

159 Poisson distributed

160

161 (4)

162

P(x)  l e ( )x

x!
D( )d

0





P(x)  l e ((1 ) )((  (1  ) ))x

x!
D( )d

0





P̂(x)

L(x)  eP(x )P(x)P̂(x )

P̂(x)!
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163 These likelihoods can be multiplied across triplets to obtain the overall likelihood. We estimated 

164 the maximum likelihood values of the model parameters using the Maximize function of 

165 Mathematica which implements the Nelder-Mead algorithm (Nelder et al., 1965).

166 .

167 Privacy analysis

168 To investigate whether the SNVs at some sites tended to be produced by a particular research 

169 group we took all sites with 3 or more SNVs from the same cancer type and then performed 

170 Fishers exact test on a 2 x 30 matrix using the the R stats package, version 3.2.4 (R Core Team, 

171 2016). 

172

173 Mappability.

174 Each nucleotide in genome was assigned a mappability score for uniqueness, as determined by 

175 the Mappability track (Derrien et al., 2012) downloaded from the UCSC table browser at 

176 http://genome.ucsc.edu/ (Karolchik et al., 2004). This feature assigns a value of 1 to unique k-

177 mer sequences in the genome, 0.5 to those that occur twice, 0.33 to those that occur thrice etc. 

178 This is computed for every base in the human genome with the value being assigned to the first 

179 position of the k-mer. We used k-mers of 100 and 20 bases.

180

181

182 Results.

183

184 The distribution of recurrent SNVs.

185 If there is no variation in the density of single nucleotide variants (SNVs) then we should find 

186 them to be distributed randomly across the genome. To investigate whether this was the case we 
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187 calculated the expected number of sites with 1,2,3…etc SNVs, taking into account the fact that 

188 some triplets have higher mutation rates than others. We found that there are some sites that have 

189 7 SNVs whereas we expect very few sites to have more than 3 SNVs – the difference is highly 

190 significant using the Chi-square goodness of fit test (p < 0.0001) for both the whole genome 

191 (Total) and when separating the genome into non-coding transposable elements (TE), non-coding 

192 non-transposable elements and (NTE) and exons (EX) (Table 1).  We refer to sites with 3 or 

193 more SNVs as excess sites. In total we observed 1187 excess sites (Table 1) with the density of 

194 excess sites in TE being 3.9 and 3.4 fold greater than in NTE and EX respectively. The 

195 probability of this level of SNV recurrence by chance alone is so low (Chi-squared goodness of 

196 fit test, p > 0.0001) that these excess sites must either be (i) drivers, (ii) the result of mutation 

197 rate heterogeneity across the genome or, (iii) the consequence of next generation sequencing 

198 (NGS) pipeline errors.
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199 Table 1. Observed and expected values for the distribution of SNVs for sites hit from 0-7 times. A) shows data for 

200 the whole interrogable human genome, excluding simple sequence repeats. B) shows data for all bases in the 

201 genome that are uniquely mappable at 100 base pairs. C) the same as B but for 20 base pairs. P < 0.001 for 

202 observing >7 sites with 3 SNVs in A),B) and C) if SNVs were randomly distributed throughout the genome.

A) –  All Sit es
Sit e  Type 0 h it s 1  h it 2  h it s  3  h it s 4  h it s 5  h it s 6  h it s 7  h it s

Non-Exon TE obs (TE) 1.34E+ 9 1.65E+ 6 7034 762 130 26 9 3
Non-Exon TE exp (TE) 1.34E+ 9 1.66E+ 6 1430 1.14 9E-4 7E-7 5E-10 4E-13

Non-Exon Non-TE obs (NTE) 1.32E+ 9 1.53E+ 6 3171 188 35 6 2 2
Non-Exon Non-TE exp (NTE) 1.32E+ 9 1.53E+ 6 1206 0.86 6E-4 4E-7 3E-10 2E-13

Exon obs (EX) 1.20E+ 8 9.75E+ 4 245 23 0 0 1 0
Exon exp (EX) 1.20E+ 8 9.79E+ 4 57 0.03 2E-5 7E-9 3E-12 1E-15

Total obs 1.44E+ 9 1.63E+ 6 10450 973 165 32 12 5
Total exp 1.44E+ 9 1.63E+ 6 2692 2.04 2E-3 1E-6 8E-10 5E-13

B) –  M appab le  100
Sit e  Type 0 h it s 1  h it 2  h it s  3  h it s 4  h it s 5  h it s 6  h it s 7  h it s

Non-Exon TE obs (TE) 1.22E+ 9 1.52E+ 6 3927 266 25 11 5 1
Non-Exon TE exp (TE) 1.22E+ 9 1.52E+ 6 1322 1.07 9E-4 7E-7 5E-10 4E-13

Non-Exon Non-TE obs (NTE) 1.28E+ 9 1.50E+ 6 2698 97 16 2 0 1
Non-Exon Non-TE exp (NTE) 1.28E+ 9 1.50E+ 6 1201 0.88 6E-4 5E-7 3E-10 2E-13

Exon obs (EX) 1.12E+ 8 9.31E+ 4 185 16 0 0 0 0
Exon exp (EX) 1.12E+ 8 9.34E+ 4 55 0.03 2E-5 7E-9 3E-12 1E-15

Total obs 1.39E+ 9 1.59E+ 6 6810 379 41 13 5 2
Total exp 1.39E+ 9 1.60E+ 6 2578 2 2E-3 1E-6 8E-10 6E-13

C) –  M appab le  20
Sit e  Type 0 h it s 1  h it 2  h it s  3  h it s 4  h it s 5  h it s 6  h it s 7  h it s

Non-Exon TE obs (TE) 3.89E+ 8 4.81E+ 5 741 9 0 0 0 0
Non-Exon TE exp (TE) 3.89E+ 8 4.81E+ 5 417 0.34 3E-4 2E-7 2E-10 1E-13

Non-Exon Non-TE obs (NTE) 8.92E+ 8 1.06E+ 6 1621 31 4 1 0 1
Non-Exon Non-TE exp (NTE) 8.92E+ 8 1.06E+ 6 868 0.65 5E-4 3E-7 2E-10 2E-13

Exon obs (EX) 7.47E+ 7 6.10E+ 4 103 6.00 0 0 0 0
Exon exp (EX) 7.47E+ 7 6.12E+ 4 36 0.02 9E-6 4E-9 2E-12 7E-16

Total obs 9.67E+ 8 1.12E+ 6 2465 46 4 1 0 1
Total exp 9.67E+ 8 1.12E+ 6 1321 1 8E-4 6E-7 4E-10 3E-13
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203 It seems unlikely that the majority of the excess sites are due to drivers since the density of 

204 excess sites is higher in the TE and NTE parts of the genome than in EX (Table 1A). 

205 Furthermore, to date only one intergenic driver of cancer – an activating C>T mutation in the 

206 TERT promoter (Huang et al. 2013) at chr5:1,295,228 – has been confirmed, and although this is 

207 included in the excess sites with 7 SNVs, the remaining 1186 excess sites are unlikely to be 

208 under such selection. It therefore seems likely that the excess sites are either due to mutation rate 

209 variation or problems with sequencing.

210

211 Excess sites are enriched in non-unique sequences.

212 The human genome contains many duplicated sequences particularly within transposable 

213 elements, and these pose challenges for accurate alignment of the short ~100bp reads produced 

214 from NGS (Zhuang et al., 2014). If the excess sites were the result of NGS mapping errors then 

215 we might expect them to occur in regions of the genome that were hard to align. Using the 

216 mappability scores (Derrien et al., 2012) we excluded all bases that were not uniquely mappable 

217 at 100bp; this should give an overall indication of how easy it is to map reads to the region. This 

218 only reduced the interrogable genome by 6%, but the number of excess sites was reduced by 

219 64% (Table 1B), demonstrating that a large proportion of the excess sites were  in duplicated 

220 sequences and therefore likely originate from mapping errors. However, even with this large 

221 reduction in excess sites we still observed many excess sites far greater than chance expectation 

222 (Chi-squared goodness of fit test, p < 0.0001) (Table 1B & Figure 1).
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223 Figure 1.  The number of site with 0-7 SNVs per sites for: Main = all data, M100 = sites that are uniquely mappable 

224 at 100 base-pairs, M20 = sites that are uniquely mappable at base-pairs and, Expected is the expected number of 

225 SNVs per site drawn from a poisson distribution using all data.

226

227 The SNVs in this data were all called from >100bp reads. If the excess sites were errors of read 

228 mapping, they should not be affected by the uniqueness of shorter sequences (i.e. there is no 

229 reason why 100bp sequences that map uniquely to the genome should be mis-mapped if it 

230 contains a non-unique 20bp sequence), however if the SNVs were the product of a biological 

231 process that was more prevalent in non-unique or repetitive sequences, then we might expect to 
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232 see a reduction of excess sites when we exclude all bases that do not map uniquely at 20bp. 

233 When we excluded all bases that were not unique at 20bp we found that the interrogable genome 

234 was reduced by 52% and the excess sites were reduced by 96% (Table 1C & Figure 1). It is 

235 worth noting that, due to their proliferative nature throughout the genome, this reduction 

236 disproportionately affects TEs where the interrogable genome is reduced by 71% and the excess 

237 sites by >99%. This would suggest that the excess sites existing in sequences that were unique at 

238 100bp but not unique at 20bp may represent some biological process and not error. Furthermore, 

239 the TERT promoter, whose recurrence is the result of positive selection, and is therefore the only 

240 excess site that that we can confidently say is not a product of error, remains in this most 

241 conservative of these analyses. Despite this large reduction in excess sites, significant 

242 heterogeneity still remains; the probability of observing the 52 excess sites in the part of the 

243 genome uniquely mappable at 20 bases is still extremely low (Chi-squared goodness of fit test, p 

244 < 0.0001).

245

246 One other potential problem with mapping reads to non-unique sequences occurs when a 

247 segmental duplication has been collapsed in the assembly of the reference genome; i.e. reads 

248 from two different locations are mapped to the same locus in the reference. Differences between 

249 the duplications will appear as SNVs. If this was the case we would expect to see an increase in 

250 escess site read coverage of ~2-fold or greater. To investigate whether this could be a problem in 

251 our data we compared the read coverage for excess sites and non-excess sites, which 

252 nevertheless had an SNV, in the one set of cancer genomes for which we had this information - 

253 the liver cancers  sequenced by the RIKEN group. However, we found that the median read 

254 coverage for the excess sites (n=15) was actually lower than for non-excess sites (n=224602) (28 

255 and 33 reads respectively; Mann-Whitney U test, p = 0.043)
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256

257 Privacy of mutations.

258 To further investigate the origin of excess sites we exploited the fact that some types of cancer 

259 were sequenced by different laboratories using different technologies and NGS pipelines. If the 

260 SNVs at excess sites found in a particular cancer are due to hypermutable sites then we would 

261 expect them to be randomly distributed across research groups (i.e. all research groups should 

262 identify the same hypermutable sites). If however the SNVs at excess sites are due to error then 

263 we might expect them to be heterogeneously distributed across research groups (i.e. the calling 

264 of recurrent false positive SNVs should be systematic of individual research group NGS 

265 pipelines). The liver cancers, which were all virus associated hepatocellular carcinomas, , were 

266 sequenced by two different groups; 66 from the RIKEN group using the Illumina Genome 

267 Analyser (https://dcc.icgc.org/projects/LIRI-JP) and 22 from the National Cancer Centre in Japan 

268 using the IIlumina HiSeq platform (https://dcc.icgc.org/projects/LINC-JP). We found that the 

269 excess SNVs were heterogeneously distributed amongst research groups (Fisher's exact test, P = 

270 4x10-6) suggesting that the 30 excess sites from liver cancers were predominantly errors 

271 (Supplementary Table 1). 

272

273 Parameter estimation

274 To gauge how much variation there is in the density of SNVs across the genome we fit two 

275 models to the data using maximum likelihood. In model 1 we allowed the density of SNVs to 

276 vary between sites according to a gamma distribution, estimating the shape parameter, and hence 

277 the amount of variation there was between sites. We fitted two versions of this model. In the first 

278 version, 1a, we constrained the model such that the mean SNV density, shape parameter, and 

279 hence the level of variation, was the same for all triplets. In the second version, 1b, we allowed 
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280 the mean SNV density and shape parameter to vary between triplets. The second of these models 

281 fits the data significantly better than the first according to a likelihood ratio test suggesting that 

282 the level of variation differs between triplets (Table 2). However, a goodness of fit test, 

283 comparing the number of sites predicted to have 1, 2, 3…etc SNVs per site to the observed data, 

284 suggests the model fits the data poorly. We therefore fit a second pair of models in which we 

285 allowed the rate of SNVs to be due to two processes. The first process, is constant across sites 

286 whereas the second process is variable and drawn from a gamma distribution. There are two 

287 parameters in the model, the proportion of SNVs at a site produced by the first process and the 

288 level of variation in the second process. This model might represent a situation where the rate of 

289 mutation is constant across sites but the rate of sequencing error is variable. As with the first 

290 model we fit two versions of this model; in Model 2a we constrained the model such that the 

291 parameters of the two processes were the same for all triplets. In Model 2b they were allowed to 

292 vary between triplets. Both models 2a and 2b fit the data significantly better than models 1a and 

293 1b, and of this second pair of models, model 2b, which allows the parameters to vary between 

294 triplets fits the data significantly better than model 2a, in which the parameters are shared across 

295 triplets (Table 2). The best fitting model is therefore one in which we have two processes 

296 contributing to the production of SNVs, one that is constant across sites, although it differs 

297 between triplets, and one which is variable across sites. Although, we can formally reject this 

298 model using a goodness-of-fit test (Chi-square p < 0.0001), because we have so much data, it is 

299 clear that the model fits the data fairly well (Figure 2). Under this model we estimate that 

300 approximately 4.1%, 2.8% and 4.3% of SNVs are due to the process that varies across sites in 

301 the TE and NTE, and EX sequences respectively. However, the variation in the density between 

302 sites due to the variable process is extremely large. The median shape parameters are 0.0013, 
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303 0.0011 and 0.00075 for the TE and NTE, and EX sequences respectively. Under a gamma 

304 distribution with a shape parameter of 0.0004 we would expect more than 99% of sites to have 

305 no SNVs generated by this variable process, but some sites to have a density of SNVs that is 

306 30,000-fold above the average rate. 

307

308

309

310 Table 2. The fit of 4 models to the observed distribution of recurrent SNVs in the three different genomic fractions 

311 A) TE, B) NTE and C) EX. N = number of parameters. Italics indicate the best fit as determined by a liklihood ratio 

312 test.

313

314

Non-Exon TE (TE)
M odel N Log-like lihood Shape

1a 2 -269283 0.13
1b 64 -2936 0.12
2a 3 -266889 0.00021 0.044
2b 96 -1302 0.0013 0.041

Non-Exon Non-TE (NTE)
M odel N Log-like lihood Shape

1a 2 -227728 0.31
1b 64 -1207 0.37
2a 3 -227026 0.0012 0.037
2b 96 -566 0.0011 0.028

Exon (EX)
M odel N Log-like lihood Shape

1a 2 -13878 0.18
1b 64 -270 0.22
2a 3 -13842 0.00081 0.034
2b 96 -240 0.00076 0.043

M edian ε

M edian ε

M edian ε
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315

316 Figure 2. The fit of the observed recurrent SNV distribution to expected distribution under the favoured model, 2b, 

317 for A) TE, B) NTE and C) EX genomic fractions.

318

319

320

321 Discussion.

322

323 Through our analysis of ~3 million SNVs from whole cancer genomes we have shown that there 

324 are many sites at which there is a significant excess of SNVs. The majority of these are unlikely 

325 to be drivers because the density of sites with an excess of SNVs is greater in the non-coding part 

326 of the genome than in the exons. It therefore seems likely that the majority of the excess sites are 

327 either due to hypermutation or problems with sequencing or the processing of the sequences. 

328 Several lines of evidence point to sequencing problems being the chief culprit. First, many of the 

329 excess sites disappear when regions of the genome with low mappability are removed. Second, 

330 SNVs at a particular excess site tend to be found within the sequences from a particular 

331 laboratory; for example, site 85,091,895 on chromosome 5 has 5 SNVs in liver cancers, but all of 

332 these are found in the sequences from RIKEN not the sequences from the NCC. It is possbile that 
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333 this could be caused by biological differences between the cohorts, either environmentally 

334 induced or endogenous genetic variation, such as that seen between European and African 

335 populations and the differing frequency of  5’-TCC-3’ > 5’-TTC-3' mutation (Harris, 2015). 

336 However the level of site and cohort specific, but cryptic, variation required would be huge and 

337 we have very little evidence to support such a hypothesis. Third, the level of variation in the 

338 density of SNVs is much greater than has been observed or suggested for variation in the 

339 mutation rate (Hodgkinson & Eyre-Walker, 2011; Kong et al., 2012; Michaelson et al., 2012) 

340 though see a recent analysis of de novo germ-line mutations which suggests there could be 

341 extreme mutational heterogeneity (Smith et al., 2016); some sites are estimated to have rates of 

342 SNV production that are tens of thousands of times faster than the genomic average. 

343

344 Only one line of evidence suggests that there might also be substantial variation in the mutation 

345 rate as well as variation in the error rate. When we eliminate sites that are not uniquely mappable 

346 at 20bp we find a great reduction in the number of excess sites relative to the case when we 

347 remove sites that are not uniquely mappable at 100bp, and yet the read length is greater than 

348 100bp in the data that we have used. This might suggest that there are some repetitive sequences 

349 that are prone to a process of hyper-mutation. However, it might also be that mappability at 

350 100bp is not a good guide to mappability during sequence processing. First, some level of 

351 mismatch must be allowed during the mapping of reads to the reference because there are single 

352 nucleotide variants segregating in the population and there are somatic mutations in cancer 

353 genomes. Second, the mappability score is assigned to the first nucleotide of the k-mer that can 

354 be mapped.. Third, although the read length was greater than 100bp, some shorter reads may 

355 have been used. Next generation sequencing involves a number of biological processes, such as 
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356 the polymerase chain reactions in the pre-sequencing creation of libraries and the polymerization 

357 of nucleotides during sequencing by synthesis, any one of which can result in technology-

358 specific sequencing artefacts (Quail et al., 2008; Nazarian et al., 2010), In addition to the 

359 considerable post-sequencing processing, such as filtering and mapping, which can also generate 

360 errors (Harismendy & Frazer, 2009; Minoche, Dohm & Himmelbauer, 2011). Unfortunately it is 

361 not possible to say which of these factors is most important. 

362

363

364 We have fit two models to the data in which the density of SNVs varies across sites. In the first 

365 we imagine that the variation is due to a single variable process and in the second we imagine it 

366 is due to two processes, one of which is constant across sites and one which is variable. We find 

367 that this second model fits the data much better than the first model, although it can be formally 

368 rejected by a goodness-of-fit test. In this second model we estimate the proportion of SNVs that 

369 are due to the two processes and the level of variation. We estimate that approximately 2.8-4.3% 

370 of SNVs are due to the second process and that this second process is highly variable between 

371 sites, such that a few sites have a density of SNVs that is ten of thousands higher than the 

372 average density. It is possible that the first process is mutation and the second is sequencing 

373 error, but we cannot rule out the possibility that the second process includes variation in the 

374 mutation rate as well. Studies of germ-line (Hodgkinson & Eyre-Walker, 2011; Michaelson et 

375 al., 2012) and somatic (Hodgkinson, Chen & Eyre-Walker, 2012; Woo & Li, 2012; Lawrence et 

376 al., 2013; Liu, De & Michor, 2013; Polak et al., 2015) mutations have indicated that the mutation 

377 rate varies between sites on a number of different scales. However, indications are that the 

PeerJ reviewing PDF | (2016:05:10914:1:0:CHECK 25 Jul 2016)

Manuscript to be reviewed



378 variation is probably fairly modest (Hodgkinson, Chen & Eyre-Walker, 2012; Michaelson et al., 

379 2012). 

380

381 A model including two processes fits the data well (figure 2). However, we can reject this model 

382 in a goodness-of-fit test, because we have a huge amount of data. Possible reasons for the less 

383 than perfect fit include large scale variation in the mutation rate (Hodgkinson & Eyre-Walker, 

384 2011; Schuster-Bockler & Lehner, 2012; Makova & Hardison, 2015) and multi-nucleotide-

385 mutations (MNMs) (Rosenfeld, Malhotra & Lencz, 2010; Schrider, Hourmozdi & Hahn, 2011; 

386 Harris & Nielsen, 2014); the latter  represent ~2% of all human single nucleotide polymorphisms 

387 (SNPs).

388  

389 In conclusion it seems likely that many sites in somatic tissues that have experienced recurrent 

390 SNVs are due to sequencing errors or artefacts of post-sequencing processing and there seems to 

391 be little evidence of cryptic variation in the somatic mutation rate. However, this not necessarily 

392 mean that such variation does not exist – it would be extremely difficult to detect it given the 

393 high level of site-specific sequencing error. As sequencing technology and processing pipelines 

394 improve in accuracy, we would expect similar future analyses to be able to confidently estimate 

395 the true underlying variation in the somatic mutation rate. Accompanied by the flow of data from 

396 projects such as the 100k genomes project, it should soon be possible to achieve per triplet 

397 mutation rate variation map for individual cancer types and not just pooled across multiple 

398 cancers.

399

400
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556 Excess SNVs from liver cancers split between the two labs of origin. RK indicates SNVs from the RIKEN lab and 

557 HX from the NCC. Significant heterogeneity of excess sites originating from different labs was tested using fishers 

558 exact test (see methods).

559

560

561

562

563

564

565

566

567

568

569

570

571

572

573

574

locus RK HX sum
chrX:56209339 6 0 6
chr10:96652829 6 0 6
chr10:96652827 6 0 6
chrX:56209340 5 0 5
chr5:85091859 5 0 5
chr5:1295228 0 5 5
chr9:121267366 4 0 4
chr8:119547627 4 0 4
chr19:22314552 1 2 3
chr14:95832895 1 2 3
chr9:16932821 2 1 3
chr7:27901228 2 1 3
chr4:162437670 2 1 3
chr3:164903710 2 1 3
chrY:4796240 3 0 3
chrX:84996701 3 0 3
chr7:11432162 3 0 3
chr7:11432157 3 0 3
chr3:174306603 3 0 3
chr2:49173787 3 0 3
chr2:139556678 3 0 3
chr19:8673262 3 0 3
chr1:190881448 3 0 3
chrX:79125571 0 3 3
chr6:78532352 0 3 3
chr5:97912191 0 3 3
chr4:190837614 0 3 3
chr19:44959650 0 3 3
chr15:73206445 0 3 3
chr14:74659965 0 3 3

PeerJ reviewing PDF | (2016:05:10914:1:0:CHECK 25 Jul 2016)

Manuscript to be reviewed


