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ABSTRACT
Across independent cancer genomes it has been observed that some sites have been
recurrently hit by single nucleotide variants (SNVs). Such recurrently hit sites might
be either (i) drivers of cancer that are postively selected during oncogenesis, (ii) due
to mutation rate variation, or (iii) due to sequencing and assembly errors. We have
investigated the cause of recurrently hit sites in a dataset of>3 million SNVs from 507
complete cancer genome sequences. We find evidence that many sites have been hit
significantly more often than one would expect by chance, even taking into account the
effect of the adjacent nucleotides on the rate of mutation. We find that the density of
these recurrently hit sites is higher in non-coding than codingDNA and hence conclude
that most of them are unlikely to be drivers. We also find that most of them are found
in parts of the genome that are not uniquely mappable and hence are likely to be due to
mapping errors. In support of the error hypothesis, we find that recurently hit sites are
not randomly distributed across sequences from different laboratories. We fit a model
to the data in which the rate of mutation is constant across sites but the rate of error
varies. This model suggests that∼4% of all SNVs are errors in this dataset, but that the
rate of error varies by thousands-of-fold between sites.

Subjects Bioinformatics, Computational Biology, Genetics, Genomics, Computational Science
Keywords Cancer, Somatic, Variation, Mutation, Mutation rate variation, Sequencing error

INTRODUCTION
There is currently huge interest in sequencing cancer genomes with a view to identifying
the mutations in somatic tissues that lead to cancer, the so-called ‘‘driver’’ mutations.
Driver mutations are expected to cluster in particular genes or genomic regions, or to recur
at particular sites in the genome, because only a limited number of mutations can cause
cancer. For example, the driver mutations in the TERT1 promoter were identified because
it had independently occurred in multiple cancers (Huang et al., 2013). However, there are
two other processes that can potentially lead to the repeated occurrence of an apparent
somatic mutation at a site. First, it is known that the mutation rate varies across the genome
at a number of different scales in both the germ-line and soma (Hodgkinson & Eyre-Walker,
2011;Hodgkinson, Chen & Eyre-Walker, 2012;Michaelson et al., 2012; Francioli et al., 2015).
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Sites with recurrent SNVs could simply be a consequence of sites with high rates of
mutations. Second, there is the potential for sequencing error. Although the average rate
of sequencing error is thought to be quite low it is evident that some types of sites, such
as those in runs of nucleotides, are difficult to sequence accurately. Furthermore, since the
genome contains many similar sequences it can often be difficult to map sequencing reads
successfully (Treangen & Salzberg, 2013).

In the germ-line the density of point mutations varies at a number of different scales
(Hodgkinson & Eyre-Walker, 2011). At the mega-base scale the mutation varies by about
2-fold, and∼50%of this variance can be explained by correlationswith factors such as repli-
cation time, recombination rate and distance from telomeres (as reviewed in Hodgkinson
& Eyre-Walker (2011)). However the greatest variance, reportedly up to∼30-fold, has been
found at the single nucleotide level (Hodgkinson, Chen & Eyre-Walker, 2012; Kong et al.,
2012; Michaelson et al., 2012), whereby the nucleotide context, that is the identity of the
bases immediately 5′ and 3′ of the mutated base, are highly influential on the rate of mu-
tation (Gojobori, Li & Graur, 1982; Bulmer, 1986; Cooper & Krawczak, 1990; Nachman &
Crowell, 2000;Hwang & Green, 2004). The most well known example is that of CpG hyper-
mutation (Bird, 1980), which is thought to account for∼20% of all mutations in the human
genome (Fryxell & Moon, 2005). However there is also variation at the single nucleotide
level that cannot be ascribed to the effects of neighbouring nucleotides; this has been termed
cryptic variation in themutation rate and is thought to account for at least asmuch variation
in the mutation rate as does simple context (Hodgkinson, Ladoukakis & Eyre-Walker, 2009;
Eyre-Walker & Eyre-Walker, 2014; Johnson & Hellmann, 2011; Smith et al., 2016).

The somatic mutation rate is estimated to be at least an order of magnitude greater than
that of the germ line (Lynch, 2010). It has been shown to vary between cancers (Lawrence
et al., 2013) and different cancer types are known to vary in their relative contributions
of different mutations to their overall mutational compositions (Alexandrov et al., 2013).
For a review see Martinocorena & Campbell (2015). The aforementioned correlates of
variation that are found in the germ line are also apparent in the soma (Hodgkinson,
Chen & Eyre-Walker, 2012; Schuster-Bockler & Lehner, 2012; Lawrence et al., 2013; Liu, De
& Michor, 2013), for example, replication time correlates strongly with single nucleotide
variant (SNV) density at the 1 Mb base scale and can vary by up to 3-fold along the
genome (Hodgkinson & Eyre-Walker, 2011; Woo & Li, 2012). However, as yet there has
been no attempt to quantify the level of cryptic variation in the mutation rate at the single
nucleotide level in the somatic genome. This is an important property to understand;
for example, a site which experiences a recurrence of SNVs across many cancer genomes
would be of interest as a potential driver of cancer (Lawrence et al., 2013), however, this site
might simply be cryptically hypermutable (Hodgkinson, Ladoukakis & Eyre-Walker, 2009;
Eyre-Walker & Eyre-Walker, 2014; Smith et al., 2016). Here we examine the distribution
of recurrent SNVs taken from 507 whole genome sequences made publicly available by
Alexandrov et al. (2013) to investigate the level of cryptic variation in the mutation rate for
somatic tissues. We show that there is a large excess of sites that have been hit by recurrent
SNVs. Since the density of these is greater in the non-coding than the coding fraction of the
genome, we conclude that most of them are unlikely to be drivers. We therefore investigate
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whether they are due to mutational heterogeneity or sequencing errors. In particular we
investigate whether theremight be cryptic variation in themutation rate in cancer genomes.
Unfortunately, the available evidence suggests that most sites with recurrent SNVs are likely
to be due to sequencing error or errors in post-sequencing processing.

METHODS
Genome and data filtering
The human genome (hg19/GRCh37) was masked to remove simple sequence repeats
(SSR) as defined by Tandem Repeat Finder (Benson, 1999). The remaining regions were
separated into three genomic fractions, consisting of 1,346,629,686 bp of non-coding
transposable element DNA (TE), defined as LINEs, SINEs, LTRs and DNA transposons
as identified by repeat masker (RepeatMasker Open-3.0; http://www.repeatmasker.org/),
1,322,985,768 bp of non-coding non-transposable element DNA (NTE), and 119,806,141
bp of exonic non-transposable element DNA (EX) defined by Ensemble (Flicek et al.,
2012). From the supplementary data of Alexandrov et al. (2013) we collated 3,382,737
single nucleotide variants (SNV), classified as ‘‘somatic-for-signature-analysis’’ (see
Alexandrov et al. (2013) for SNV filtering methods). These can be downloaded from
ftp://ftp.sanger.ac.uk/pub/cancer/AlexandrovEtAl/. These came from 507 whole genome
sequenced cancers and represent 10 different cancer types and were reduced to 3,299,881
SNVs when excluding SNVs in SSRs; 1,666,759 in TE and 1,535,069 in NTE and 98,053 in
EX.

Testing for mutation rate heterogeneity
We were interested in whether some sites have more SNVs than expected by chance. Since
the mutation rate is affected by the identity of the neighbouring nucleotides we need to
control for those effects. To do this we separated each SNV into one of 64 categories based
upon the triplet to which it was the central base. This was reduced to 32 triplets when
accounting for base complementarity with the pyrimidine (C/T) taken as the central base.
If the total number of triplets of type i (e.g. CTC in the non-TE fraction) is li and the
number SNVs at that triplet is mi then the expected number of sites hit x times can be
calculated using a Poisson distribution:

Pi(x)= li
e−µiµx

i

x!
(1)

where µi=mi/li is the mean number of SNVs per site, The expected number of sites with
x SNVs across all triplets was calculated by summing the values of Pi(x). Whether the
observed distribution deviated from the expected was tested using a chisquare test.

Model fitting
As well as testing whether there was significant hetereogeneity we were also interested in
quantifying the level of variation. We fit two basic models. In the first, we allowed the
density of SNVs to follow a gamma distribution. Let the expected density of SNVs at a site
be µα where µ is the mean density of SNVs for a particular triplet and α is the deviation
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from this mean which is gamma distributed, parameterised such that the gamma has a
mean of one. Under this model the expected number of sites with x SNVs is

P(x)= l
∫
∞

0

e−µα(µα)x

x!
D(α)dα. (2)

In a second model we imagine that the production of SNVs depends upon two processes,
one of which is constant across sites, and one which varies across sites with the rate drawn
from a gamma distribution. Let the proportion of SNVs due to the first process be ε. Under
this model the expected number of sites with x SNVs is

P(x)= l
∫
∞

0

e−µ(ε+(1−ε)α)(µ(ε+ (1−ε)α))x

x!
D(α)dα. (3)

Given the expected number of sites, the likelihood of observing P̂(x) sites with x SNVs is
itself Poisson distributed

L(x)=
e−P(x)P(x)P̂(x)

P̂(x)!
. (4)

These likelihoods can be multiplied across triplets to obtain the overall likelihood.
We estimated the maximum likelihood values of the model parameters using the
Maximize function of Mathematica which implements the Nelder–Mead algorithm
(Nelder et al., 1965).

Privacy analysis
To investigate whether the SNVs at some sites tended to be produced by a particular
research group we took all sites with 3 or more SNVs from the same cancer type and then
performed Fishers exact test on a 2× 30 matrix using the the R stats package, version 3.2.4
(R Core Team, 2016).

Mappability
Each nucleotide in genome was assigned a mappability score for uniqueness, as determined
by theMappability track (Derrien et al., 2012) downloaded from the UCSC table browser at
http://genome.ucsc.edu/ (Karolchik et al., 2004). This feature assigns a value of 1 to unique
k-mer sequences in the genome, 0.5 to those that occur twice, 0.33 to those that occur
thrice etc. This is computed for every base in the human genome with the value being
assigned to the first position of the k-mer. We used k-mers of 100 and 20 bases.

RESULTS
The distribution of recurrent SNVs
If there is no variation in the density of single nucleotide variants (SNVs) then we should
find them to be distributed randomly across the genome. To investigate whether this was
the case we calculated the expected number of sites with 1, 2, 3. . . etc SNVs, taking into
account the fact that some triplets have higher mutation rates than others. We found that
there are some sites that have 7 SNVs whereas we expect very few sites to have more than 3
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Table 1 Observed and expected values for the distribution of SNVs for sites hit from 0–7 times. (A) shows data for the whole interrogable hu-
man genome, excluding simple sequence repeats. (B) shows data for all bases in the genome that are uniquely mappable at 100 base pairs. (C) the
same as B but for 20 base pairs. P < 0.001 for observing >7 sites with 3 SNVs in (A), (B) and (C) if SNVs were randomly distributed throughout the
genome.

Site Type 0 hits 1 hit 2 hits 3 hits 4hits 5hits 6hits 7hits

(A)–All Sites
Non-Exon TE obs (TE) 1344972042 1649680 7034 762 130 26 9 3
Non-Exon TE exp (TE) 1344964359 1663896 1430 1.14 9E−04 7E−07 5E−10 4E−13
Non-Exon Non-TE obs (NTE) 1321454397 1527967 3171 188 35 6 2 2
Non-Exon Non-TE exp (NTE) 1321451907 1532655 1206 0.86 6E−04 4E−07 3E−10 2E−13
Exon obs (EX) 119708384 97488 245 23 0 0 1 0
Exon exp (EX) 119708145 97939 57 0.03 2E−05 7E−09 3E−12 1E−15
Total obs 2786134823 3275135 10450 973 165 32 12 5
Total exp 2786124411 3294490 2692 2.04 2E−03 1E−06 8E−10 5E−13
(B)–Mappable 100
Non-Exon TE obs (TE) 1223239922 1517676 3927 266 25 11 5 1
Non-Exon TE exp (TE) 1223236637 1523873 1322 1.07 9E−04 7E−07 5E−10 4E−13
Non-Exon Non-TE obs (NTE) 1276165087 1499761 2698 97 16 2 0 1
Non-Exon Non-TE exp (NTE) 1276163336 1503124 1201 0.88 6E−04 5E−07 3E−10 2E−13
Exon obs (EX) 112360615 93084 185 16 0 0 0 0
Exon exp (EX) 112360453 93392 55 0.03 2E−05 7E−09 3E−12 1E−15
Total obs 2611765624 3110521 6810 379 41 13 5 2
Total exp 2611760426 3120389 2578 2 2E−03 1E−06 8E−10 6E−13
(C)–Mappable 20
Non-Exon TE obs (TE) 388613299 480820 741 9 0 0 0 0
Non-Exon TE exp (TE) 388612958 481494 417 0.34 3E−04 2E−07 2E−10 1E−13
Non-Exon Non-TE obs (NTE) 892370709 1061716 1621 31 4 1 0 1
Non-Exon Non-TE exp (NTE) 892369874 1063340 868 0.65 5E−04 3E−07 2E−10 2E−13
Exon obs (EX) 74735962 61034 103 6.00 0 0 0 0
Exon exp (EX) 74735883 61187 36 0.02 9E−06 4E−09 2E−12 7E−16
Total obs 1355719970 1603570 2465 46 4 1 0 1
Total exp 1355718714 1606021 1321 1 8E−04 6E−07 4E−10 3E−13

SNVs (Table 1A, Fig. 1)—the difference is highly significant using the Chi-square goodness
of fit test (p< 0.0001) for both the whole genome (Total) and when separating the genome
into non-coding transposable elements (TE), non-coding non-transposable elements and
(NTE) and exons (EX) (Table 1A). We refer to sites with 3 or more SNVs as excess sites. In
total we observed 1,187 excess sites (Table 1A) with the density of excess sites in TE being 3.9
and 3.4 fold greater than in NTE and EX respectively. The probability of this level of SNV
recurrence by chance alone is so low (Chi-squared goodness of fit test, p> 0.0001) that these
excess sites must either be (i) drivers, (ii) the result of mutation rate heterogeneity across
the genome or, (iii) the consequence of next generation sequencing (NGS) pipeline errors.

It seems unlikely that the majority of the excess sites are due to drivers since the density
of excess sites is higher in the TE and NTE parts of the genome than in EX (Table 1A).
Furthermore, to date only one intergenic driver of cancer—an activating C >T mutation
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Figure 1 The number of sites with 0–7 SNVs per site for: Main= all data, M100= sites that are
uniquely mappable at 100 base-pairs, M20= sites that are uniquely mappable at base-pairs and,
Expected is the expected number of SNVs per site drawn from a Poisson distribution using all data.

in the TERT promoter (Huang et al., 2013) at chr5:1,295,228—has been confirmed, and
although this is included in the excess sites with 7 SNVs, the remaining 1,186 excess sites
are unlikely to be under such selection. It therefore seems likely that the excess sites are
either due to mutation rate variation or problems with sequencing.

Excess sites are enriched in non-unique sequences
The human genome contains many duplicated sequences particularly within transposable
elements, and these pose challenges for accurate alignment of the short ∼100bp reads
produced from NGS (Zhuang et al., 2014). If the excess sites were the result of NGS
mapping errors then we might expect them to occur in regions of the genome that were
hard to align. Using the mappability scores (Derrien et al., 2012) we excluded all bases that
were not uniquely mappable at 100bp; this should give an overall indication of how easy
it is to map reads to the region. This only reduced the interrogable genome by 6%, but
the number of excess sites was reduced by 64% (Table 1B), demonstrating that a large
proportion of the excess sites were in duplicated sequences and therefore likely originate
from mapping errors. However, even with this large reduction in excess sites we still
observed many excess sites far greater than chance expectation (Chi-squared goodness of
fit test, p< 0.0001) (Table 1B and Fig. 1).

The SNVs in this data were all called from >100bp reads. If the excess sites were errors
of read mapping, they should not be affected by the uniqueness of shorter sequences
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(i.e., there is no reason why 100bp sequences that map uniquely to the genome should
be mis-mapped if it contains a non-unique 20bp sequence), however if the SNVs were
the product of a biological process that was more prevalent in non-unique or repetitive
sequences, then we might expect to see a reduction of excess sites when we exclude all bases
that do not map uniquely at 20bp. When we excluded all bases that were not unique at
20bp we found that the interrogable genome was reduced by 52% and the excess sites were
reduced by 96% (Table 1C and Fig. 1). It is worth noting that, due to their proliferative
nature throughout the genome, this reduction disproportionately affects TEs where the
interrogable genome is reduced by 71% and the excess sites by >99%. This would suggest
that the excess sites existing in sequences that were unique at 100bp but not unique at 20bp
may represent some biological process and not error. Furthermore, the TERT promoter,
whose recurrence is the result of positive selection, and is therefore the only excess site that
that we can confidently say is not a product of error, remains in this most conservative
of these analyses. Despite this large reduction in excess sites, significant heterogeneity still
remains; the probability of observing the 52 excess sites in the part of the genome uniquely
mappable at 20 bases is still extremely low (Chi-squared goodness of fit test, p< 0.0001).

One other potential problem with mapping reads to non-unique sequences occurs
when a segmental duplication has been collapsed in the assembly of the reference genome;
i.e., reads from two different locations are mapped to the same locus in the reference.
Differences between the duplications will appear as SNVs. If this was the case we would
expect to see an increase in excess site read coverage of ∼2-fold or greater. To investigate
whether this could be a problem in our data we compared the read coverage for excess sites
and non-excess sites, which nevertheless had an SNV, in the one set of cancer genomes
for which we had this information—the liver cancers sequenced by the RIKEN group.
However, we found that the median read coverage for the excess sites (n= 15) was actually
lower than for non-excess sites (n= 224,602) (28 and 33 reads respectively;Mann–Whitney
U test, p= 0.043).

Privacy of mutations
To further investigate the origin of excess sites we exploited the fact that some types of
cancer were sequenced by different laboratories using different technologies and NGS
pipelines. If the SNVs at excess sites found in a particular cancer are due to hypermutable
sites then we would expect them to be randomly distributed across research groups (i.e. all
research groups should identify the same hypermutable sites). If however the SNVs at excess
sites are due to error then we might expect them to be heterogeneously distributed across
research groups (i.e. the calling of recurrent false positive SNVs should be systematic of
individual research group NGS pipelines). The liver cancers, which were all virus associated
hepatocellular carcinomas, were sequenced by two different groups; 66 from the RIKEN
group using the Illumina Genome Analyser (https://dcc.icgc.org/projects/LIRI-JP) and
22 from the National Cancer Centre in Japan using the IIlumina HiSeq platform (https:
//dcc.icgc.org/projects/LINC-JP). We found that the excess SNVs were heterogeneously
distributed amongst research groups (Fisher’s exact test, P = 4×10−6) suggesting that the
30 excess sites from liver cancers were predominantly errors (Table S1).
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Table 2 The fit of 4 models to the observed distribution of recurrent SNVs in the three different ge-
nomic fractions (A) TE, (B) NTE and (C) EX. The median shape parameters are given for models 1b and
2b and the median eta are given for models 2b.

Model N Log-likelihood Shape ε

Non-Exon TE (TE)
1a 2 −269283.00 0.13
1b 64 −2935.80 0.12
2a 3 −266889.00 0.00021 0.956
2b 96 −1302.31 0.00016 0.959

Non-Exon Non-TE (NTE)
1a 2 −227728.00 0.31
1b 64 −1206.53 0.37
2a 3 −227026.00 0.00039 0.963
2b 96 −565.92 0.00026 0.972

Exon (EX)
1a 2 −13877.9 0.18
1b 64 −270.47 0.22
2a 3 −13843.30 0.00019 0.966
2b 96 −240.68 0.00035 0.958

Notes.
N , number of parameters.
Italics indicate the best fit as determined by a likelihood ratio test.

Parameter estimation
To gauge how much variation there is in the density of SNVs across the genome we fit two
models to the data using maximum likelihood. In model 1 we allowed the density of SNVs
to vary between sites according to a gamma distribution, estimating the shape parameter,
and hence the amount of variation there was between sites. We fitted two versions of
this model. In the first version, 1a, we constrained the model such that the mean SNV
density, shape parameter, and hence the level of variation, was the same for all triplets. In
the second version, 1b, we allowed the mean SNV density and shape parameter to vary
between triplets. The second of these models fits the data significantly better than the first
according to a likelihood ratio test suggesting that the level of variation differs between
triplets (Table 2). However, a goodness of fit test, comparing the number of sites predicted
to have 1, 2, 3. . . etc SNVs per site to the observed data, suggests the model fits the data
poorly. We therefore fit a second pair of models in which we allowed the rate of SNVs
to be due to two processes. The first process is constant across sites whereas the second
process is variable and drawn from a gamma distribution. There are two parameters in
the model, the proportion of SNVs at a site produced by the first process and the level
of variation in the second process. This model might represent a situation where the rate
of mutation is constant across sites but the rate of sequencing error is variable. As with
the first model we fit two versions of this model; in Model 2a we constrained the model
such that the parameters of the two processes were the same for all triplets. In Model 2b
they were allowed to vary between triplets. Both models 2a and 2b fit the data significantly
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Figure 2 The fit of the observed recurrent SNV distribution to expected distribution under the
favoured model, 2b, for (A) TE, (B) NTE and (C) EX genomic fractions

better than models 1a and 1b, and of this second pair of models, model 2b, which allows
the parameters to vary between triplets fits the data significantly better than model 2a, in
which the parameters are shared across triplets (Table 2). The best fitting model is therefore
one in which we have two processes contributing to the production of SNVs, one that is
constant across sites, although it differs between triplets, and one which is variable across
sites. Although, we can formally reject this model using a goodness-of-fit test (Chi-square
p< 0.0001), because we have so much data, it is clear that the model fits the data fairly
well (Fig. 2). Under this model we estimate that approximately 4.1%, 2.8% and 4.2% of
SNVs are due to the process that varies across sites in the TE and NTE, and EX sequences
respectively. However, the variation in the density between sites due to the variable process
is extremely large. The median shape parameters are 0.00016, 0.00026 and 0.00035 for the
TE and NTE, and EX sequences respectively. Under a gamma distribution with a shape
parameter of 0.0004 we would expect more than 99% of sites to have no SNVs generated
by this variable process, but some sites to have a density of SNVs that is 30,000-fold above
the average rate.

DISCUSSION
Through our analysis of∼3 million SNVs from whole cancer genomes we have shown that
there are many sites at which there is a significant excess of SNVs. The majority of these
are unlikely to be drivers because the density of sites with an excess of SNVs is greater in
the non-coding part of the genome than in the exons. It therefore seems likely that the
majority of the excess sites are either due to hypermutation or problems with sequencing
or the processing of the sequences. Several lines of evidence point to sequencing problems
being the chief culprit. First, many of the excess sites disappear when regions of the genome
with low mappability are removed. Second, SNVs at a particular excess site tend to be
found within the sequences from a particular laboratory; for example, site 85,091,895 on
chromosome 5 has 5 SNVs in liver cancers, but all of these are found in the sequences
from RIKEN not the sequences from the NCC. It is possbile that this could be caused by
biological differences between the cohorts, either environmentally induced or endogenous
genetic variation, such as that seen between European and African populations and the
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differing frequency of 5′-TCC-3′> 5′-TTC-3′ mutation (Harris, 2015). However the level
of site and cohort specific, but cryptic, variation required would be huge and we have very
little evidence to support such a hypothesis. Third, the level of variation in the density of
SNVs is much greater than has been observed or suggested for variation in the mutation
rate (Hodgkinson & Eyre-Walker, 2011; Kong et al., 2012; Michaelson et al., 2012) though
see a recent analysis of de novo germ-line mutations which suggests there could be extreme
mutational heterogeneity (Smith et al., 2016); some sites are estimated to have rates of SNV
production that are tens of thousands of times faster than the genomic average.

Only one line of evidence suggests that there might also be substantial variation in the
mutation rate as well as variation in the error rate. When we eliminate sites that are not
uniquely mappable at 20bp we find a great reduction in the number of excess sites relative
to the case when we remove sites that are not uniquely mappable at 100bp, and yet the read
length is greater than 100bp in the data that we have used. This might suggest that there
are some repetitive sequences that are prone to a process of hyper-mutation. However, it
might also be that mappability at 100bp is not a good guide to mappability during sequence
processing. First, some level of mismatch must be allowed during the mapping of reads to
the reference because there are single nucleotide variants segregating in the population and
there are somatic mutations in cancer genomes. Second, the mappability score is assigned
to the first nucleotide of the k-mer that can be mapped. Third, although the read length was
greater than 100bp, some shorter reads may have been used. Next generation sequencing
involves a number of biological processes, such as the polymerase chain reactions in the pre-
sequencing creation of libraries and the polymerization of nucleotides during sequencing
by synthesis, any one of which can result in technology-specific sequencing artefacts
(Quail et al., 2008; Nazarian et al., 2010). In addition to the considerable post-sequencing
processing, such as filtering and mapping, which can also generate errors (Harismendy &
Frazer, 2009; Minoche, Dohm & Himmelbauer, 2011). Unfortunately it is not possible to
say which of these factors is most important.

We have fit two models to the data in which the density of SNVs varies across sites.
In the first we imagine that the variation is due to a single variable process and in the
second we imagine it is due to two processes, one of which is constant across sites and one
which is variable. We find that this second model fits the data much better than the first
model, although it can be formally rejected by a goodness-of-fit test. In this secondmodel we
estimate the proportion of SNVs that are due to the two processes and the level of variation.
We estimate that approximately 2.8–4.2% of SNVs are due to the second process and that
this second process is highly variable between sites, such that a few sites have a density of
SNVs that is ten of thousands higher than the average density. It is possible that the first
process ismutation and the second is sequencing error, butwe cannot rule out the possibility
that the second process includes variation in the mutation rate as well. Studies of germ-line
(Hodgkinson & Eyre-Walker, 2011;Michaelson et al., 2012) and somatic (Hodgkinson, Chen
& Eyre-Walker, 2012; Woo & Li, 2012; Lawrence et al., 2013; Liu, De & Michor, 2013; Polak
et al., 2015) mutations have indicated that the mutation rate varies between sites on a
number of different scales. However, indications are that the variation is probably fairly
modest (Hodgkinson, Chen & Eyre-Walker, 2012; Michaelson et al., 2012).
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A model including two processes fits the data well (Fig. 2). However, we can reject this
model in a goodness-of-fit test, because we have a huge amount of data. Possible reasons
for the less than perfect fit include large scale variation in the mutation rate (Hodgkinson &
Eyre-Walker, 2011; Schuster-Bockler & Lehner, 2012;Makova & Hardison, 2015) and multi-
nucleotide-mutations (MNMs) (Rosenfeld, Malhotra & Lencz, 2010; Schrider, Hourmozdi
& Hahn, 2011; Harris & Nielsen, 2014); the latter represent ∼2% of all human single
nucleotide polymorphisms (SNPs).

In conclusion it seems likely that many sites in somatic tissues that have experienced
recurrent SNVs are due to sequencing errors or artefacts of post-sequencing processing and
there seems to be little evidence of cryptic variation in the somatic mutation rate. However,
this does not necessarily mean that such variation does not exist—it would be extremely
difficult to detect it given the high level of site-specific sequencing error. As sequencing
technology and processing pipelines improve in accuracy, we would expect similar future
analyses to be able to confidently estimate the true underlying variation in the somatic
mutation rate. Accompanied by the flow of data from projects such as the 100k genomes
project, it should soon be possible to achieve per triplet mutation rate variation map for
individual cancer types and not just pooled across multiple cancers.
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