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ABSTRACT
8-Hydroxyquinoline and derivatives exhibit multifunctional properties, including
antioxidant, antineurodegenerative, anticancer, anti-inflammatory and antidiabetic
activities. In biological systems, elevation of intracellular calcium can cause calpain
activation, leading to cell death. Here, the effect of 8-hydroxyquinoline and derivatives
(5-chloro-7-iodo-8-hydroxyquinoline or clioquinol and 8-hydroxy-5-nitroquinoline
or nitroxoline) on calpain-dependent (calpain-calpastatin) pathways in human neu-
roblastoma (SH-SY5Y) cells was investigated. 8-Hydroxyquinoline and derivatives
ameliorated high glucose toxicity in SH-SY5Y cells. The investigated compounds,
particularly clioquinol, attenuated the increased expression of calpain, even under high-
glucose conditions. 8-Hydroxyquinoline and derivatives thus adversely affected the
promotion of neuronal cell death by high glucose via the calpain-calpastatin signaling
pathways. These findings support the beneficial effects of 8-hydroxyquinolines for
further therapeutic development.
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INTRODUCTION
Diabetes mellitus (DM) is a complex metabolic disorder featuring chronic hyperglycemia
and tremendously impacts human health worldwide. Hyperglycemia contributes to the
long-term diabetic complications i.e., retinopathy, nephropathy and neuropathy (Aron-
sonons, 2008). Epidemiological evidence suggests that patients with DM have a significantly
high risk (50–100%) of developing Alzheimer’s disease (Biessels et al., 2006). Diabetic
patients exhibit cognitive impairment including damaged verbal memory, diminished
mental speed and mental flexibility (Cukierman, Gerstein & Williason, 2005). Chronic hy-
perglycemia may accelerate the development of Alzheimer’s disease, and many Alzheimer’s
patients exhibit impaired fasting glucose (Janson et al., 2004).

Neuronal cells cannot protect themselves from the harmful effects of excess glucose.
The most likely mechanism for glucose toxicity is the generation of excess reactive oxygen
species (ROS) via multiple mitochondrial and non-mitochondrial pathways (Newsholme et
al., 2007). In addition to ROS production, high glucose levels trigger multiple biochemical
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pathways and toxicity, which contribute to damage to DNA, lipid, proteins and subsequent
neurotoxicity (Li et al., 2014). However, the mechanisms underlying the association of
high glucose with neurodegeneration remain to be fully elucidated.

Calpain is an intracellularCa2+-dependent cysteine protease that is activated by increased
intracellular Ca2+. Calpain plays a vital role in glucose metabolism, cytoskeletal remodeling
for cell cycle regulation and apoptosis, probably as a consequence of a loss of Ca2+

homeostasis (Vosler, Brennan & Chen, 2008). Calpain cleaves and inactivates pro-caspase
9, pro-caspase 3 (Chua, Guo & Li, 2000) and APAF-1 (Lankiewicz et al., 2000). Calpastatin
is a specific endogenous calpain inhibitor (Croall & Ersfeld, 2007). Calpain activity underlies
the pathophysiology of several neurodegenerative diseases such as ischemia and epilepsy
(Vosler, Brennan & Chen, 2008), and overexpression of calpastatin improves ischemia and
reperfusion (Maekawa et al., 2003). Interestingly, the increase in calpain expression has
been related to Bax, caspase-12, caspase-9 and caspase-3 in dopaminergic neurons (Das,
Banik & Ray, 2006; McGinnis et al., 1998). The relative levels of calpain and dopamine in
neuron involve the process of neurodegeneration such as Parkinson’s and Alzheimer’s
diseases (Chen, Nguyen & Sawmiller, 2011; Carragher, 2006).

The biometal chelators (Prachayasittikul et al., 2013) 8-hydroxyquinoline, 5-chloro-
7-iodo-8-hydroxyquinoline (clioquinol) and 5-nitro-8-hydroxyquinoline (nitroxoline),
shown in (Fig. 1A), have been proposed as a potential therapeutic strategy for the treatment
of Alzheimer’s disease (Bush, 2008). Clioquinol was identified as a prototypemetal-protein-
attenuating compound (Barnham, Cheny & Cappai, 2004). The effect of clioquinol is
related to its lipophilicity and ability to form relatively stable complexes with zinc (II) and
copper (II) ions. Several reports have provided evidence that long-term pretreatment with
clioquinol reduces the susceptibility of substantia nigra neurons to neurotoxin (Kaur et al.,
2003). These compounds (Fig. 1A) are structurally related and bear 8-hydroxyquinoline
as a core structure. Clioquinol is a halogenated derivative, and nitroxoline is the nitro
derivative of 8-hydroxyquinoline. 8-Hydroxyquinoline and derivatives are bioavailable
antioxidants that can cross the blood–brain barrier and inhibit metal-hydrogen peroxide
production (Barnham et al., 2004).

Herein, the protective effects of 8-hydroxyquinoline, clioquinol and nitroxoline on
human neuroblastoma cells under high glucose were investigated.

MATERIALS AND METHODS
Chemicals and reagents
Minimum essential medium (MEM), Ham’s F-12medium, fetal bovine serum (FBS), peni-
cillin and streptomycin were purchased fromGibco BRL (Gaithersburg, MD, USA). Mouse
monoclonal anti-actin (catalog number 3700), rabbit polyclonal anti-calpain (catalog num-
ber 2539), anti-calpastatin (catalog number 4146) and horseradish peroxidase-conjugated
goat anti-mouse IgG and anti-rabbit IgG antibody were supplied by cell signaling
(Beverly,MA,USA). Enhanced chemiluminescence (ECL) pluswestern blotting reagentwas
purchased from Amersham Biosciences (Piscataway, NJ, USA). The human dopaminergic
neuroblastoma (SH-SY5Y) cell line was obtained from American Type Culture Collection
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Figure 1 8-Hydroxyquinoline, clioquinol and nitroxoline. (A) Chemical structures. (B) Effect of
8-hydroxyquinoline and derivatives on cell viability in SH-SY5Y cells. Cells were treated with 8-
hydroxyquinoline and derivatives at 1 and 10 µM for 24 h. Cell viability was measured using the MTT
assay and is presented as the percentage of control cells. The results are expressed as the mean± S.E.M. of
four independent experiments. One-way analysis of variance (ANOVA) and the Tukey-Kramer multiple
comparisons test were performed for statistical analysis. **P < 0.01 and ***P < 0.001 compared with the
control.

(Manassas, VA, USA). SH-SY5Y cells are a thrice cloned subline of bone marrow biopsy-
derived line SK-N-SH. SH-SY5Y cell has dopamine-β-hydroxylase activity and express
tyrosine hydroxylase. 8-Hydroxyquinoline (99%), clioquinol (≥95%), and nitroxoline
(96%) were purchased from Sigma-Aldrich (St Louis, MO, USA).

Cell cultivation
SH-SY5Y cells (passage number less than 25) were cultured in 75-cm2 flasks in MEM-F12
supplemented with 10% heat-inactivated FBS and 100 U/mL penicillin/streptomycin. Cells
were maintained at 37 ◦C in an atmosphere of 5% CO2 and 95% humidified air incubator,
and were feed with medium every other day. To perform experiments, cells were seeded in
96-well and 6-well plates and grown to 70–80% confluence. Before the start of treatment,
the medium was replaced with MEM-F12 containing 1% (v/v) FBS, as previously described
(Dayem et al., 2014; Kovalevich & Langford, 2013). It has been shown that cell incubation
with D-glucose for 24 h significantly induced cell apoptosis via the activation of c-Jun N-
terminal protein kinase (JNK) and p-38 mitogen-activated protein kinase (MAPK) (Chen
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et al., 2013;Ho et al., 2000). In case of glucose-treated cells for 2 h, the cells had significantly
higher level of ROS accumulation and promoted apoptotic cell death (Wu et al., 2004).
Up to date, the mechanism of high glucose contributing to degeneration in neuronal cells
remains poorly understood. To investigate the mechanism of high glucose level involved in
neuronal cells death, in this study, the cells were treated with D-glucose or D-mannitol at
various concentrations (5.5, 30, 60 and 120mM) for 2 or 24 h, and compared the percentage
of cell viability. In some experiments, 8-hydroxyquinoline and derivatives were added to
the medium for 2 h prior to an incubation with D-glucose for 24 h. Control untreated cells
were incubated with the culture medium. Mannitol was utilized as an osmotic control.

Cell viability assay
The 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay was used
to assess neuronal injury after treatment of SH-SY5Y cells with a drug. When MTT is
taken up by live cells, it is converted from yellow to dark blue formazan crystals by cellular
dehydrogenase (Stockert et al., 2012). MTT in 0.1 mM phosphate buffered saline (PBS)
was added to each well and incubated at 37 ◦C for 4 h. The solution was discarded, and
extraction buffer (0.04 N HCl in isopropanol) was added. The optimal densities were
measured at a spectral wavelength of 570 nm using a microtiter plate reader.

Western immunoblotting
Treated cells were harvested and lysed by adding lysis buffer and scraped off the plate. Cells
were sonicated for 10 s and centrifuged for 15 min at 12,000 g. The supernatants were
collected and separated by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. The
protein bands were transferred to nitrocellulose membranes and washed with Tris-buffered
saline and Tween20 (TBST) for 5 min. The membranes were incubated in a blocking buffer
(5% non-fat dry milk in TBST), then washed with TBST and incubated in primary
antibodies at 4 ◦C overnight. After the incubation, the membranes were washed three times
with TBST for 5 min and then incubated in HRP-conjugated secondary antibody for 1.5 h,
followed by washing three times for 5 min each time with TBST. The blots were developed
with ECL Plus Western Blotting detection reagents.

Immunocytochemical analysis
SH-SY5Y cells were seeded on sterile glass coverslips at 37 ◦C for 24 h and then exposed
to D-glucose in the medium containing 1%FBS for 24 h; control cells were incubated with
medium for 24 h. The cells were incubated with MitoTracker R© Red CMXRos for 30 min.
The medium was removed, and the cells were washed with ice-cold PBS. The cells were
fixed with 4% paraformaldehyde in PBS for 30 min at 4 ◦C and washed with PBS three
times for 5 min each time. Cells were permeabilized with 1% Triton X-100 in PBS for 10
min at room temperature and rinsed with PBS three times. Non-specific antibody binding
sites were blocked by incubating the cells with 10% donkey serum in PBS containing 0.3%
Triton X-100 and 1% bovine serum albumin (BSA) for 10 min at room temperature. Cells
were incubated with the primary antibody against calpain (1:1,000 in PBS containing 0.3%
Triton X-100 and 0.25% BSA) overnight at 4 ◦C, followed by incubation with fluorescein
isothiocyanate (FITC)-conjugated donkey anti-rabbit IgG (1:200 in PBS containing 0.3%

Suwanjang et al. (2016), PeerJ, DOI 10.7717/peerj.2389 4/17

https://peerj.com
http://dx.doi.org/10.7717/peerj.2389


Triton X-100 and 0.25% BSA) for 2 h at room temperature. The cells were washed
three times with PBS, and stained slides were mounted using antifade reagent in glycerol
buffer (Vector Laboratories, Burlingame, USA) and visualized by fluorescence microscopy
(Olympus, Tokyo, Japan).

Statistical analysis
Data are expressed as mean ± S.E.M. Significance was assessed by one-way analysis of
variance (ANOVA) followed by a Tukey-Kramer test using SPSS 18 software package for
Windows (Chicago, IL, USA). Probability (P) values of less than 0.05 were considered
statistically significant.

RESULTS
Effect of high glucose on cell viability of SH-SY5Y cells
The effect of high-glucose exposure on cell viability was investigated in SH-SY5Y cells using
various concentrations of D-glucose and D-mannitol (an osmolality control) medium for
2 h and 24 h. Treatment with D-glucose for 2 h significantly decreased cell viability to 91.31
± 0.73% at 60mM (P < 0.01) and to 82.59± 2.59% at 120mM (P < 0.001) compared with
normal medium (5.5 mM glucose) (F-value = 30.779) whereas treatment with D-glucose
for 24 h significantly decreased cell viability to 89.10± 3.23% at 30mM (P < 0.05), to 78.48
± 1.16% at 60 mM (P < 0.001), and to 73.97 ± 2.31% at 120 mM (P < 0.001) (F-value =
31.564) (Fig. 2A). To rule out an effect of osmotic stress on SH-SY5Y cells treated with high
glucose, cells were incubated with D-mannitol under the same conditions for the indicated
time. The differences in cell viability, between cells treated with D-glucose and with D-
mannitol at 60 or 120mM for 24 h were statistically significant. However, high glucose at 60
and 120 mM induced neuronal cell death as a result of hyperglycemia and hyperosmolarity.
A decrease in the cell viability of neuronal cells was noted when the cells were treated with
high glucose for 2 h. Increasing the ambient D-glucose concentration caused dose- and
time-dependent decreases in cell viability. Thus, 120 mM D-glucose was selected to
treat neurons in this study because this concentration has been used in many studies of
hyperglycemia in vitro (Haslinger et al., 2001; Li, Zhang & Sima, 2003; Song et al., 2015).

Effect of high glucose induced calpain and reduced calpastatin
protein levels
To determine if the increase in calcium-dependent pathways induced by high glucose
treatment occurs via upregulation of calpain protein, SH-SY5Y cells were incubated with
various glucose concentrations (5.5–120 mM) for the indicated time, the cell lysate was
collected, and calpain and calpastatin levels were determined by Western blot analysis.
Treatment with 120 mM D-glucose for 2 h or 24 h significantly increased calpain levels by
129.69 ± 8.30% (P < 0.01) (F-value = 7.031) and 134.44 ± 3.97% (P < 0.001) (F-value
= 31.964) compared with control cells at the same time points (Fig. 2B). These results
demonstrate that high glucose induced calpain expression.

Further investigation of calpastatin, a specific endogenous calpain inhibitor, was
performed by Western immunoblotting. Interestingly, exposure to 60 mM D-glucose
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Figure 2 High glucose-induced alteration of cell viability, capain and capastatin proteins expression.
Cells treated with D-glucose concentrations (30, 60 and 120 mM) for 2 h and 24 h were compared to cells
treated with control medium containing 5.5 mM D-glucose and mannitol as an osmotic control. (A) Cell
viability was measured using the MTT assay. (B) The levels of calpain and calpastatin were determined
by Western blot analysis. Protein bands were quantified by densitometry, and their differences are repre-
sented in the graph as the ratio of calpain and calpastatin to β-actin. The results are expressed as the mean
+ S.E.M. of four independent experiments. One-way analysis of variance (ANOVA) and Tukey-Kramer
multiple comparisons test were performed for statistical analysis, *P < 0.05, **P < 0.01 and ***P < 0.001
compared with the control at 2 h and ###P < 0.001 compared with the control at 24 h.
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resulted in increased calpastatin expression as early as 2 h (124.80 ± 2.88%, P < 0.01)
(F-value = 9.010), whereas 120 mM D-glucose exposure for 24 h significantly decreased
calpastatin protein levels to 75.07± 4.35% (P < 0.001) (F-value= 11.909) compared with
the control (Fig. 2B).

To demonstrate that the observed increase in calpain was related to cell death, an im-
munofluorescent double-labeling experiment was performed usingMitoTracker Red as the
mitochondrial marker. Control (5.5 mM D-glucose) cells exhibited weak immunostaining
of calpain. However, cells treated with 120 mMD-glucose displayed a bright green speckled
appearance that became more intense by 24 h after glucose administration (Fig. 3). Thus,
exposure to high glucose resulted in an induction of calpain immunofluorescence staining
in SH-SY5Y cells.

Cytotoxicity of 8-hydroxyquinoline and derivatives
The cytotoxic effects of 8-hydroxyquinoline and derivatives on cultured cells were assessed
at different concentrations using the tetrazolium salt reduction (MTT) assay. No significant
cytotoxic effect of 8-hydroxyquinoline and derivatives were evident at 1 µM in SH-SY5Y
cells (8-hydroxyquinoline: 93.52 ± 8.15% (F-value = 10.726); clioquinol: 100.8 ± 4.73%
(F-value = 0.40); nitroxoline: 86.44 ± 5.87% (F-value = 78.113)) as shown in (Fig. 1B).
Cytotoxic effects of 10 µM 8-hydroxyquinoline (68.67 ± 6.37%) and nitroxoline (39.17
± 2.18%) were observed after treatment for 24 h, and therefore 1 µM was used in
subsequent experiments.

Protective effect of 8-hydroxyquinoline and derivatives on high
glucose-reduced cell viability
The effects of 8-hydroxyquinoline and derivatives were further investigated by monitoring
cell viability changes in response to high-glucose (120mM) treatment for 24 h. Exposure to 1
µMclioquinol (93.35± 0.89%,P < 0.001) or nitroxoline (95.72± 0.92%,P < 0.001) signif-
icantly increased cell viability compared with high glucose-treated cells (73.97± 2.31% P <
0.01) (F-value= 24.262) (Fig. 4A). However, pretreatment with 1 µM8-hydroxyquinoline
also significantly increased cell viability to 86.89 ± 3.06%. The protective effect of the
compounds in order of potency was nitroxoline > clioquinol > 8-hydroxyquinoline.

Effect of 8-hydroxyquinoline and derivatives on high glucose-induced
calpain-calpastatin alteration
8-Hydroxyquinoline and derivatives have been reported to exert antidiabetic activity
(Prachayasittikul et al., 2013). Calpains are important regulators of the cell cycle and
apoptosis, and their activities are dependent on the concentration of calcium in cells.
We previously demonstrated that dexamethasone induced neuronal cell death via a
calpain-dependent pathway (Suwanjang et al., 2013). In the present study, the effect of 8-
hydroxyquinoline and derivatives on high glucose-induced calpain activation was observed
(Fig. 4B). Treatment of SH-SY5Y cells with 120 mM D-glucose for 24 h resulted in calpain
expression. Pretreatment with 1 µM 8-hydroxyquinoline and derivatives significantly
attenuated calpain expression (8-hydroxyquinoline; 109.82 ± 5.28% (P < 0.05) (F-value
= 11.489); clioquinol; 104.91± 4.95% (P < 0.01) (F-value= 13.919); nitroxoline: 105.47±
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Figure 3 Imaging microscopic analysis of SH-SY5Y cells demonstrating the D-glucose-induced in-
crease in calpain expression. Cells were treated with 120 mM D-glucose for 24 h. The control cells were
incubated with the culture medium for 24 h. The green color indicates calpain immunostaining using
fluorescein-5-isothiocyanate (FITC)-conjugated anti-IgG.
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Figure 4 The effect of 8-hydroxyquinoline and derivatives on the high glucose (120 mM) in SH-
SY5Y cells. Cells were treated with high glucose for 24 h. Some cells were pre-treated with 1 µM 8-
hydroxyquinoline and derivatives for 2 h prior to incubation with 120 mM high glucose for another 24
h. The control cells were incubated with the culture medium for 24 h. (A) Cell viability was measured
using the MTT assay. The results are expressed as the mean± S.E.M. of four independent experiments.
(B) Calpain and (C) calpastatin expressions were determined by Western blot analysis. Protein bands
were quantified by densitometry, and the changes are represented in the graph. Calpain and calpastatin
expressions are presented as the ratios of calpain or calpastatin/β-actin protein bands. The results
are expressed as the mean± S.E.M. of three independent experiments. One-way analysis of variance
(ANOVA) and the Tukey-Kramer multiple comparisons test were performed for statistical analysis.
*P < 0.05, **P < 0.01 and ***P < 0.001 compared with the control and #P < 0.05, ##P < 0.01,
###P < 0.001 compared with high glucose-treated cells.
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1.49% (P < 0.01) comparedwith the high glucose-treated cells (133.19± 5.32%, P < 0.001)
(F-value = 19.840). A greater protective effect was observed for clioquinol, as evidenced
by lower calpain expression under high glucose treatment. However, the protective effect
of nitroxoline was comparable to that of clioquinol. By contrast, 8-hydroxyquinoline and
derivatives tended to increase the expression of the calpain inhibitor (calpastatin, Fig. 4C)
by high glucose (8-hydroxyquinoline: 90.13 ± 4.93% (F-value = 2.840); clioquinol: 88.77
± 3.88% (F-value = 7.683); nitroxoline: 89.61 ± 1.31% (F-value = 6.570)) compared
with the high glucose-treated cells (83.03 ± 4.02%, P < 0.05). Moreover, treatment with
8-hydroxyquinoline and derivatives had no significant effects on the expressions of calpain
and calpastatin in untreated control cells.

DISCUSSION
Hyperglycemia is considered a risk factor of neurodegenerative diseases (Kopf & Frolich,
2009). Impairments in signaling mechanisms contribute to increased neuronal cell death.
Numerous studies have focused on elucidating themechanism by which high glucose toxic-
ity enhances deathmechanisms. The optimal concentration of glucose for neuronal survival
is reportedly in the range of 25–30 mM. Here, cell viability under high-glucose exposure
in human neuroblastoma SH-SY5Y cells was investigated. The mechanisms underlying
hyperglycemia and hyperosmolarity have been studied extensively. During hyperglycemia,
high levels of glucose-induced oxidative stress can cause cellular damage. In addition, excess
glucose leads to neurotoxicity via increased apoptosis and inhibition of proliferation. This
may activate p38 kinase associated with apoptosis via protein kinase C-dependent and -
independent pathways (Igarashi et al., 1999). The results suggest that elevated glucose level
initiates harmful mechanisms leading to neuronal cell degeneration (neuropathy). High
glucose (120 mM) was reported to affect Ca2+ homeostasis (Kimura, Oike & Ito, 1998). It
is also well established that high glucose (120 mM) induced oxidative stress and promoted
calcium influx in a variety of cell types including human monocytes (Wuensch et al., 2010)
and cardiac cells (Kumar, Kain & Sitasawad, 2012; Ozdemir et al., 2005; Cai et al., 2002).

Impairment of Ca2+ homeostasis is an important factor in the development of neuronal
degeneration (Todorovic & Jevtovic-Todorovic, 2014). Under physiological conditions,
calpain is localized in the cytosol and is in an inactive form in the absence of calcium.
Calpain is activated by cytosolic Ca2+ overload. The dysregulation of intracellular calcium
levels is an indicator of neuronal injury through the activation of several enzymes such
as calpains and phospholipases as well as mitochondrial alterations (Araujo, Verdasca &
Leal, 2004). The calpain system plays a major role in various cellular signaling processes,
including signal transduction, cell adhesion and motility, cell growth, differentiation and
cell death. Calpain activates both caspase-dependent and caspase-independent pathways
to promote apoptosis. In the apoptotic pathway, calpain cleaves apoptotic inducing factor,
which activates DNA degradation (Baritaud et al., 2010). Thus, the activation of calpain
may have an important role in many diseases such as retinal photoreceptor apoptosis
(Mahajan et al., 2012) and ischemia (Rami, 2003). A high concentration of glucose also
results in morphological alterations and cell death via processes related to the apoptotic
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pathway (Allen, Yaqoob & Harwood, 2005). Accumulation of oxidative stress is present in
diabetes. Therefore, high glucose can induce cellular hypertrophy by excessive production
of ROS. Clinical studies also indicate that high glucose enhances the pathology of diabetes
by increasing oxidative stress (Trombetta et al., 2005). In general, ROS are recognized as a
main source of molecular damage in hyperglycemia (Piconi et al., 2006).

Calpain activity is inhibited by endogenous calcium-dependent interactions with
calpastatin. Calpastatin binds to the active site and inhibits calpain in the presence of
calcium (Goll et al., 2003). Specific calpain inhibitors reduce neuronal damage in a number
of different systems. The current findings demonstrate that high concentrations of glucose
can lead to increased calcium levels and enhance calpain protein expression in a dose-
and time-dependent manner. Increased calpain expression has been implicated in vascular
inflammation and endothelial leakage in diabetes (Scalia et al., 2007). In addition, calpain
plays significant roles in apoptotic processes (Raynaud & Marcilhac, 2006). However, the
expression of proteins related to the specific calpain inhibitor (calpastatin) was decreased
in SH-SY5Y cells treated with high glucose concentrations. Furthermore, previous studies
have suggested that neuronal calpain activity mediates the initiation and expression
of methamphetamine- and dexamethasone-induced cell death (Suwanjang et al., 2013;
Suwanjang et al., 2012). Several mechanisms have been proposed for the effects of calpain
during cell death, including cleavage of pro-caspase 3 and degradation of apoptotic proteins
(Camins et al., 2006).

Several studies have revealed a functional association of 8-hydroxyquinoline and deriva-
tives with cancer, inflammation, Alzheimer’s and Parkinson’s diseases (Mao & Schimmer,
2008). Of the tested derivatives, clioquinol is a bioavailable ligand with moderate affinity
for copper, zinc and iron. Clioquinol possesses relatively high lipophilicity and crosses the
blood–brain barrier. Clioquinol has been observed in brain tissue and cerebrospinal fluid
(Bondiolotti et al., 2007) and exhibits neuroprotective effects in MPTP mouse (Kaur et al.,
2003) and Alzheimer’s models (Suh, Jensen & Jensen, 2000). Nitroxoline, a nitro derivative
of hydroxyquinoline, is used as an antibacterial drug in patients with urinary tract infections
(Wagenlehner et al., 2014; Ghoneim, El-Desoky & Abdel-Galeil, 2011). Recently, clioquinol
and nitroxoline have been reported to exert anticancer activity against cholangiocarcinoma
cells (Chan-On et al., 2015). Clinical trial data suggest that 8-hydroxyquinoline and its
derivatives may also have benefits in preventing the development and progression of
neurodegeneration. Clioquinol protects against cell death in in vivo and in vitro models of
Parkinson’s disease (Wilkins et al., 2009). The induction of calpain in neuronal cells might
be closely related to several toxicitymechanisms, including caspase-3 activation (Bastianetto
et al., 2011) and oxidative stress (Suwanjang et al., 2013). 8-Hydroxyquinoline and
derivatives have been reported as potent antidiabetic agents (Prachayasittikul et al., 2013).
The present study demonstrates that treatment of SH-SY5Y cells with 8-hydroxyquinoline
and derivatives results in decreased calpain expression and reduced neuronal cell death after
high glucose toxicity. Conversely, high-glucose toxicity might be controlled by treatment
with 8-hydroxyquinoline and derivatives. Notably, the compounds reduced the expression
of calpain in the order clioquinol≈nitroxoline> 8-hydroxyquinoline. It has been suggested
that 8-hydroxyquinoline and derivatives, especially clioquinol prevent Ca2+ influx and
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calcium signal in Alzheimer’s (LeVine et al., 2009; Abramov, Canevari & Dunchen, 2005;
Lin, Bhatia & Lal, 2003; Cherny et al., 2001) and Parkinson’s diseases (Cacciatore et al.,
2013). Furthermore, it is also reasonable that 8-hydroxyquinoline and derivatives decrease
calpain but increase calpastatin expressions via their antioxidant activities and reduce
intracellular calcium level in high glucose toxicity. In addition, the decrease in calcium
level may be enhanced by metal chelating property of 8-hydroxyquinoline and derivatives
(Prachayasittikul et al., 2013).

CONCLUSIONS
This study reveals that 8-hydroxyquinoline and derivatives offer partial neuroprotection
against high glucose toxicity and modulate the balance between calpain and calpastatin
expressions. These findings provide a foundation for the further therapeutic development
of 8-hydroxyquinoline compounds.
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