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Populations of many large marine species are under threat. Here, we conducted a
demographic analysis of a reef manta ray (Manta alfredi) population off the southern coast
of Mozambique, in order to ascertain the main drivers of its population changes. Using six
years (2009–2014) of mark-recapture data collected using a photo-identification method,
we estimated the annual apparent survival rate as 0.67 (± 0.155 standard error) per year,
with 7% re-sights every year. The female-to-male ratio was 1.7:1. We also constructed a
stage-structured matrix population model, and estimated generation time as 7.9 years, the
population growth rate as 0.780 per year and lifetime reproductive success as 0.28
offspring per year. The latter two results indicate that this population is declining at the
same rate as another population 100 km further north. An elasticity analysis revealed that,
as in other long-lived species with comparable life history characteristics, population
growth rate is most sensitive to changes in adult survival rate. This suggest that
conservation of this population would benefit from focusing on how to best protect adult M.
alfredi.
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16 ABSTRACT

17 Populations of many large marine species are under threat. Here, we conducted a demographic 

18 analysis of a reef manta ray (Manta alfredi) population off the southern coast of Mozambique, in 

19 order to ascertain the main drivers of its population changes. Using six years (2009–2014) of 

20 mark-recapture data collected using a photo-identification method, we estimated the annual 

21 apparent survival rate as 0.67 ( 0.155 standard error) per year, with 7% re-sights every year. 

22 The female-to-male ratio was 1.7:1. We also constructed a stage-structured matrix population 

23 model, and estimated generation time as 7.9 years, the population growth rate as 0.780 per year 

24 and lifetime reproductive success as 0.28 offspring per year. The latter two results indicate that 

25 this population is declining at the same rate as another population 100 km further north. An 

26 elasticity analysis revealed that, as in other long-lived species with comparable life history 

27 characteristics, population growth rate is most sensitive to changes in adult survival rate. This 

28 suggest that conservation of this population would benefit from focusing on how to best protect 

29 adult M. alfredi. 
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30 INTRODUCTION

31 Over-fishing, climate change and continuous habitat degradation by human activity pose great 

32 threats to the persistence of wild populations; consequently, stringent management policies are 

33 required to ensure their viability and persistence. However, information regarding the criteria for 

34 accurate management recommendations is often insufficient, or completely absent. When 

35 prioritizing management policies, one must assess a population’s response to various candidate 

36 management policies. Therefore, knowledge of demographic rates and the life stages that most 

37 affect the population growth rate is indispensable. Investigating the consequences of changes in a 

38 population’s demography due to perturbations such as climate change, fishing or changes in 

39 management policies may be crucial to a species’ survival (Nelson & Peek, 1982; Wisdom & 

40 Mills, 1997). 

41 Manta rays are among the largest planktivorous elasmobranchs in the world (Deakos, 

42 2010), can reach a disc width, i.e. the distance between the two pectoral fin tips, of 5–7 m 

43 (Marshall et al., 2011), and mainly feed on epipelagic and demersal zooplankton (Couturier et 

44 al., 2013). Reef manta rays (Manta alfredi) have a slow life-history speed, e.g. late maturity, a 

45 long gestation period and a low mean lifetime reproductive success (Heppell, Caswell & 

46 Crowder, 2000; Dewar et al., 2008; Marshall & Bennett, 2010; Deakos, Baker & Bejder, 2011; 

47 Braun et al., 2014). Therefore, once a manta ray population starts to decrease or reaches critically 

48 low numbers it is very difficult for it to recover (Jennings, 2001; Denney, Jennings & Reynolds, 

49 2002; Russ & Alcala, 2004; Cavanagh & Gibson, 2007; Dulvy et al., 2008), so understanding 

50 how population growth rates are affected by different demographic rates is particularly important 

51 (Hoenig & Gruber, 1990; Reynolds, Dulvy & Roberts, 2002; Dulvy et al., 2008; Deakos, Baker 

52 & Bejder, 2011).
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53 Reef manta rays are currently listed as “Vulnerable” by the International Union for 

54 Conservation of Nature (IUCN) Red List of Threatened Species, and their populations are 

55 decreasing due to targeted and accidental fishing (Marshall et al., 2011; Couturier et al., 2012). 

56 They are fished for their gill rakers, which is a key ingredient in Chinese pseudo-medicine, and 

57 cartilage, which serves as a filler in shark-fin soup (White et al., 2006; Deakos, Baker & Bejder, 

58 2011; O’Malley, Lee-Brooks & Medd, 2013; Ward-Paige, Davis & Worm, 2013). Recently, M. 

59 alfredi and the giant manta (M. birostris) were listed in Appendix II of the Convention on 

60 International Trade in Endangered Species of Wild Fauna and Flora (CITES). The Convention 

61 determined that any international trade of manta rays from September 2014 must be controlled. 

62 However, in many countries, particularly underdeveloped ones, manta ray populations are still 

63 decreasing at an alarming rate, due to a lack of national management and protection. Despite 

64 their importance for tourism (Tibiriçá et al., 2011), their large size and frequent inshore 

65 occurrence, manta rays have escaped the national attention of Mozambique, even though there 

66 has been a 88% decrease in manta sightings (Rohner et al., 2013). Manta rays are not protected 

67 by law in Mozambique, their main aggregation areas are not inside marine protected areas and 

68 there has been a rapid increase in the use of gill nets, which have significantly increased manta 

69 ray by-catch (Marshall, Dudgeon & Bennett, 2011; Pereira et al., 2014).

70 Although manta rays are difficult to overlook and are often easy to approach, a paucity of 

71 data is still a problem that hampers an in-depth understanding of their population dynamics. If 

72 conservation management policies are to be effective, knowledge regarding a population’s 

73 sensitivity to disturbance is essential. Population models have already shown that in some long-

74 lived organisms, investing in the protection of adults yields a larger increase in population 

75 growth rate than the protective rearing of newborns (Heppell, Crowder & Crouse, 1996). 
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76 Therefore, a very small decrease in the annual survival rate of (sub)adults can have serious 

77 repercussions for the persistence of such populations (Brault & Caswell, 1993; Heppell, Crowder 

78 & Crouse, 1996; Heppell, Caswell & Crowder, 2000). 

79 The aim of this study was to ascertain what the main drivers of population changes are in 

80 a reef manta ray population off the coast of southern Mozambique. We developed and 

81 parameterized a stage-structured population projection model (PPM) (Nichols et al., 1992; 

82 Caswell, 2001; Fujiwara & Caswell, 2001). Estimates for growth and reproductive rates within 

83 the PPM were taken from the literature; survival rates were estimated by applying a Cormack-

84 Jolly-Seber (CJS) model to capture-mark-recapture (CMR) data taken from the customized 

85 Manta ID database (MID 3.0 Beta Version) over a six-year period (2009–2014), using photo-

86 identification methods. We applied this population model to obtain, to our knowledge for the 

87 first time, a demographic characterization of M. alfredi, including its population growth rate, 

88 lifetime reproductive success and generation time. Elasticity analysis is an important tool in 

89 answering questions in population ecology (Caswell, 2001), and is widely applied by 

90 conservation biologists to aid in developing sustainable management strategies (Benton & Grant, 

91 1999; Carslake, Townley & Hodgson, 2009); therefore, we conducted an elasticity analysis to 

92 assess how sensitive the M. alfredi population growth rate is to perturbations in growth, survival 

93 and reproductive rates.
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94 METHODS

95 Study site

96 Surveys were conducted on the inshore reefs off Zavora beach, Mozambique (S24.30 E35.12E), 

97 along an approximately 13-km stretch of coastline, at depths ranging from 7 to 15 m. Three main 

98 manta ray aggregation sites within 800 m (Fig. 1: areas in A) were chosen, because of their high 

99 manta ray encounter rates. Opportunistic manta ray surveys were also conducted at two other 

100 locations with less frequent manta encounters, about 3 to 5 km north of the main aggregation site 

101 (Fig. 1: areas in B). Reef manta rays tend to stay inshore, and exhibit a high affinity for particular 

102 cleaning stations (Dewar et al., 2008; Marshall, 2009; Marshall, Compagno & Bennett, 2009; 

103 Deakos, Baker & Bejder, 2011), making these locations well suited for photo-identification 

104 studies. 

105

106 Data collection using photo-identification

107 A suitable method for data gathering with minimal disturbance is photographic identification. 

108 Due to its non-invasive nature, photo-identification is particularly suitable for endangered 

109 species, such as manta rays (Brault & Caswell, 1993; Bansemer & Bennett, 2008; Marshall & 

110 Pierce, 2012). Instead of physically marking an animal, photographs of permanent phenotypic 

111 characteristics can serve as points for recognition, turning conventional physically intrusive 

112 mark-recapture methods into a sight-re-sight technique. Photo-identification has already 

113 successfully been used in marine species, e.g. cetaceans (Hammond, Mizroch & Donovan, 1990; 

114 Brault & Caswell, 1993) and whale sharks (Rhincodon typus) (Arzoumanian, Holmberg & 

115 Norman, 2005; Graham & Roberts, 2007; Speed, Meekan & Bradshaw, 2007; Holmberg, 

116 Norman & Arzoumanian, 2009). Manta rays have a distinctive spot and patch pattern on their 
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117 ventral side that allows for individual recognition. These markings are already present in the 

118 foetus (Marshall, Pierce & Bennett, 2008) and remain unchanged over time (Yano, Sato & 

119 Takahashi, 1999; Kitchen-Wheeler, 2010; Marshall, Dudgeon & Bennett, 2011). The markings 

120 extend across the entire ventral surface, but due to its diversity, a small surface area is sufficient 

121 to ensure positive identification results. We used the same rectangle-shaped area as used by 

122 Marshall, Dudgeon & Bennett (2011). This area allows sex determination and a clear image of 

123 the most important part of the spot pattern, without any deformation as a result of pectoral fin 

124 flexing (Marshall, Dudgeon & Bennett, 2011). 

125 Using the photo-identification method, M. alfredi presence was surveyed over a six-year 

126 period from February 2009 to October 2014, with an average of 135 dives per year. Photographs 

127 of M. alfredi individuals were taken in an opportunistic manner, and depended on weather, 

128 funding and sea conditions. Occasionally, recreational divers also contributed photographs. On 

129 average, two dives were conducted per day, three times a week, with most diving activity taking 

130 place during December–January and April–June of each year. Each dive lasted 60 min at the 

131 most. Upon encountering a reef manta ray, photographs were taken of the pigment patterns on 

132 the ventral side, scars, condition of the tail and other markings to aid individual identification. 

133 Where possible, sex was determined by the presence or absence of male claspers on the pelvic 

134 fins. Photographs were taken using a Canon PowerShot G11 inside an Ikelite underwater casing. 

135 A GoPro 360 camera was attached to a custom-made aluminium structure, which supported two 

136 parallel green lasers that were fixed 50 cm apart, in order to increase the precision of the size 

137 estimates (Deakos, 2010; Marshall, Dudgeon & Bennett, 2011). All of the data collection 

138 conducted in this study complied with the laws of Mozambique as no permits are required.
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139 Manta ID database

140 When at least one quality image was taken of a reef manta ray, the picture was uploaded onto a 

141 custom-designed Manta ID database (MID 3.0 Beta Version). This database was specifically 

142 designed for the cross-matching of photographs of manta rays, using an algorithm that takes the 

143 following criteria into account:

144 1. Species; M. birostris or M. alfredi. Both species are recorded in MID, but only observations of 

145 M. alfredi were used in this study.

146 2. Sex; manta rays were classified as female, male or unknown.

147 3. Gill pattern; a “yes or no question” regarding the presence of spots in four different areas 

148 between the anterior 1st gill slits and the most posterior 5th gill slits.

149 4. Areas 1 & 2; the number of spots in Area 1 (consisting of the surface between the 1st and 3rd 

150 gill slits) and the number of spots in Area 2 (the surface between the 3rd and 5th gill slits).

151 5 & 6. Distal right/left side; the presence or absence of black markings on the outer edge of the 

152 right/left gill set.

153 7. Ventral area; the number of spots (0–5, 6–10, 11–15, 16–20, 20–25 or >25) and grey patches 

154 on the ventral side, ranging from the 5th gill slits to the end of the pelvic fins.

155 The first two criteria are easily observable in situ for the trained eye, and can be confirmed with 

156 a photograph. The spot pattern in the standardized area is the most important characteristic with 

157 which to identify individual manta rays (criteria 3 to 7), and the other characteristics provide 

158 confirmation. The program MID uses a mathematical algorithm that takes into account the 

159 position, presence/absence and number of spots in relation to each gill. After entering new data, 

160 MID will show several options of similar manta rays for which a re-sight can be verified or a 

161 new manta ray can be added to the database. As different observers may interpret photographs 
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162 differently, the logarithm does not eliminate any potential options; it allows up to three 

163 mathematical differences in order to avoid eliminating possible matches by accident.

164

165 Statistical analyses

166 Firstly, to gain an insight into the structure of the M. alfredi population, we conducted a Chi-

167 square test in R v. 3.1.2 software (Crawley, 2007; R Development Core Team, 2013) to assess 

168 the overall sex ratio within the study population. Secondly, we used statistical analyses to 

169 estimate M. alfredi recapture rates and survival rates; estimates of survival rates were required to 

170 parameterise our population model. We used a CMR approach to estimate recapture and survival 

171 rates from data on individual manta rays, which were photo-identified and later re-encountered. 

172 We only estimated these rates for adult females, because (i) the population model was 

173 constructed for females (assuming that female demography determines population growth 

174 (Caswell, 2001)), and (ii) there were no re-sights of juveniles, so we could only estimate these 

175 rates for adults. Of the different CMR approaches that exist, we used open-population CJS 

176 models (Cormack, 1964; Jolly, 1965; Lebreton et al., 1992) and assumed that manta rays seen at 

177 the different study sites comprise a single population, which was open to immigration/birth and 

178 emigration/death. CJS models rely on the following three assumptions (Cooch & White, 2014): 

179 (1) every marked animal present in the population at time t has the same probability of survival 

180 and recapture at time t + 1; (2) marks are not lost or missed; (3) all samples are instantaneous 

181 relative to the interval between occasion t and t + 1, and each ray is released immediately after 

182 sampling. The first assumption was tested using a goodness-of-fit test in MARK v. 7.2 (White & 

183 Burnham, 1999), which revealed that our dataset conformed to this assumption (χ2 = 2.5, d.f. = 1, 

184 p = 0.444). Assumptions 2 and 3 were met, as no manta rays were overlooked during the dives 
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185 due to their large size (divers reported the same number of manta rays seen per dive), and 

186 photographs were taken immediately upon encountering a manta ray.

187 We used four different open CJS models to investigate whether the recapture rate (p, yr-1) 

188 and apparent survival rate (, yr-1), defined as the probability that the animal survives and is 

189 available for recapture, were constant or varied over time. In model 1, apparent survival rate and 

190 recapture rate are constant, denoted as (.) p(.); in model 2, apparent survival rate is constant and 

191 recapture rate varies across years, denoted as (.) p(t); in model 3, apparent survival rate varies 

192 across years and recapture rate is constant, denoted as (t) p(.); in model 4, both apparent 

193 survival rate and recapture rate vary across years, denoted as (t) p(t). To assess which of the 

194 four models best fitted our data, we applied model selection using Akaike’s Information 

195 Criterion (AICc) to compare the models, where the subscript c indicates that the AIC is corrected 

196 for a finite sample size and a decreased chance of overfitting. The model with the lowest AICc 

197 value was considered to be the best-fitting (Akaike, 1987). We then applied a model selection 

198 procedure to compare nested models (model 2 is nested within model 1; model 3 is nested within 

199 model 1; and model 4 is nested within models 2 and 3). CJS model analysis and selection were 

200 conducted using the standard “live recaptures (CJS)” setting in MARK. We used estimates of 

201 apparent survival rate from the best-fitting model. 

202

203 Population model

204 To construct the population model, we divided the M. alfredi life cycle into the following three 

205 life stages: yearling (individuals in the first year of life), juvenile (which do not reproduce) and 

206 adult (which reproduce) (Fig. 2). The addition of further life stages may have increased model 

207 accuracy, but these are the only currently distinguishable stages in M. alfredi. The rate at which 
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208 individuals survive and stay in the same life stage equals Pi, where i indicates Y (yearling), J 

209 (juvenile) or A (adult), and was calculated as:

210

211  (Equation 1)𝑃𝑖 =  𝜎(1 ‒ 𝛾𝑖)

212

213 where  is the apparent survival rate estimated using the CMR analysis (see above). We assumed 

214 that the apparent survival rate  did not differ between life stages, as we could only calculate  

215 for adults (see above). The parameter i is the transition rate from one life stage to the next 

216 (expressed per year); from yearling to juvenile (Y) or from juvenile to adult (J). Each transition 

217 rate i was calculated as , where Si is the duration (in years) of either the yearling (i = 𝛾𝑖 = 1/𝑆𝑖

218 Y) or juvenile life stage (i = J) (Table 1). The rate (per year) at which individuals survive and 

219 grow into the next life stage is defined as:

220

221  (Equation 2) 𝐺𝑖 =  𝜎𝛾𝑖

222

223 where i indicates Y (yearling) or J (juvenile). The number of female offspring that an adult 

224 female produces each year equals FA. Putting it all together results in the following population 

225 projection matrix:

226

227  (Equation 3)𝐀 = [𝑃𝑌 0 𝐹𝐴
𝐺𝑌 𝑃𝐽 0
0 𝐺𝐽 𝑃𝐴

]
228
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229 The projection interval from time t to t + 1 is one year. Using the population model, we 

230 calculated the population growth rate from the dominant eigenvalue of matrix A and the stable 

231 stage distribution by its right eigenvector. Generation time T was calculated as 𝑇 = log (𝑅0)/log 

232 , where R0 is mean lifetime reproductive success as calculated by taking the dominant (𝜆)

233 eigenvalue of the matrix, R = FN. The matrix F is a fertility matrix that describes the production 

234 of new individuals:

235

236  (Equation 4)𝐅 = [0 0 𝐹𝐴
0 0 0
0 0 0 ]

237

238 The matrix N is calculated as N = (I – U)-1, where I is the identity matrix and U the transient 

239 matrix that describes the growth and survival rates of the different stages:

240

241  (Equation 5)𝐔 = [𝑃𝑌 0 0
𝐺𝑌 𝑃𝐽 0
0 𝐺𝐽 𝑃𝐴

]
242

243 Using the population projection matrix A, we performed an elasticity analysis to investigate how 

244 sensitive the population growth rate  is to perturbation of each of the different growth, survival 

245 and reproductive rates. We calculated the elasticity matrix E, where each element on row m and 

246 column n of matrix E, emn represents the proportional contribution of this demographic rate 

247 corresponding to this element to the population growth rate . The elasticities were calculated as 

248 follows (Caswell, 2001):

249

PeerJ reviewing PDF | (2015:11:7532:0:0:NEW 5 Nov 2015)

Manuscript to be reviewed



250  (Equation 6)𝑒𝑚𝑛 =
𝑎𝑚𝑛

𝜆  
𝜆

𝑎𝑚𝑛

251

252 where amn are the elements of A, and the second part of the equation are the sensitivities of  to 

253 changes in the elements amn of A (Caswell, 2011). The elasticities sum to 1, and give the 

254 proportional contributions of the matrix elements to the population growth rate . Therefore, the 

255 higher an elasticity value is relative to other elasticity values, the greater is the effect of the 

256 demographic rate that that elasticity value is associated with on the population growth rate. All of 

257 the population model analyses were conducted in MATLAB® R2014b (MathWorks®, MA, 

258 USA).

259

260 RESULTS

261 A total of 2281 images of 327 M. alfredi individuals were analysed. Of these 327 individuals, 21 

262 were re-sighted at least once over the six-year observation period, 7 of which were male and 14 

263 female. The maximum number of times that an individual was re-sighted was three, with one 

264 female that was seen at the same location twice in 2013 and once in 2014. A total of 39 

265 individuals could not be sexed; of the 288 sexed individuals, 63% were female and 37% male, 

266 indicating a female-biased sex ratio of 1.7:1, which was significantly different from a 1:1 ratio 

267 (2 = 20.05, d.f. = 1, p < 0.0001). Overall, the total number of males and females seen varied 

268 between years (Fig. 3).

269 In order to construct our population model to run a demographic analysis for M. alfredi, 

270 we estimated annual apparent survival rates of adult females using a CMR analysis, in which we 

271 compared four open CJS models where apparent survival and recapture rates are both constant, 

272 both vary over time or one was constant and the other varies over time. Both model selection 
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273 procedures revealed that the best-fitting model was model 2, with a constant apparent survival 

274 rate and a time-varying recapture rate p (ΔAICc > 2, AICc weight = 0.748) (Tables 2 and 3). 

275 According to model 2, the apparent survival rate was = 0.666 year-1 (standard error, 0.155; 

276 95% confidence interval, 0.338–0.887), and the yearly recapture rates pt,t+1 from year t to year t + 

277 1 were p2009–2010 = 0.000, p2010–2011 = 0.000, p2011–2012 = 0.022, p2012–2013 = 0.209 and p2013–2014 = 

278 0.094. The overall recapture rate over the whole study period was 0.065 per year. We calculated 

279 the rates at which individuals transitioned from the yearling to the juvenile stages (Y = 1/SY = 

280 1/1) and from the juvenile to the adult stage (J = 1/SJ = 1/8) from published observations of how 

281 many years individuals stay in the yearling (SY = 1) or juvenile stage (SY = 8) (Table 1). We then 

282 parameterised the population projection matrix A. Using a constant apparent survival rate  

283 value of 0.666 and the life-stage transition rates Y = 1 and J = 0.125 (Table 1), we calculated Pi 

284 and Gi (Equations 1 and 2). We set adult fertility rate FA at 0.375, because mature female manta 

285 rays produce one offspring every one or two years (Dewar et al., 2008; Marshall & Bennett, 

286 2010; Couturier et al., 2014), resulting in an average of 0.5 × (1 + 0.5) offspring per year = 0.375 

287 female offspring per year. Inputting all of these values resulted in the following population 

288 projection matrix:

289

290  (Equation 7)𝐀 = [𝑃𝑌 0 𝐹𝐴
𝐺𝑌 𝑃𝐽 0
0 𝐺𝐽 𝑃𝐴

] = [ 0 0 0.375
0.666 0.583 0

0 0.083 0.666]
291

292 Note that PY = 0 (top-left element in A, Equation 7), because the projection interval of one year is 

293 equal to the time that a yearling remains in the yearling life stage. This matrix yields a population 

294 growth rate of λ = 0.780, meaning that each year, the population ‘grows’ by 78%; therefore, the 
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295 population is projected to decrease each year by 1 – 0.78 = 0.22, or 22%. The stable stage 

296 distribution reveals that the population is predicted to be mainly comprised of juveniles (52.4%), 

297 followed by 32.1% adults and 15.5% yearlings. Unfortunately, we had no observations with 

298 which to compare the predicted population structure to. Mean female lifetime reproductive 

299 success is estimated to be 0.28 offspring per year, and generation time is estimated to be 7.9 

300 years. 

301 We then calculated the elasticity matrix E, which summarises how influential each 

302 demographic rate is to the population growth rate , relative to other demographic rates:

303

304 E = . (Equation 8)[ 0 0 0.093
0.093 0.276 0

0 0.093 0.445]
305

306 The highest value is the bottom-right element, e3,3 = 0.445. This matrix element corresponds to 

307 the adult survival rate PA (Equation 3), indicating that the population growth rate is most 

308 sensitive to changes in adult survival rate. The next-highest elasticity value is e2,2 = 0.276, which 

309 corresponds with juvenile survival rate PJ (Equation 3), so the population growth rate  is also 

310 sensitive to changes in juvenile survival rate. The other elasticity values are all much lower 

311 (Equation 8), which indicates that the population growth rate is relatively insensitive to changes 

312 in adult fecundity rate (FA), the rate of transitioning from the yearling to juvenile stage (GJ) and 

313 the rate of transitioning from the juvenile to adult stags (GA). 
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314 DISCUSSION 

315 Demographic analysis

316 Here, to our knowledge, we present the first demographic analysis of a reef manta ray 

317 population. Manta ray populations have globally declined according to the IUCN Red List for 

318 Threatened Species. Our results confirm this pattern, as both the predicted population growth 

319 rate and mean lifetime reproductive success were lower than unity (population growth rate λ = 

320 0.78 per year; lifetime reproductive success R0 = 0.28 offspring per year), and both are indicative 

321 of population decline. Before drawing any firm conclusions on the population dynamics of this 

322 M. alfredi population, a couple of factors that could have compromised our results should be 

323 discussed. Firstly, the CMR analysis revealed an overall 7% yearly re-sight rate of M. alfredi 

324 individuals, which is considerably lower than in other manta ray studies that have applied CMR 

325 analyses. For example, Marshall, Dudgeon & Bennett (2011) re-sighted over 40% of their photo-

326 identified individual manta rays within a four-year period; at Lady Elliot Island, Australia, over 

327 66% were re-sighted in a five-year study (Couturier et al., 2014), and over 36% of the manta rays 

328 identified revisited the same aggregation site in the central Maldives within a nine-year period 

329 (Kitchen-Wheeler, Ari & Edwards, 2012). The low re-sight rate that we obtained may have been 

330 due to temporal emigration. Once photographed, a manta ray might disperse to other regions and 

331 only occasionally return to the study site, thereby decreasing the number of re-sights. However, a 

332 more probable cause for the low number of re-sights in this study could have been the irregular 

333 sampling effort. Regular daily and/or weekly data sampling was not feasible, because of 

334 unfavourable weather conditions or for financial reasons. As a result, revisiting manta rays may 

335 have been missed, thereby lowering the number of re-sights to below the actual number of re-

336 visits by the same individuals. Secondly, the low percentage of re-sights in our population 
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337 probably affected the confidence interval of our survival rate estimate, although our estimate of a 

338 mean annual survival rate of  = 0.666 was not significantly different from what has previously 

339 been estimated using M. alfredi sightings further north along the coast of Mozambique (0.683 ± 

340 0.147 (mean ± standard error); Marshall, Dudgeon & Bennett, 2011). Whether a higher 

341 percentage of re-sights would have affected our estimate of mean survival rate is unclear, but the 

342 survival rates within our population model were probably an overestimation of actual survival 

343 rates. Because we had so few re-sights, we assumed that juveniles and adults had the same 

344 survival rate; however, this was probably not the case. Typically, juvenile survival rates are 

345 lower than those of adults, because juveniles are more vulnerable to predation (Begon, 

346 Townsend & Harper, 2005). However, decreasing yearling and/or juvenile survival rates in our 

347 population model would have resulted in an even lower population growth rate and lifetime 

348 reproductive success; therefore, our predictions probably underestimated the actual population 

349 growth rate and lifetime reproductive success. On the basis of our demographic analysis, we can 

350 conclude that our study population is decreasing in size. Our estimated population growth rate of 

351  = 0.780 per year indicates that, for example, a population of 500 individuals would, over a 

352 period of 10 years, decrease to only  individuals. Such a projected decline in 500 ∙ 𝜆10 = 42

353 population size of over 90% in 10 years is not unrealistic, given that the number of M. alfredi 

354 sightings further north along the coast of Mozambique (Praia do Tofo) has decreased by 88% 

355 over six years between 2005 and 2011 (Rohner et al., 2013). It is important to consider that both 

356 of these populations might be part of the same meta-population. The cause of the latter’s decline 

357 is mainly attributed to increased fishing pressure (Rohner et al., 2013), indicating the direct need 

358 for marine protected areas around manta ray aggregation sites. Harvesting has probably also 

359 contributed to the decline of our study population.
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360

361 Sex ratio

362 In the study population, 63% of the individuals identified were female. The observed 1.7:1 

363 female-to-male ratio was significantly different from a 1:1 ratio, and was therefore female-

364 biased. Off the coast of Praia do Tofo (Mozambique), approximately 100 km north of our study 

365 site, the percentage of females in the population is 78% (3.5:1 female-male ratio) (Marshall, 

366 Dudgeon & Bennett, 2011). Female-biased sex ratios comparable to our observations have been 

367 observed around the Lady Elliot Islands, eastern Australia (1.3:1) (Couturier et al., 2014) and the 

368 Maldives (1.8:1) (Kitchen-Wheeler, Ari & Edwards, 2012). In contrast, Deakos (2010) found a 

369 male-biased sex ratio of 0.9:1 females to males at Maui, Hawaii. Skewed sex ratios have also 

370 been reported in other populations of elasmobranch species. Great white sharks (Carcharodon 

371 carcharias) and whale sharks (R. typus), for example, exhibit male-biased sex ratios (Graham & 

372 Roberts, 2007; Robbins, 2007), whereas nurse sharks (Ginglymostoma cirratum) have a higher 

373 number of females than males (Castro & Rosa, 2005). Other elasmobranch species, e.g. 

374 scalloped hammerhead sharks (Sphyrna lewini), even exhibit almost complete sexual segregation 

375 outside the mating season (Klimley, 1987). The female-biased sex ratio in our reef manta ray 

376 population might indicate that our study sites are important mating and birthing sites, where 

377 females have higher return rates and stronger site affinity than males. 

378

379 Conservation

380 Our elasticity analysis revealed that the population growth rate is most sensitive to perturbation 

381 of adult survival rate. The demographic rates that comprise our population matrix are determined 

382 by the underlying parameters  (the apparent survival rate) and i (the stage-specific transition 
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383 rate). However, because the adult survival rate PA equals  and is independent of i, population 

384 growth rate is indeed most sensitive to perturbation in adult survival, which is typical for long-

385 lived animals. For example, there is a minimal impact of so-called “headstarting” of turtle 

386 hatchlings on the population growth rate. Elasticity analyses have revealed that targeting sub-

387 adult and adult turtle survival would yield a higher rate of population growth, and thus form a 

388 more effective management strategy than the protective rearing of newborns (Crouse, Crowder 

389 & Caswell, 1987; Heppell, Crowder & Crouse, 1996). The importance of adult survivorship is 

390 also evident in northern fur seals Callorhinus ursinus (Trites & Larkin, 1989), marbled murrelets 

391 Brachyramphus marmoratus (Beissinger, 1995) and cheetahs Acinonyx jubatus (Crooks, 

392 Sanjayan & Doak, 1998). In the case of M. alfredi, conservation efforts and population 

393 management policies should be aimed at protecting both adults and juveniles, in order to increase 

394 their survival and hence population growth. 

395 Our results suggest that the M. alfredi population studied is decreasing in size, and 

396 effective management and legislation is urgently needed to avoid its local extinction. Two main 

397 approaches should be taken: (1) the species should be protected at the national level against 

398 fishing, including accidental catch; (2) aggregation areas should be protected. The behaviour of 

399 reef manta rays at cleaning stations makes targeted fishing a potential threat, but also creates an 

400 opportunity for site-specific protection. By protecting aggregation sites, both juveniles and adults 

401 could profit from increased survival, resulting in a higher population growth rate. The 

402 importance of adult survival makes manta rays an unsustainable fishing resource. Their socio-

403 economic value has yet to be realised to its full potential, but one thing is clear: manta rays are 

404 worth more alive than dead (O’Malley, Lee-Brooks & Medd, 2013; Ward-Paige, Davis & Worm, 

405 2013).
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Table 1 Model parameters used to calculate survival rate  of 𝑷𝒊 =  𝝈(𝟏 ‒ 𝜸𝒊)

yearlings (i = Y), juveniles (i = J) and adults (i = A) and growth rate  𝑮𝒊 =  𝝈𝜸𝒊

of yearlings (i = Y) and juveniles (i = J). Apparent survival rate, σ (year-1) was 

estimated using capture-mark-recapture analyses (see Methods); estimates for life 

stage duration Si of yearlings (i = Y), juveniles (i = J) and adults (i = A) were 

based on International Union for Conservation of Nature estimates (Marshall et 

al., 2011).

Life stage

Parameter Yearling Juvenile Adult

Apparent survival rate, σ (year-1) 0.666 0.666 0.666

Duration of stage i, Si (years) 1 8 31

i = 1/Si 1 0.125 0.032

565

566
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Table 2 Model selection using Akaike’s Information Criterion (AIC) for four open-

population Cormack-Jolly-Seber models. In model 1, apparent survival rate (, year-1) 

and recapture rate (p, year-1) are constant, denoted as p(.); in model 2, apparent survival 

rate is constant and recapture rate varies across years, denoted as (p(t); in model 3, 

apparent survival rate varies across years and recapture rate is constant, denoted as t) p(.); 

in model 4, both apparent survival rate and recapture rate vary across years, an denoted as 

t) p(t). 

Model AICc ΔAICc AICc weight Model 

likelihood

No. 

parameters

1 p(.) 126.299 6.874 0.024 0.032 2

2 p(t) 119.426 - 0.748 1.000 6

3 t) p(.) 127.163 7.737 0.016 0.021 6

4 t) p(t) 121.945 2.520 0.212 0.284 8

567 Notes. 

568 AICc, corrected AIC; ΔAICc, difference in AICc when compared to the lowest AICc model; AICc 

569 weight, Akaike weight. The best-fitting model is in bold.
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Table 3 Step-by-step model selection procedure using log-likelihood 

tests to identify the best-fitting, open-population Cormack-Jolly-

Seber model. At each step, a log-likelihood test was conducted to assess 

whether a more complex, alternative model provided a better description 

of the data than the less complex, null model (within which the 

alternative model is nested). The procedure ended when the alternative 

model did not provide a significantly better fit than the null model (step 

3). In each model, the apparent survival rate (yr-1), , and recapture rate 

(yr-1), p, were either set as constant (.) or time-varying (t) (see also Table 

2). The best-fitting model is in bold.

Step Null model Alternative 

model

Log-

likelihood

d.f. p

1 p(.) tp(.) 7.669 4 0.105

2 p(.) p(t) 15.406 4 0.004

3 p(t) t)p(t) 1.937 2 0.380
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572

573 Figure 1 Locations of study sites off the coast of southern Mozambique. Main surveys were 

574 conducted at three main manta ray aggregation sites (areas in A) and opportunistic surveys were 

575 conducted at two other locations with less frequent manta encounters (areas in B).

576
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577

578 Figure 2 Life cycle of Manta alfredi. We distinguished three life stages: yearlings (Y), juveniles 

579 (J) and adults (A). The rate at which individuals survive and stay in the same life stage equals Pi, 

580 where i indicates Y (yearling), J (juvenile) or A (adult); the rate at which individuals survive and 

581 grow to the next life stage equals Gi, where i indicates Y (yearling) or J (juvenile); the rate at 

582 which adults produce yearlings equals FA. See also Equations 1–3.

583
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584

585 Figure 3 Number of adult male (black bars) and adult female (grey bars) manta rays 

586 summed per year over a period of six years. The associated female-male sex ratios for each 

587 year within the study period (2009–2014) were 1:1 (2009), 1.7:1 (2010), 3.1:1 (2011), 2.7:1 

588 (2012), 2.6:1 (2013) and 1:1 (2014).
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localadmin
Sticky Note
Somewhere in the paper there should be a CPUE style evaluation.  When conducting a MARk analysis it is important to have a near similar effort for each sampling event (short, focal) period of sampling.  Quasi-continuous sampling is pretty much useless for MARK.

Just looking at these raw data it does not give me much confidence in the findings, as most people would see 2010 as an indication that 110 animals were alive in that year, but only about 4 in 2009.  Since 2011 the annual sightings have steadily increased...does not look like a population in decline....but without CPUE data it is impossible to tell.

localadmin
Sticky Note
Where is the modelled population estimate figure for each year (with CIs)?




